Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Другое / Конспекты / Курс лекций по гидравлике
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Другое

Курс лекций по гидравлике

библиотека
материалов













КУРС ЛЕКЦИЙ

По дисциплине: «Гидравлические и пневматические системы»



















Подготовила преподаватель Осипова Н.М.















Раздел 1 Гидравлические системы

Тема 1.1 Введение

1.Краткая история развития гидравлики, гидравлических машин и гидропневмоприборов

Исторически гидравлика является одной из самых древних наук в мире. Археологические исследования показывают, что еще за 5000 лет до нашей эры в Китае, а затем в других странах древнего мира найдены описания устройства различных гидравлических сооружений, представленные в виде рисунков (первых чертежей). Естественно, что никаких расчетов этих сооружений не производилось, и все они были построены на основании практических навыков и правил.

Первые указания о научном подходе к решению гидравлических задач относятся к 250 году до н.э., когда Архимедом был открыт закон о равновесии тела, погруженного в жидкость. Потом на протяжении 1500 лет особых изменений гидравлика не получала. Наука в то время почти совсем не развивалась, образовался своего рода застой. И только в XVI-XVII веках нашей эры в эпоху Возрождения, или как говорят историки Ренессанса, появились работы Галилея, Леонардо да Винчи, Паскаля, Ньютона, которые положили серьезное основание для дальнейшего совершенствования гидравлики как науки.

Однако только основополагающие работы академиков Петербургской академии наук Даниила Бернулли и Леонарда Эйлера живших в XVIII веке, создали прочный фундамент, на котором основывается современная гидравлика. В XIX-XX веках существенный вклад в гидродинамику внес "отец русской авиации" Николай Егорович Жуковский.http://gidravl.narod.ru/1a2.gif

Роль гидравлики в современном машиностроении трудно переоценить. Любой автомобиль, летательный аппарат, морское судно не обходится без применения гидравлических систем. Добавим сюда строительство плотин, дамб, трубопроводов, каналов, водосливов. На производстве просто не обойтись без гидравлических прессов, способных развивать колоссальные усилия. А вот интересный факт из истории строительства Эйфелевой башни. Перед тем как окончательно установить многотонную металлоконструкцию башни на бетонные основания, ей придали строгое вертикальное положение с помощью четырех гидравлических прессов, установленных под каждую опору.

Гидравлика преследует человека повсюду: на работе, дома, на даче, в транспорте. Сама природа подсказала человеку устройство гидравлических систем. Сердце - насос, печень - фильтр, почки - предохранительные клапаны, кровеносные сосуды - трубопроводы, общая длина которых в человеческом организме около 100 000 км. Наше сердце перекачивает за сутки 60 тонн крови (это целая железнодорожная цистерна!).



2.Значение гидравлических и пневматических систем в авиационном производстве.

Известно, что на современном этапе развития современной промышленности невозможно обойтись без средств и систем, работа которых основана на принципах гидравлики и пневматики. Это утверждение в полной мере касается и авиапрома, эффективность и качество продукции которого самым прямым образом влияет, в первую очередь, на безопасность эксплуатации воздушного транспорта. 

Гидравлические и пневматические устройства и системы различного назначения – важный компонент современных авиалайнеров, использующихся для перевозки людей и материальных средств.

Особо важную роль в развитии современной техники играют гидравлические и пневматические приводы как основное средство механизации технологических процессов и процессов управления различными объектами. В качестве исполнительных устройств такие приводы применяют в станках и автоматических линиях, системах управления автомобилем, самолетом и т.д.

3.Задачи дисциплины в профессиональной деятельности

Задачи дисциплины:

изучение основ гидростатики и гидродинамики;

теоретическая и практическая подготовка будущих специалистов к применению различных методов гидравлических расчетов при решении вопросов пожарной безопасности;

формирование навыков работы с учебной и научной литературой при решении практических задач гидравлики.


4. Достоинство и недостатки гидропневмопривода, области их применения, структура, классификация


Гидравлический привод (гидропривод) — совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством гидравлической энергии.

К основным преимуществам гидропривода относятся:

  • возможность универсального преобразования механической характеристики приводного двигателя в соответствии с требованиями нагрузки;

  • простота управления и автоматизации;

  • простота предохранения приводного двигателя и исполнительных органов машин от перегрузок; например, если усилие на штоке гидроцилиндра становится слишком большим (такое возможно, в частности, когда шток, соединённый с рабочим органом, встречает препятствие на своём пути), то давление в гидросистеме достигает больших значений — тогда срабатывает предохранительный клапан в гидросистеме, и после этого жидкость идёт на слив в бак, и давление уменьшается;

  • надёжность эксплуатации;

  • широкий диапазон бесступенчатого регулирования скорости выходного звена; например, диапазон регулирования частоты вращения гидромотора может составлять от 2500 об/мин до 30-40 об/мин, а в некоторых случаях, у гидромоторов специального исполнения, доходит до 1-4 об/мин, что для электромоторов трудно реализуемо;

  • большая передаваемая мощность на единицу массы привода; в частности, масса гидравлических машин примерно в 10-15 раз меньше массы электрических машин такой же мощности;

  • самосмазываемость трущихся поверхностей при применении минеральных и синтетических масел в качестве рабочих жидкостей; нужно отметить, что при техническом обслуживании, например, мобильных строительно-дорожных машин на смазку уходит до 50% всего времени обслуживания машины, поэтому самосмазываемость гидропривода является серьёзным преимуществом;

  • возможность получения больших сил и мощностей при малых размерах и весе передаточного механизма;

  • простота осуществления различных видов движения — поступательного, вращательного, поворотного;

  • возможность частых и быстрых переключений при возвратно-поступательных и вращательных прямых и реверсивных движениях;

  • возможность равномерного распределения усилий при одновременной передаче на несколько приводов;

  • упрощённость компоновки основных узлов гидропривода внутри машин и агрегатов, в сравнении с другими видами приводов.

К недостаткам гидропривода относятся:

  • утечки рабочей жидкости через уплотнения и зазоры, особенно при высоких значениях давления в гидросистеме, что требует высокой точности изготовления деталей гидрооборудования;

  • нагрев рабочей жидкости при работе, что приводит к уменьшению вязкости рабочей жидкости и увеличению утечек, поэтому в ряде случаев необходимо применение специальных охладительных устройств и средств тепловой защиты;

  • более низкий КПД чем у сопоставимых механических передач;

  • необходимость обеспечения в процессе эксплуатации чистоты рабочей жидкости, поскольку наличие большого количества абразивных частиц в рабочей жидкости приводит к быстрому износу деталей гидрооборудования, увеличению зазоров и утечек через них, и, как следствие, к снижению объёмного КПД;

  • необходимость защиты гидросистемы от проникновения в неё воздуха, наличие которого приводит к нестабильной работе гидропривода, большим гидравлическим потерям и нагреву рабочей жидкости;

  • пожароопасность в случае применения горючих рабочих жидкостей, что налагает ограничения, например, на применение гидропривода в горячих цехах;

  • зависимость вязкости рабочей жидкости, а значит и рабочих параметров гидропривода, от температуры окружающей среды;

  • в сравнении с пневмо- и электроприводом — невозможность эффективной передачи гидравлической энергии на большие расстояния вследствие больших потерь напора в гидролиниях на единицу длины.

Объёмный гидропривод применяется в горных и строительно-дорожных машинах. В настоящее время более 50% общего парка мобильных строительно-дорожных машин (бульдозеров,экскаваторов, автогрейдеров и др.) является гидрофицированной. Это существенно отличается от ситуации 30-х - 40-х годов 20-го века, когда в этой области применялись в основном механические передачи.

В станкостроении гидропривод также широко применяется, однако в этой области он испытывает высокую конкуренцию со стороны других видов привода.

Широкое распространение получил гидропривод в авиации. Насыщенность современных самолётов системами гидропривода такова, что общая длина трубопроводов современного пассажирского авиалайнера может достигать нескольких километров.

В автомобильной промышленности самое широкое применение нашли гидроусилители руля, существенно повышающие удобство управления автомобилем. Эти устройства являются разновидностью следящих гидроприводов. Гидроусилители применяют и во многих других областях техники (авиации, тракторостроении, промышленном оборудовании и др.).

В целом, границы области применения гидропривода определяются его преимуществами и недостатками.

Гидроприводы могут быть двух типов: гидродинамические и объёмные.

По характеру движения выходного звена гидродвигателя

Гидропривод вращательного движения

Гидропривод поступательного движения

Гидропривод поворотного движения

По возможности регулирования

Регулируемый гидропривод

Саморегулируемый гидропривод

По схеме циркуляции рабочей жидкости

Гидропривод с замкнутой схемой циркуляции

https://upload.wikimedia.org/wikipedia/commons/thumb/9/97/%D0%98%D0%94%D0%A0%D0%9E%D0%A1%D0%A5%D0%95%D0%9C%D0%AB45.GIF/400px-%D0%98%D0%94%D0%A0%D0%9E%D0%A1%D0%A5%D0%95%D0%9C%D0%AB45.GIF

Гидропривод с разомкнутой системой циркуляции

По источнику подачи рабочей жидкости

Насосный гидропривод

Магистральный гидропривод

Аккумуляторный гидропривод

По типу приводящего двигателя

Гидроприводы бывают:

С электроприводом

Приводом от ДВС, турбин и т. д.



Тема 1.2 Основы гидростатики и гидродинамики


1.Функциональное назначение рабочих жидкостей


Основное назначение рабочей жидкости как рабочего тела (рабочей среды) в гидроприводе – передавать давление для перемещения исполнительного органа. Кроме того, рабочая жидкость выполняет и другие важные функции:

  • используется для смазывания трущихся поверхностей деталей гидромашин и других гидроустройств, в результате чего между двумя поверхностями уменьшается сила трения и интенсивность их изнашивания;

  • служит для отвода теплоты от нагретых поверхностей гидромашин и других гидроустройств;

  • уносит продукты изнашивания и прочие частицы загрязнения;

  • защищает внутренние поверхности полостей гидромашин и других гидроустройств от коррозии.

2. Определение жидкости

Жидкостью называется физическое тело (Рис.1), обладающее свойством текучести, т. е. не имеющее способности самостоятельно сохранять свою форму.

http://irina-web.3dn.ru/Uchebnik/images/image001.jpg

Рис. 1. Физическое тело - жидкость

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести  достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.


3. Понятие идеальной и реальной жидкости


В гидравлике рассматриваются идеальные и реальные жидкости.

Идеальной называется такая жидкость, между частицами которой отсутствуют силы внутреннего трения. Вследствие этого она не сопротивляется касательным силам сдвига и силам растяжения. Идеальная жидкость совершенно не сжимается — она оказывает бесконечно большое сопротивление силам сжатия. Такой жидкости в природе не существует —это научная абстракция, необходимая для упрощения анализа общих законов механики применительно к жидким телам.

Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу , то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. 

Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда (Рис.2), в котором находится.



http://irina-web.3dn.ru/Uchebnik/images/image002.jpg

Рис. 2. Капельная жидкость в различных емкостях

Реальная, или действительная, жидкость (Рис. 3) не обладает в совершенстве свойствами идеальной жидкости, она в некоторой степени сопротивляется касательным и растягивающим усилиям,  также отчасти сжимается.

http://irina-web.3dn.ru/Uchebnik/images/image003.jpg

Рис.3. Емкость с реальной жидкостью (с индустриальным маслом)

Для решения многих задач гидравлики этим отличием в свойствах идеальной и реальной жидкостей можно пренебречь. В связи с этим законы, выведенные для идеальной жидкости, могут быть применены к жидкостям реальным с соответствующими поправками, а иногда даже без них.


4. Основные механические и физические свойства жидкости


К основным физическим свойствам жидкости относятся текучесть, цвет, плотность, вязкость, сжимаемость, тепловое расширение.

Плотностью жидкости называется физическая величина, равная отношению массы  жидкости к ее объему


 http://irina-web.3dn.ru/Uchebnik/images/image004.jpg    

Рис. Ареометры для жидкостей различной плотности

 

     http://irina-web.3dn.ru/Uchebnik/images/image006.gifhttp://irina-web.3dn.ru/Uchebnik/images/image008.jpg

Рис. Ареометр, погруженный в цилиндр с жидкостью: 

Удельный вес— физическая величина, равная отношению веса жидкости к объему, занимаемому ею:

http://irina-web.3dn.ru/Uchebnik/images/image010.jpg

где G — вес жидкости, Н; V — объем жидкости,м3; g — ускорение свободного падения, м/с2.

Вязкость жидкости свойство жидкости оказывать сопротивление сдвигу или относительному перемещению ее слоев. Различают динамическую и кинематическую вязкость жидкости.

http://irina-web.3dn.ru/Uchebnik/images/image015.jpg

Динамической вязкостью жидкости называется величина, равная отношению касательного напряжения между слоями жидкости к градиенту скорости их сдвига.

Кинематической вязкостью жидкостиназывается величина, равная отношению динамической вязкости к ее плотности при той же температуре 

http://irina-web.3dn.ru/Uchebnik/images/image017.jpg

Сжимаемость жидкости— свойство изменять объем под действием давления. Количественно сжимаемость жидкости характеризуется модулем объемного сжатия Е.

Единица модуля объемного сжатия в системе СИ—1 Па. Из выражения определяют изменение объема жидкости 

http://irina-web.3dn.ru/Uchebnik/images/image022.jpg



5. Приборы для измерения вязкости жидкости


http://irina-web.3dn.ru/Uchebnik/images/image018.jpg

Рис. Капиллярные вискозиметры для различных жидкостей

Сущность метода определения кинематической вязкости при помощи капиллярного вискозиметра (ГОСТ 33—2000) заключается в измерении времени истечения определенного объема испытуемой рабочей жидкости -через его капилляр под влиянием силы тяжести.

http://irina-web.3dn.ru/Uchebnik/images/image019.jpg

Рис. Капиллярный вискозиметр типа ВЦЖТ

Капиллярный вискозиметр типа ВЦЖТ-4 представляет собой V-образную стеклянную трубку. Он имеет левое и правое колена, измерительный резервуар 2 между метками М1 и М2, а также резервуары 1и 4. На левом колене вверху имеется отводная трубка 5 для надевания резиновой трубки. Нижняя часть правого колена выполнена в виде капиллярной трубки 3.

Метод определения кинематической вязкости следующий. На отводную трубку 5 надевают резиновую трубку. Далее, зажав левое колено и перевернув вискозиметр, опускают правое колено в сосуд с испытуемой жидкостью и засасывают ее с помощью резиновой груши до метки M2.Вынимают вискозиметр из сосуда и быстро возвращают в нормальное положение. Сливают из правого колена избыток жидкости и надевают на конец колена резиновую трубку. Вискозиметр устанавливают в термостат (баню) так, чтобы резервуар 1 был ниже уровня жидкости в термостате. После выдержки в термостате не менее 15 мин засасывают жидкость  в правое колено примерно до 1/3 высоты резервуара 1. Затем отсоединяют резиновую трубку с правого колена, и жидкость под действием силы тяжести вытекает из резервуара 2 через капиллярную трубку 3. При этом определяют при помощи секундомера время Т перемещения мениска жидкости от метки М1 до метки М2.


6. Зависимость физических свойств жидкости от температуры и давления


Вязкость рабочей жидкости зависит от температуры и давления. Вязкость минеральных масел повышается с ростом давления (при давлении 15 МПа она может возрасти на 25 - 30 %) и снижается при увеличении температуры масла, что отрицательно сказывается на его смазывающей способности, поэтому предпочтительно применять масла, у которых зависимость вязкости от температуры выражена слабее. Вязкостно-температурные свойства масел по сравнению с аналогичными свойствами масел, принятых за эталон, оценивают с помощью индекса вязкости (ИВ), приводимого в регламентах всех современных масел. Масла с высоким значением ИВ меньше изменяют свою вязкость с ростом температуры.

С увеличением вязкости возрастают потери давления в гидросистеме, однако одновременно уменьшаются утечки, поэтому, как правило, более вязкие масла применяют в гидроприводах, работающих при повышенном давлении. Уменьшение вязкости рабочей жидкости увеличивает утечки в гидромашине, что ухудшает ее параметры.

Для обеспечения работы гидропривода с большими скоростями при низких давлениях следует выбирать рабочую жидкость с меньшей вязкостью, так как вязкостные потери напора при больших скоростях потока значительны. При работе на больших давлениях - 32 МПа следует выбирать рабочую жидкость с большой вязкостью. Обычно вязкость ограничивает диапазон рабочих температур гидропривода


7. Основные задачи гидростатики


 Гидростатикой называется раздел гидравлики, в котором изучается равновесие жидкостей и воздействие покоящихся жидкостей на погруженные в них тела и поверхности, ограничивающие жидкости.

Одна из основных задач гидростатики – изучение распределения давления в жидкости и определение на этой основе сил, действующих со стороны жидкости на соприкасающиеся с ней твердые тела.

Знание законов гидростатики позволяет рассчитать силы, действующие на дно и стенки сосудов различной формы и назначения (балки, емкости, цистерны), на тела, погруженные в жидкость (под. лодки, корабли), и вывести условия плавания тел на поверхности и внутри жидкости.


8. Силы, действующие в жидкости, находящиеся в состоянии равновесия

На все физические тела, в том числе и на жидкости, обладающие массой, действуют силы. Их можно разделить на внешние, действующие из внешнего пространства, например, силы тяжести, центробежные, магнитные, давление стенок сосудов, и внутренние, действующие между молекулами, внутри атомов. Внутренние силы, как правило, полностью уравновешены и поэтому не входят в расчетные формулы, которые мы будем рассматривать. В дальнейшем мы будем иметь дело только с внешними силами.

Внешние силы делят на массовые и поверхностные.

Массовые силы действуют на все частицы данного тела и пропорциональна его массе. К ним относятся силы тяготения, силы  инерции – действующие на жидкость при относительном ее покое. В случае однородной жидкости, т. е. жидкости, имеющей всюду одинаковую плотность, массовые силы будут пропорциональны также объему жидкости, поэтому при Б=const , массовые силы можно называть объемными силами.

Поверхностные силы действуют на поверхности тела и пропорциональны его площади. К ним относятся силы воздействия на данное жидкое тело со стороны соседних объемов жидкости или соприкасающихся с данной жидкостью твердых либо газообразных тел.


9.Понятие гидростатического давления


Одним из основных понятий гидростатики является понятие гидростатического давления. Для его объяснения рассмотрим некоторый объем жидкости, находящийся в равновесии (см.рис.)

http://infobos.ru/img/553/2.jpg

Проведем секущую плоскость I-I, которая разделит объем W на две части, и отбросим мысленно одну из них, например верхнюю. Действие отброшенной части на нижнюю заменим распределенными по поверхности силами ΔF. На площадку Δω действует сила ΔF. Представим, что Δω «стягивается» в т. А. Тогда предел отношения ΔF/Δω при Δω —> 0 называется гидростатическим давлением в рассматриваемой точке.

То есть давление это величина отношения силы приложенной к площади(определнной плоскости). Другими словами чтобы найти давление нужно силу разделить на площадь на которую действует сила.




10. Единицы измерения гидростатического давления в системе СИ.


В качестве единицы измерения этой величины применяют 1 Па (один паскаль). Под 1 Па понимают давление, создаваемое силой в 1 Н, которая равномерно распределена по поверхности площадью 1 м2.

Также существуют другие величины давления:

1 Па=1 Н/м2 1 атмосфера=10м столба воды

1 атмосфера=0,981 бар

1 бар=0,1 МПа или 100000 Па

1 атмосфера=735,5 мм ртутного столба


11. Основные свойства гидростатического давления


Гидростатическое давление обладает свойствами.

Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.

Свойство 2. Гидростатическое давление неизменно во всех направлениях.

P'xΔyΔz=P''xΔyΔz
P'yΔxΔz = P''yΔxΔz
P'zΔxΔy + γΔx, Δy, Δz = P''zΔxΔy

где γ-удельный вес жидкости;
Δ
x, Δy, Δz - объем кубика.

Сократив полученные равенства, найдем, что

P'x = P''x; P'y = P''y; P'z + γΔz = P''z

Членом третьего уравнения γΔz, как бесконечно малым по сравнению с P'z и P''z, можно пренебречь и тогда окончательно

P'x = P''x; P'y = P''y; P'z=P''z

Вследствие того, что кубик не деформируется (не вытягивается вдоль одной из осей), надо полагать, что давления по различным осям одинаковы, т.е.

P'x = P''x = P'y = P''y = P'z=P''z

Это доказывает второй свойство гидростатического давления.

Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.

Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического давления может быть записано в виде

P=f(x, y, z)


12. Закон Паскаля


Закон Паскаля описывается формулой давления:

p=F/S,

где  p – это давление,
F – приложенная сила,
S – площадь сосуда.

Из формулы мы видим, что при увеличении силы воздействия при той же площади сосуда давление на его стенки будет увеличиваться. Измеряется давление в ньютонах на метр квадратный или в паскалях (Па), в честь ученого, открывшего закон Паскаля. Его применение лежит в основе многих устройств и довольно распространено в производстве. Это, в частности, гидравлические прессы, пневматические тормоза и инструменты и многое другое.


13. Основное уравнение гидростатики


Определим теперь величину давления внутри покоящейся жидкости. С этой целью рассмотрим произвольную точку А, находящуюся на глубине ha. Вблизи этой точки выделим элементарную площадку dS. Если жидкость покоится, то и т. А находится в равновесии, что означает уравновешенность сил, действующих на площадку.

A – произвольная точка в жидкости,

ha – глубина т. А,

P0  - давление внешней среды,

r - плотность жидкости,

Pa – давление в т. А,

dS – элементарная площадка.

Сверху на площадку действует внешнее давление P0 (в случае, если свободная поверхность граничит с атмосферой, то Image) и вес столба жидкости. Снизу – давление в т. А. Уравнение сил, действующих на площадку, в этих условиях примет вид:


Image.

Разделив это выражение на dS и учтя, что т. А выбрана произвольно, получим выражение для P в любой точке покоящейся жидкости:

Image;

где h  глубина жидкости, на которой определяется давление P.

Полученное выражение носит название основного уравнения гидростатики.


14. Понятие абсолютного, избыточного и вакуумметрического давления


Давлением р жидкости, газа или твердого тела, т.е. среды или вещества, называют силу, равномерно действующую на площадь поверхности.

В молекулярно-кинетической теории газа давление рассматривается как результат ударов молекул о стенки сосуда. Давление связано со средней кинетической энергией поступательного движения молекул mv2 и их числом N в объеме V следующей известной формулой:


p = Nmv2/(3V),


где m — масса молекулы; v2 — средний квадрат скорости молекулы.

В практике теплотехнических измерений наиболее часто используют понятия давления: абсолютного рабс, избыточного ризб и вакуумметрического рв, различие которых состоит в их отношении к атмосферному (барометрическому) давлению ратм. Абсолютное давление, под которым подразумевают суммарное давление, воздействующее на вещество, определяется суммой атмосферного (барометрического) и избыточного давлений:


Рабс = Ратм +Ризб


Соответственно избыточное давление представляет собой разность между абсолютным и атмосферным:


Ризб = Рабс – Ратм


Приборы, измеряющие избыточное давление,  в действительности являются измерителями разностного (дифференциального) давления. На чувствительный элемент, например трубчатую пружину, точнее на ее внутреннюю полость, воздействует измеряемое давление. Это приводит к изменению ее положения. В это время снаружи такому сдвигу противодействует атмосферное давление. В результате на шкале прибора отображается разница между измеряемым — абсолютным — давлением и давлением внешнего окружения — атмосферным.

Вакуумметрическое давление (вакуум) — давление разряженного газа — определяется как разность между атмосферным и абсолютным давлением, которое ниже атмосферного:


Рв=Ратм-Рабс


Соответственно численное значение вакуумметрического давления указывается со знаком «минус».

Термин «давление» включает понятия «напор» и «тяга», которые приняты только в нашей стране и для которых характерно измерение избыточного и вакуумметрического давлений низких значений, т.е. положительного и отрицательного его значений.


15. Приборы для измерения давления


Измерение давления является одним из самых главных видов измерений в любых отраслях промышленности. Надежность измерения этого параметра гарантирует безопасность и целостность установки, а также требуется во многих процессах учета расхода жидкостейизмерения абсолютного и дифференциального давления в коррозионных и абразивных средах. Для измерения давления используют манометрывакуумметрымановакуумметрынапоромерытягомерытягонапоромеры,датчики давления.

Манометры — приборы, предназначенные для измерения избыточного, абсолютного и дифференциального давления или разности давлений жидкостей и газов. Действие манометров основано на зависимости ряда физических параметров от давления. По принципу действия все приборы для измерения давления можно разделить на жидкостные, пружинные, грузопоршневые и с дистанционной передачей показаний. В данном каталоге представлены манометры, вакуумметры, мановакуумметры. Манометр

Тягомеры, напоромеры, дифманометры-напоромеры - приборы, предназначенные для измерения вакуумметрического, избыточного, а также разности вакуумметрических и избыточных давлений воздуха и неагрессивных газов.
Датчики давления — устройства, физические параметры которых изменяются в зависимости от давления. В датчиках давление преобразуется в электрический, пневматический, цифровой или другой сигнал. Различают датчики избыточного, абсолютного и дифференциального давления. Датчики могут изготавливаться во взрывозащищённом исполнении и комплектоваться разделительными мембранами и элементами охлаждения.Дифманометр-напоромерДатчик давления

Эталонные приборы

Оборудование, предназначенное для получения высокоточных измерений параметров технологических процессов, а также для проведения калибровки и поверки средств измерений.Эталонные приборы


Реле давления предназначены для замыкания или размыкания электрических цепей в момент достижения заданного давления (как при повышении, так и при понижении давления рабочей среды).Реле давления

Дополнительное, сопутствующее оборудование

Оборудование, необходимое для организации работы приборов измерения давления при определенных технических условиях.Дополнительное оборудование




16. Задачи гидродинамики


Гидродинамикой называется раздел гидравлики, изучающий законы движение жидкостей и взаимодействие жидкости с покоящимися или движущимися в ней твердыми телами.

Задачей гидродинамики является отыскание характеристик движения по заданным параметрам. Последними являются силы, вызывающие движение, а искомыми харак-ми являются скорость движения и давление в жидкости. Давление внутри жидкости называется в этом случае гидродинамическим.


17. Виды движения жидкости


Течение жидкости вообще может быть неустановившимся (нестационарным) или установившимся (стационарным).

Неустановившееся движение – такое, при котором в любой точке потока скорость движения и давление с течением времени изменяются, т.е. u и P зависят не только от координат точки в потоке, но и от момента времени, в который определяются характеристики движения т.е.:Image

Imageи Image.

Примером неустановившегося движения может являться вытекание жидкости из опорожняющегося сосуда, при котором уровень жидкости в сосуде постепенно меняется (уменьшается) по мере вытекания жидкости.

Установившееся движение – такое, при котором в любой точке потока скорость движения и давление с течением времени не изменяются, т.е. u и P зависят только от координат точки в потоке, но не зависят от момента времени, в который определяются характеристики движения:Image

Imageи Image,

и, следовательно, Image, Image,Image,Image.


18. Поток жидкости


Совокупность элементарных струек жидкости представляет собой поток жидкости. Различают следующие типы потоков (или типы движений жидкости).

Напорные потоки (напорные движения) -  это такие, когда поток ограничен твердыми стенками со всех сторон, при этом в любой точке потока давление отличается от атмосферного обычно в большую сторону, но может быть и меньше атмосферного. Движение в этом случае происходит за счёт напора, создаваемого, например, насосом или водонапорной башней. Давление вдоль напорного потока обычно переменное. Такое движение имеет место во всех гидроприводах технологического оборудования, водопроводах, отопительных системах и т.п.Image

Безнапорные потоки (безнапорные движения) отличаются тем, что поток имеет свободную поверхность, находящуюся под атмосферным давлением. Безнапорное движение происходит под действием сил тяжести самого потока жидкости. Давление в таких потоках примерно одинаково и отличается от атмосферного только за счет глубины потока. Примером такого движения может быть течение воды в реке, канале, ручье.Image

Свободная струя не имеет твёрдых стенок. Движение происходит под действием сил инерции и веса жидкости. Давление в таком потоке практически равно атмосферному. Пример свободной струи – вытекание жидкости из шланга, крана и т.п.Image


19. Гидравлические элементы потока: площадь живого сечения

потока, смоченный периметр, гидравлический радиус, объемный и весовой расход жидкости, средняя скорость движения потока


Все потоки жидкости подразделяются на два типа:

1) напорные — без свободной поверхности;

2) безнапорные — со свободной поверхностью.

Все потоки имеют общие гидравлические элементы: линии тока, живое сечение, расход, скорость. Приведём краткий словарь этих гидравлических терминов.

Свободная поверхность это граница раздела жидкости и газа, давление на которой обычно равно атмосферному (рис. 7,а). Наличие или отсутствие её определяет тип потока: безнапорный или напорный. Напорные потоки, как правило, наблюдаются в водопроводных трубах (рис. 7,б) — работают полным сечением. Безнапорные — в канализационных (рис. 7,в), в которых труба заполняется не полностью, поток имеет свободную поверхность и движется самотёком, за счёт уклона трубы.

hello_html_344025bc.gif

Линия тока — это элементарная струйка потока, площадь поперечного сечения которой бесконечно мала. Поток состоит из пучка струек (рис. 7,г).

Площадь живого сечения потока 2) — это площадь поперечного сечения потока, перпендикулярная линиям тока (см. рис. 7,г).

Расход потока q (или Q) — это объём жидкости V, проходящей через живое сечение потока в единицу времени t :


q = V/t.


Единицы измерения расхода в СИ м3, а в других системах: м3/ч , м3/сут, л/с.

Средняя скорость потока v (м/с) — это частное от деления расхода потока на площадь живого сечения :

Скорости потоков воды в сетях водопровода и канализации зданий обычно порядка 1 м/с.

Следующие два термина относятся к безнапорным потокам.

Смоченный периметр (м) — это часть периметра живого сечения потока, где жидкость соприкасается с твёрдыми стенками. Например, на рис. 7,в величиной является длина дуги окружности, которая образует нижнюю часть живого сечения потока и соприкасается со стенками трубы.

Гидравлический радиус R (м) — это отношение вида которое применяется в качестве расчётного параметра в формулах для безнапорных потоков.





















Тема 1.3: «Истечение жидкости. Гидравлический расчет простых трубопроводов»


1.Истечение через малые отверстия в тонкой стенке при постоянном напоре. Истечение при несовершенном сжатии. Истечение под уровень. Истечение через насадки при постоянном напоре. Истечение из-под затвора в горизонтальном лотке.


Малым считается отверстие, высота которого не превышает 0,1 Н, где
Н – превышение свободной поверхности жидкости над центром тяжести отверстия (рис. 1).

Стенку считают тонкой, если ее толщина < (1,5…3,0) d (см. рис. 1). При выполнении этого условия величина не влияет на характер истечения жидкости из отверстия, так как вытекающая струя жидкости касается только острой кромки отверстия.

Рис2

Рис. 1. Истечение жидкости из отверстия
в тонкой стенке


Поскольку частицы жидкости движутся к отверстию по криволинейным траекториям сил инерции струя, вытекающая из отверстия, сжимается. Благодаря действию сил инерции струя продолжает сжиматься и после выхода из отверстия. Наибольшее сжатие струи, как показывают опыты, наблюдается в сечении с-с на расстоянии примерно (0,5…1,0) d от входной кромки отверстия (см. рис.1). Это сечение называют сжатым. Степень сжатия струи в этом сечении оценивают коэффициентом сжатия :

hello_html_152fb9f4.gif,

где с и соответственно площадь сжатого живого сечения струи и площадь отверстия.

Среднюю скорость струи Vc в сжатом сечении с-с при р0 = рат вычисляют по формуле, полученной из уравнения Д. Бернулли, составленного для сечений I-I и с-с (см. рис.1):

hello_html_m5e40d0ba.gif,

где – коэффициент скорости отверстия.

hello_html_m64983e0.gif

На основе использования уравнения траектории струи, вытекающей из отверстия, получено еще одно выражение для коэффициента :

hello_html_m229ccf1d.gif

В формулах (3) и (4) – коэффициент Кориолиса, – коэффициент сопротивления отверстия, xi и yi – координаты произвольно взятой точки траектории струи, отсчитываемые от центра отверстия.

Поскольку напор теряется главным образом вблизи отверстия, где скорости достаточно велики, при истечении из отверстия во внимание принимают только местные потери напора.

Расход жидкости Q через отверстие равен:

hello_html_7b2933d.gif

где

hello_html_m3739adfd.gif.

Здесь – коэффициент расхода отверстия, учитывающий влияние гидравлического сопротивления и сжатия струи на расход жидкости. С учетом выражения для формула (1.25) принимает вид:

hello_html_376174f9.gif

Величины коэффициентов , , , для отверстий определяют опытным путем. Установлено, что они зависят от формы отверстия и числа Рейнольдса. Однако при больших числах Рейнольдса (Re 105) указанные коэффициенты от Re не зависят и для круглых и квадратных отверстий при совершенном сжатии струи равны: = 0,62…0,64, = 0,06, = 0,97…0,98, = 0,60…0,62.

Насадкой называют патрубок длиной 2,5d Lн 5d (рис. 2), присоединенный к малому отверстию в тонкой стенке с целью изменения гидравлических характеристик истечения (скорости, расхода жидкости, траектории струи).

Рис3

Рис. 2. Истечение через расходящийся
и сходящийся насадки

Насадки бывают цилиндрические (внешние и внутренние), конические (сходящиеся и расходящиеся) и коноидальные, т. е. очерченные по форме струи, вытекающей из отверстия.

Использование насадки любого типа вызывает увеличение расхода жидкости Q благодаря вакууму, возникающему внутри насадка в области сжатого сечения с-с (см. рис.2) и обуславливающему повышение напора истечения.

Среднюю скорость истечения жидкости из насадки V и расход Q определяют по формулам, полученным из уравнения Д. Бернулли, записываемого для сечений 1–1 (в напорном баке) и в-в (на выходе из насадка, рис. 2).

hello_html_6924280f.gif

Здесь hello_html_4134940a.gif — коэффициент скорости насадки,

н – коэффициент сопротивления насадки.

Для выходного сечения в-в коэффициент сжатия струи = 1 (насадка в этой области работает полным сечением), поэтому коэффициент расхода насадки н = н.

Расход жидкости вытекающий из насадки, вычисляется по форму, аналогичной формуле (7),

hello_html_a5aee9d.gif


2.Простой трубопровод постоянного сечения. Соединения простых трубопроводов.


Жидкость по трубопроводу движется благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад уровней энергии может создаваться несколькими способами: работой насоса, разностью уровней жидкости, давлением газа.

Рассмотрим простой трубопровод постоянного сечения, который расположен произвольно в пространстве (рис. 6.1), имеет общую длину l и диаметр d, а также содержит ряд местных сопротивлений (вентиль, фильтр и обратный клапан). В начальном сечении трубопровода 1-1 геометрическая высота равна z1 и избыточное давление Р1, а в конечном сечении 2-2 - соответственно z2 и Р2. Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна ν.

http://gidravl.narod.ru/6a1.gif

Рис. 6.1. Схема простого трубопровода

Запишем уравнение Бернулли для сечений 1-1 и 2-2. Поскольку скорость в обоих сечениях одинакова и α1 = α2, то скоростной напор можно не учитывать. При этом получим

http://gidravl.narod.ru/6a2.gif

или

http://gidravl.narod.ru/6a3.gif

Пьезометрическую высоту, стоящую в левой части уравнения, назовем потребным напором Нпотр. Если же эта пьезометрическая высота задана, то ее называют располагаемым напором Нрасп. Такой напор складывается из геометрической высоты Hпотр, на которую поднимается жидкость, пьезометрической высоты в конце трубопровода и суммы всех потерь напора в трубопроводе.

Назовем сумму первых двух слагаемых статическим напором, который представим как некоторую эквивалентную геометрическую высоту

http://gidravl.narod.ru/6a5.gif

а последнее слагаемое Σh - как степенную функцию расхода

Σh = KQm

тогда

Hпотр = Hст + KQm

где K - величина, называемая сопротивлением трубопровода;
Q - расход жидкости;
m - показатель степени, который имеет разные значения в зависимости от режима течения.

Для ламинарного течения при замене местных сопротивлений эквивалентными длинами сопротивление трубопровода равно

http://gidravl.narod.ru/6a8.gif

где lрасч = l + lэкв.

Численные значения эквивалентных длин lэкв для различных местных сопротивлений обычно находят опытным путем.

Для турбулентного течения, используя формулу Вейсбаха-Дарси, и выражая в ней скорость через расход, получаем

http://gidravl.narod.ru/6a9.gif

По этим формулам можно построить кривую потребного напора в зависимости от расхода. Чем больше расход Q, который необходимо обеспечить в трубопроводе, тем больше требуется потребный напор Нпотр. При ламинарном течении эта кривая изображается прямой линией (рис.6.2, а), при турбулентном - параболой с показателем степени равном двум (рис.6.2, б).

http://gidravl.narod.ru/6a10.gif

Рис.6.2. Зависимости потребных напоров от расхода жидкости в трубопроводе

Крутизна кривых потребного напора зависит от сопротивления трубопровода K и возрастает с увеличением длины трубопровода и уменьшением диаметра, а также с увеличением местных гидравлических сопротивлений.

Величина статического напора Нст положительна в том случае, когда жидкость движется вверх или в полость с повышенным давлением, и отрицательна при опускании жидкости или движении в полость с пониженным давлением. Точка пересечения кривой потребного напора с осью абсцисс (точка А) определяет расход при движении жидкости самотеком. Потребный напор в этом случае равен нулю.

Иногда вместо кривых потребного напора удобнее пользоваться характеристиками трубопровода.Характеристикой трубопровода называется зависимость суммарной потери напора (или давления) в трубопроводе от расхода:

Σh = f(q)

Простые трубопроводы могут соединяться между собой, при этом их соединение может бытьпоследовательным или параллельным.

Последовательное соединение. Возьмем несколько труб различной длины, разного диаметра и содержащих разные местные сопротивления, и соединим их последовательно (рис. 6.3, а).

http://gidravl.narod.ru/6a12.gif

Рис. 6.3. Последовательное соединение трубопроводов

При подаче жидкости по такому составному трубопроводу от точки М к точке N расход жидкости Q во всех последовательно соединенных трубах 12 и 3 будет одинаков, а полная потеря напора между точками М и Nравна сумме потерь напора во всех последовательно соединенных трубах. Таким образом, для последовательного соединения имеем следующие основные уравнения:

Q1 = Q2 = Q3 = Q

ΣhM-N = Σh1 + Σh2 + Σh3

Эти уравнения определяют правила построения характеристик последовательного соединения труб (рис. 6.3, б). Если известны характеристики каждого трубопровода, то по ним можно построить характеристику всего последовательного соединения M-N. Для этого нужно сложить ординаты всех трех кривых.

Параллельное соединение. Такое соединение показано на рис. 6.4, а. Трубопроводы 12 и 3 расположены горизонтально.

http://gidravl.narod.ru/6a14.gif

Рис. 6.4. Параллельное соединение трубопроводов

Обозначим полные напоры в точках М и N соответственно HM и HN , расход в основной магистрали (т.е. до разветвления и после слияния) - через Q, а в параллельных трубопроводах через Q1Q2 и Q3; суммарные потери в этих трубопроводах через Σ1 , Σ2 и Σ3.

Очевидно, что расход жидкости в основной магистрали

Q = Q1 = Q2 = Q3

Выразим потери напора в каждом из трубопроводов через полные напоры в точках М и N :

Σh= HM - HN; Σh= HM - HN; Σh= HM - HN

Отсюда делаем вывод, что

Σh1 = Σh2 = Σh3

т.е. потери напора в параллельных трубопроводах равны между собой. Их можно выразить в общем виде через соответствующие расходы следующим образом

Σh= K1Q1m; Σh= K2Q2m; Σh= K3Q3m

где K и m - определяются в зависимости от режима течения.

Из двух последних уравнений вытекает следующее правило: для построения характеристики параллельного соединения нескольких трубопроводов следует сложить абсциссы (расходы) характеристик этих трубопроводов при одинаковых ординатах ( Σ h). Пример такого построения дан на рис. 6.3, б.

Разветвленное соединение. Разветвленным соединением называется совокупность нескольких простых трубопроводов, имеющих одно общее сечение - место разветвления (или смыкания) труб.

http://gidravl.narod.ru/6a19.gif

Рис. 6.5. Разветвленный трубопровод

Пусть основной трубопровод имеет разветвление в сечении М-М, от которого отходят, например, три трубы1, 2 и разных диаметров, содержащие различные местные сопротивления (рис. 6.5, а). Геометрические высоты z1z2 и z3 конечных сечений и давления P1P2 и P3 в них будут также различны.

Так же как и для параллельных трубопроводов, общий расход в основном трубопроводе будет равен сумме расходов в каждом трубопроводе:

Q = Q1 = Q2 = Q3

Записав уравнение Бернулли для сечения М-М и конечного сечения, например первого трубопровода, получим (пренебрегая разностью скоростных высот)

http://gidravl.narod.ru/6a21.gif

Обозначив сумму первых двух членов через Hст и выражая третий член через расход (как это делалось в п.6.1), получаем

HM = Hст 1 + KQ1m

Аналогично для двух других трубопроводов можно записать

HM = Hст 2 + KQ2m

HM = Hст 3 + KQ3m

Таким образом, получаем систему четырех уравнений с четырьмя неизвестными: Q1Q2 и Q3 и HM.

Построение кривой потребного напора для разветвленного трубопровода выполняется сложением кривых потребных напоров для ветвей по правилу сложения характеристик параллельных трубопроводов (рис. 6.5, б) - сложением абсцисс (Q) при одинаковых ординатах (HM). Кривые потребных напоров для ветвей отмечены цифрами 1, 2 и , а суммарная кривая потребного напора для всего разветвления обозначена буквами ABCD. Из графика видно, что условием подачи жидкости во все ветви является неравенство HM > Hст1.


3.Сложные трубопроводы. Трубопроводы с насосной подачей жидкости.


Сложный трубопровод в общем случае составлен из простых трубопроводов с последовательным и параллельным их соединением (рис. 6.6, а) или с разветвлениями (рис. 6.6, б).

http://gidravl.narod.ru/6a24.gif

Рис. 6.6. Схемы сложных трубопроводов

Рассмотрим разомкнутый сложный трубопровод (рис. 6.6, б). магистральный трубопровод разветвляется в точках А и С. Жидкость подается к точкам (сечениям) BD и E с расходами Q B и QD и QE .

Пусть известны размеры магистралей и всех ветвей (простых трубопроводов), заданы все местные сопротивления, а также геометрические высоты конечных точек, отсчитываемые от плоскости M - N и избыточные давления в конечных точках PB и PD и PE.

Для этого случая возможны два вида задач:

Задача 1. Дан расход Q в основной магистрали MA. Необходимо определить расходы QB и QD и QE, а также потребный напор в точке М.

http://gidravl.narod.ru/6a25.gif

Задача 2. Дан напор в точке М. Определить расход в магистрали Q и расходы в каждой ветви.

Обе задачи решают на основе одной и той же системы уравнений, число которых на единицу больше числа конечных ветвей, а именно:

уравнение расходов:

Q = QB = QD = QE

уравнение равенства потребных напоров для ветвей CD и CE

Hст D + KCDQDт = Hст E + KCEQEт

уравнение равенства потребных напоров для ветви АВ и сложного трубопровода АСЕD

Hст B + KABQBт = Hст D + KCDQDт + KAC(QD + QE)т

выражение для потребного напора в точке М

http://gidravl.narod.ru/6a29.gif

Расчет сложных трубопроводов часто выполняют графоаналитическим способом, т.е. с применением кривых потребного напора и характеристик трубопроводов. Кривую потребного напора для сложного трубопровода следует строить следующим образом:
1) сложный трубопровод разбивают на ряд простых;
2) строят кривые потребных напоров для каждого из простых трубопроводов;
3) складывают кривые потребных напоров для ветвей (и параллельных линий, если они имеются) по правилу сложения характеристик параллельных трубопроводов;
4) полученную кривую складывают с характеристикой последовательно присоединенного трубопровода по соответствующему правилу (см. п.6.2).

Таким образом, при расчете идут от конечных точек трубопровода к начальной точке, т.е. против течения жидкости.

Сложный кольцевой трубопровод. Представляет собой систему смежных замкнутых контуров, с отбором жидкости в узловых точках или с непрерывной раздачей жидкости на отдельных участках (рис. 6.7).

http://gidravl.narod.ru/6a30.gif

Рис. 6.7. Схема сложного кольцевого трубопровода

Задачи для таких трубопроводов решают аналогичным методом с применением электроаналогий (закон Кирхгофа). При этом основываются на двух обязательных условиях. Первое условие - баланс расходов, т.е. равенство притока и оттока жидкости для каждой узловой точки. Второе условие - баланс напоров, т.е. равенство нулю алгебраической суммы потерь напора для каждого кольца (контура) при подсчете по направлению движения часовой стрелки или против нее.

Для расчета таких трубопроводов типичной является следующая задача. Дан максимальный напор в начальной точке, т.е. в точке 0, минимальный напор в наиболее удаленной точке Е, расходы во всех шести узлах и длины семи участков. Требуется определить диаметры трубопроводов на всех участках.

Как уже отмечалось выше, перепад уровней энергии, за счет которого жидкость течет по трубопроводу, может создаваться работой насоса, что широко применяется в машиностроении. Рассмотрим совместную работу трубопровода с насосом и принцип расчета трубопровода с насосной подачей жидкости.

Трубопровод с насосной подачей жидкости может быть разомкнутым, т.е. по которому жидкость перекачивается из одной емкости в другую (рис. 6.8, а), или замкнутым (кольцевым), в котором циркулирует одно и то же количество жидкости (рис. 6.8, б).

http://gidravl.narod.ru/6a31.gif

Рис. 6.8. Трубопроводы с насосной подачей

Рассмотрим трубопровод, по которому перекачивают жидкость из нижнего резервуара с давлением P 0 в другой резервуар с давлением P3 (рис. 6.8, а). Высота расположения оси насоса H1 называетсягеометрической высотой всасывания, а трубопровод, по которому жидкость поступает к насосу,всасывающим трубопроводом или линией всасывания. Высота расположения конечного сечения трубопровода H2 называется геометрической высотой нагнетания, а трубопровод, по которому жидкость движется от насоса, напорным или линией нагнетания.

Составим уравнением Бернулли для потока рабочей жидкости во всасывающем трубопроводе, т.е. для сечений 0-0 и 1-1 (принимая α = 1):

http://gidravl.narod.ru/6a32.gif

Это уравнение является основным для расчета всасывающих трубопроводов.

Теперь рассмотрим напорный трубопровод, для которого запишем уравнение Бернулли, т.е. для сечений 2-2и 3-3:

http://gidravl.narod.ru/6a33.gif

Левая часть этого уравнения представляет собой энергию жидкости на выходе из насоса. А на входе насоса энергию жидкости можно будет аналогично выразить из уравнения:

http://gidravl.narod.ru/6a34.gif

Таким образом, можно подсчитать приращение энергии жидкости, проходящей через насос. Эта энергия сообщается жидкости насосом и поэтому обозначается обычно Hнас.

Для нахождения напора Hнас вычислим уравнение :

http://gidravl.narod.ru/6a35.gif

где Δz - полная геометрическая высота подъема жидкости, Δz = 1 + H2;
КQm - сумма гидравлических потерь,
P3 и Р0 - давление в верхней и нижней емкости соответственно.

Если к действительной разности уровней Δz добавить разность пьезометрических высот ( P3 - Р0 ) ( ρg ), то можно рассматривать увеличенную разность уровней

http://gidravl.narod.ru/6a36.gif

и формулу можно переписать так:

Hнас = Hст + KQm

Из этой формулы делаем вывод, что

Hнас = Hпотр

Отсюда вытекает следующее правило устойчивой работы насоса: при установившемся течении жидкости в трубопроводе насос развивает напор, равный потребному.

На этом равенстве основывается метод расчета трубопроводов с насосной подачей, который заключается в совместном построении в одном и том же масштабе и на одном графике двух кривых: напора Hпотр = f1(Q)и характеристики насоса Hнас = f2(Q) и в нахождении их точки пересечения (рис. 6.9).

http://gidravl.narod.ru/6a40.gif

Рис. 6.9. Графическое нахождение рабочей точки

Характеристикой насоса называется зависимость напора, создаваемого насосом, от его подачи (расхода жидкости) при постоянной частоте вращения вала насоса. На рис. 6.9 дано два варианта графика: а - для турбулентного режима; б - для ламинарного режима. Точка пересечения кривой потребного напора с характеристикой насоса называется рабочей точкой. Чтобы получить другую рабочую точку, необходимо изменить открытие регулировочного крана (изменить характеристику трубопровода) или изменить частоту вращения вала насоса.


4.Гидравлический удар.


Гидравлическим ударом называется резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении потока рабочей жидкости. Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления, которое связано с упругими деформациями жидкости и стенок трубопровода. Гидравлический удар чаще всего возникает при резком открытии или закрытии крана или другого устройства, управляемого потоком.

Пусть в конце трубы, по которой движется жидкость со скоростью υ0, произведено мгновенное закрытие крана (рис. 6.10, а).

http://gidravl.narod.ru/6a41.gif

Рис. 6.10. Стадии гидравлического удара

При этом скорость частиц, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается в соответствии с увеличением давления на величину ΔPуд, которое называется ударным. Область (сечение n - n), в которой происходит увеличение давления, называется ударной волной. Ударная волна распространяется вправо со скоростью c, называемой скоростью ударной волны.

Когда ударная волна переместится до резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы - растянутыми. Ударное повышение давления распространится на всю длину трубы (рис. 6.10, б).

Далее под действием перепада давления ΔPуд частицы жидкости устремятся из трубы в резервуар, причем это течение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение n-nперемещается обратно к крану с той же скоростью c, оставляя за собой выровненное давление P0 (рис. 6.10, в).

Жидкость и стенки трубы предполагаются упругими, поэтому они возвращаются к прежнему состоянию, соответствующему давлению P0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость υ0, но направленную теперь в противоположную теперь сторону.

С этой скоростью весь объем жидкости стремится оторваться от крана, в результате возникает отрицательная ударная волна под давлением P0 - ΔPуд, которая направляется от крана к резервуару со скоростью c, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость, что обусловлено снижением давления (рис. 6.10, д). Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака.

Состояние трубы в момент прихода отрицательной ударной волны к резервуару показано на рис. 6.10, е. Так же как и для случая, изображенного на рис. 6.10, б, оно не является равновесным. На рис. 6.10, ж, показан процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью υ0.

Очевидно, что как только отраженная от резервуара ударная волна под давлением ΔP уд достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится.


5.Понятие простого и сложного трубопровода.


 В гидравлике различают простые и сложные трубопроводы. Простым называется такой трубопровод, который служит для подачи жидкости из одного резервуара в другой без ответвлений. Простой трубопровод может иметь по всей длине одинаковое сечение, а может состоять из ряда последовательно соединенных труб различного сечения.

Сложными называются трубопроводы, имеющие ответвления или состоящие из нескольких линий. Их расчет значительно сложнее, чем простых. Однако, некоторые задачи, относящиеся к сложным трубопроводам, можно решать, рассматривая отдельные их элементы, как простые.

Расход жидкости может производиться в какой-либо определенной точке трубопровода, например, на его конце. Такой расход называется транзитным. В некоторых трубопроводах, например, в водопроводах, расход жидкости производится во многих точках по длине. В этих случаях расход называется путевым.

В зависимости от характера сопротивлений трубопроводы подразделяют на длинные и короткие. В длинных трубопроводах потери напора по длине  во много раз больше потерь от местных сопротивлений, которые составляют 2—5% от общих потерь энергии в трубопроводе.

В так называемых коротких трубопроводах потери напора от местных сопротивлений велики по сравнению с потерями по длине трубопровода. Принятая классификация позволяет в значительной степени упростить гидравлический расчет трубопроводов.

С учетом указанных условий приведены методики расчета напорных, т. е. заполненных по всему сечению трубопроводов, при установившемся равномерном движении жидкости.


6. Гидравлический расчет простого трубопровода.


Гидравлический расчет простого трубопровода производится с помощью уравнения Бернулли:

http://ars.gubkin.ru/rasthet.files/image001.gif

Здесь h1-2 – потери напора (энергии) на преодоление всех видов гидравлического сопротивления, приходящиеся на единицу веса движущейся жидкости.

http://ars.gubkin.ru/rasthet.files/image002.gif

ht – потери напора на трение по длине потока,

Σhм – суммарные потери напора на местном сопротивлении Потери напора на трение по длине потока определяются по формуле Дарси-Вейсбаха

http://ars.gubkin.ru/rasthet.files/image003.gif

где –длина трубопровода,

-диаметр участка трубопровода,

v - средняя скорость течения жидкости,

λ -коэффициент гидравлического сопротивления, в общем случае зависящий от числа Рейнольдса (Re=v*d/ν), и относительной эквивалентной шероховатости труб (Δ/d).

Значения эквивалентной шероховатости Δ внутренней поверхности различных труб представлены в таблице 2. А зависимости коэффициента гидравлического сопротивления λ от числа Re и относительной шероховатости Δ/d приведены в таблице 3.

Если режим движения ламинарный, то для труб некруглого сечения коэффициент гидравлического сопротивления λ определяется по частным для каждого случая формулам (табл. 4).

При развитом турбулентном течении с достаточной степенью точности при определении λ можно пользоваться формулами для круглой трубы с заменой диаметра на 4 гидравлических радиуса потока Rг (d=4Rг)

Rг =w/c,

где w– площадь «живого» сечения потока,

c- «смоченный» его периметр (периметр «живого» сечения по контакту жидкость – твердое тело)

Потери напора в местных сопротивлениях определяются по формуле Вейсбаха

http://ars.gubkin.ru/rasthet.files/image004.gif

Где ς– коэффициент местного сопротивления, зависящий от конфигурации местного сопротивления и числа Рейнольдса.

При развитом турбулентном режиме ς= const, что позволяет ввести в расчеты понятие эквивалентной длины местного сопротивления Lэкв, т.е. такой длины прямого трубопровода, для которого hhм. В этом случае потери напора в местных сопротивлениях учитываются тем, что к реальной длине трубопровода прибавляется сумма их эквивалентных длин

Lпр =L + Lэкв,

где Lпр – приведенная длина трубопровода.

Зависимость потерь напора h1-2 от расхода называется характеристикой трубопровода.

Если движение жидкости в трубопроводе обеспечивается центробежным насосом, то для определения расхода в системе насос – трубопровод строится характеристика трубопровода h=h(Q) с учетом разности отметок ∆z (h1-2 + ∆z  при z1z2 и h1-2 - ∆z при z1>z2) накладывается на напорную характеристику насоса H=H(Q), которая приводится в паспортных данных насоса (см. рис.). Точка пересечения этих кривых указывает на максимально возможный расход в системе.


7. Три основные задачи при расчете простого трубопровода, определение напора, расхода и диаметра.


Задача первая.

Требуется определить напор в начале трубопровода, чтобы обеспечить заданный расход жидкости Q по трубопроводу с известными параметрами. Уравнение Бернулли, записанное для сечений на поверхности жидкости в резервуаре 1-1 и на выходе из трубы 2-2 (рис. 6.2, а) имеет вид:

Три задачи расчёта простых трубопроводов и методы их решения.

Пренебрегая величиной Три задачи расчёта простых трубопроводов и методы их решения. в виду ее малости по сравнению с другими членами уравнения и обозначая разность высот Три задачи расчёта простых трубопроводов и методы их решения., получим уравнение Бернулли в виде:

Три задачи расчёта простых трубопроводов и методы их решения. где Три задачи расчёта простых трубопроводов и методы их решения.- скорость движения жидкости в трубопроводе; Три задачи расчёта простых трубопроводов и методы их решения.- абсолютные значения

Начальный искомый напор равен сумме Три задачи расчёта простых трубопроводов и методы их решения.Три задачи расчёта простых трубопроводов и методы их решения.

По заданному расходу, характеристикам жидкости (р, η) и трубопровода (I, d, ∆) находят значения v и числа Re, а также значение относительной шероховатости ∆/d , определяют режим течения, область течения и выбирают соответствующую формулу для вычисления коэффициента гидравлического сопротивления.

Аналогично решается задача, когда происходит перетекание жидкости из одного резервуара в другой (рис. 6.2, б). Для определения необходимого напора составляется уравнение Бернулли для сечений 1—1 и 2—2 на поверхностях жидкости в резервуарах. Получаем

Три задачи расчёта простых трубопроводов и методы их решения.Необходимый напор в начале трубопровода равен Три задачи расчёта простых трубопроводов и методы их решения.

Во многих случаях источником энергии для перекачки жидкости является насос. Для определения необходимого напора, создаваемого насосом в начале нагнетательной линии (рис. 6.2, в), составляется уравнение Бернулли для сечений 1—1 в начале этой линии и для сечения 2—2 на свободной поверхности жидкости в резервуаре. Принимая плоскость сравнения, проходящую через центр первого сечения, получаем Три задачи расчёта простых трубопроводов и методы их решения.

Из этого выражения может быть найдено давление Три задачи расчёта простых трубопроводов и методы их решения., которое должен создавать насос. По найденному давлению и требуемому расходу можно выбрать соответствующий насос для перекачки жидкости. Следует отметить, что в большинстве случаев скоростным напором можно пренебречь ввиду его малости по сравнению с другими членами уравнения Бернулли.

Задача вторая.

Определение расхода жидкости заданных при остальных параметрах перекачки жидкости по трубопроводу. Рассмотрим схему подачи жидкости (см. рис. 6.2, а) в трубопровод из напорной емкости. Необходимо определить расход жидкости, что равносильно нахождению скорости движения жидкости в трубопроводе, которая входит в уравнение Бернулли.

Составим уравнение Бернулли для сечений 1 - 1 и 2—2, пренебрегая скоростными напорами:

Три задачи расчёта простых трубопроводов и методы их решения.

В этой формуле левая часть может быть определена по известным данным задачи. Значение скорости, а значит и расход можно было бы найти, если есть возможность найти члены, входящие в скобки выражения (6.3). В общем случае при режимах течения, отличающихся от квадратичного, коэффициенты гидравлического сопротивления λ и местного сопротивления ζ зависят от числа Re, а значит и от ν, а вид этой зависимости заранее неизвестен. Возможны два способа решения такого типа задач: аналитический и графоаналитический.

Аналитически задача может быть решена в тех случаях, когда до начала расчета можно предсказать режим течения, а значит и вид зависимости λ от Re. Так, если предположить, что режим течения будет ламинарным, то коэффициент гидравлического сопротивления определится по формуле λ = 64/Re, а значения ζ находят по справочнику. После подготовки значений этих коэффициентов в уравнение (6.3) находят скорость v, а затем расход. Аналогично решается задача, если предполагаемый режим является квадратичным. В каждом из этих случаев требуется проверка предполагаемого режима течения, т.е. необходимо, чтобы при ламинарном течении Re < 2300, а в квадратичной зоне — Re > 500 d/∆

Если предположение не подтвердилось, то задачу решают методом последовательных приближений, задавая в первом приближении значение расхода Три задачи расчёта простых трубопроводов и методы их решения., находят величину потерь Три задачи расчёта простых трубопроводов и методы их решения. и сравнивают с потерями напора для заданного трубопровода, равными

Три задачи расчёта простых трубопроводов и методы их решения.

Если полученное значение Три задачи расчёта простых трубопроводов и методы их решения. оказалось больше чем Три задачи расчёта простых трубопроводов и методы их решения., то расход уменьшают, а если меньше то следующее значение Три задачи расчёта простых трубопроводов и методы их решения., увеличивают, последовательно приближая получаемое значение Три задачи расчёта простых трубопроводов и методы их решения. к вычисленному Три задачи расчёта простых трубопроводов и методы их решения..

Графоаналитический метод требует построения характеристики трубопровода Q-h (зависимости потерь напора от расхода) с помощью, которой определяют расход Три задачи расчёта простых трубопроводов и методы их решения.

Для построения характеристики трубопровода сдаются рядом произвольных значений расхода жидкости Три задачи расчёта простых трубопроводов и методы их решения. и по ним определяются потери напора Три задачи расчёта простых трубопроводов и методы их решения. в трубопроводе, как было изложено в первой задаче. Затем по выбранным расходам и соответствующим им потерям напора строим график зависимости Q-Три задачи расчёта простых трубопроводов и методы их решения. для данного трубопровода (рис. 6.3). Для найденных потерь Три задачи расчёта простых трубопроводов и методы их решения. по графику определяем соответствующий им расход жидкости Три задачи расчёта простых трубопроводов и методы их решения.. При решении задачи методом последовательных приближений или графоаналитическим требуется большое число вычислений, что наиболее рационально проводить с использованием ЭВМ.Три задачи расчёта простых трубопроводов и методы их решения.Три задачи расчёта простых трубопроводов и методы их решения.

Задача третья.

Определение минимально необходимого диаметра трубопровода для обеспечения заданного расхода Q при известном напоре в трубопроводе Три задачи расчёта простых трубопроводов и методы их решения.. Эта задача может быть  решена, как и в предыдущем случае аналитически, методом последовательных приближений или графоаналитически.

В последних двух случаях задаются рядом значений диаметров Три задачи расчёта простых трубопроводов и методы их решения. и, зная Q, вычисляют потери напора Три задачи расчёта простых трубопроводов и методы их решения.. В методе последовательных приближений сравнивают получаемые значения потерь напора с заданными по условию задачи,

добиваясь их близкого совпадения.Три задачи расчёта простых трубопроводов и методы их решения.

В графоаналитическом методе строится зависимость потерь напора от диаметра (рис. 6.4), а затем отложив по оси ординат предварительно вычисленные потери напора Три задачи расчёта простых трубопроводов и методы их решения.на оси абсцисс находят минимально необходимый диаметр Три задачи расчёта простых трубопроводов и методы их решения.. Если диаметр, определенный с этого графика, отсутствует в сортаменте, то берется ближайший большой диаметр.

            Рассмотрим случай последовательного соединения труб. Если трубопровод состоит из нескольких последовательно соединенных участков труб различного диаметра и различной длины (рис. 6.5), то задачи решаются изложенными способами. При этом полные потери напора на всем протяжении трубопровода определяются как сумма потерь на трение на отдельных участках и местных сопротивлений:

Три задачи расчёта простых трубопроводов и методы их решения., а расход жидкости на каждом из участков одинаков Три задачи расчёта простых трубопроводов и методы их решения.

Равенство (6.4) выражает собой принцип наложения потерь (принцип суперпозиции).

Принцип наложения может быть использован лишь в том случае, если расстояние между имеющимися местными сопротивлениями достаточно больше. Как показали опыты, если Три задачи расчёта простых трубопроводов и методы их решения., где L – расстояние между местными сопротивлениями, d – диаметр трубопровода, то взаимное влияние местных сопротивлений мало и в этом случае можно воспользоваться соотношением: Три задачи расчёта простых трубопроводов и методы их решения.

Если требуется найти расход в последовательно соединенном трубопроводе при задаваемых значениях напора, то в качестве расчетного служит по-прежнему соотношение: Три задачи расчёта простых трубопроводов и методы их решения..Три задачи расчёта простых трубопроводов и методы их решения.

Если при этом заранее не известны коэффициенты λ и ζ, зависящие от расхода, то — так же как в случае простого трубопровода — эту задачу надо решать методом последовательных приближений или графоаналитическим способом. С этой целью при нескольких значениях расхода, задаваемых произвольно, строим гидравлическую характеристику для каждого участка, и совмещаем графики на одном чертеже (строим совместную характеристику), как это показано на схеме (рис. 6.6) для трубопровода, состоящего из двух участков I и II; при этом для получения точек совместной характеристики для каждого значения расхода Qсуммируются соответствующие ему значения потерь напора h на каждом из участков. Таким образом, расстояние от оси абсцисс до самой верхней кривой равняется сумме потерь на всей длине трубопровода и поскольку располагаемая величина напора Три задачи расчёта простых трубопроводов и методы их решения. известна — из графика можно определить соответствующий этому напору расход Три задачи расчёта простых трубопроводов и методы их решения..
















Тема 1.4: «Гидравлические машины»


1.Общие сведения о гидросистемах.


Многие современные сложны машины общего и специального назначения буквально насыщены различными гидравлическими системами и агрегатами, которые по их назначению и выполняемым функциям принято подразделять на две основные группы:

  1. Системы и агрегаты, предназначенные для передачи механической энергии от какого-либо источника к рабочим органам машины и управления движением этих органов;

  2. Системы и агрегаты, предназначенные для перемещения различных жидкостей из мест хранения к местам ее потребления.

         Системы и агрегаты первой группы получили общее название “гидропередачи”, а системы и агрегаты второй группы, в общем случае, можно называть “насосными станциями”.

В задачу настоящего курса входит изучение только тех устройств и агрегатов, которые относятся к первой группе, т.е. к гидропередачам. Дело в том, что гидропередачи в общем случае сложнее систем и устройств, относящихся к группе насосных станций.

В общем случае  гидропередачей следует называть механизм, который позволяет передавать механическую энергию от какого-либо источника к рабочему органу той или иной машины посредством жидкости.

Таким образом, основная функция гидропередач аналогична функциям других широко известных и исторически ранее появившихся механических передач: ременной, шестеренной, цепной, червячной, кривошипно-шатунной и т. п.

Учитывая, что в любой гидропередаче происходит двукратное преобразование энергии (вначале механическая энергия преобразуется в энергию потока жидкости, а затем на выходе энергия потока преобразуется обратно, в механическую), закономерно, по аналогии, например, с электрическими системами, называть ее гидроприводом.

Таким образом, под термином “гидропривод” мы будем понимать достаточно сложную гидропередачу, позволяющую не только передавать механическую энергию от какого-либо источника к рабочему органу машины, но и управлять движением этого органа.

То есть любой гидропривод можно назвать гидропередачей, но не всякая гидропередача может быть названа гидроприводом.

По принципу действия гидропередачи вообще, и гидроприводы в частности, подразделяются на:

а) статические или объемные;

б) динамические;

в) импульсные или волновые.

Статическими называются гидропередачи, у которых напорная линия всегда геометрически отделена от всасывающей, а усилия на рабочих органах определяются главным образом статическим давлением  жидкости в магистралях. Все узлы таких гидропередач находятся, примерно, на одном уровне, а скорость течения жидкости в рабочих каналах относительно мала (от 1 до 10 м/с).

Динамическими называются такие гидропередачи, которые передают энергию посредством гидродинамического эффекта потока жидкости. То есть величина усилий на рабочих органах этих гидропередач определяется главным образом скоростным напором. В рабочей части этих машин скорость потока жидкости достигает десятков метров в секунду. При этом герметичность (геометрическое разделение) между всасывающей и нагнетающей полостями отсутствует.

Импульсными или волновыми  называются передачи, передающие энергию импульсами. Величина усилий на рабочих органах этих агрегатов в одинаковой степени зависит как от скорости движения потока жидкости, так и от статического давления в магистралях.


2.Гидромашины, их общая классификация и основные параметры.


Основными элементами гидросистем являются гидромашины.

Гидромашина — это устройство, создающее или использующее поток жидкой среды.

К гидромашинам относятся насосы и гидродвигатели.

Насосом называется гидромашина, преобразующая механическую энергию привода в энергию потока рабочей жидкости.

Необходимо отметить, что для характеристики работы гидромашин, кроме полного КПД, используют также частные КПД, которые учитывают различные виды потерь энергии.

Гидравлические потери — это потери напора на движение жидкости в каналах внутри гидромашины.

Механические потери — это потери на механическое трение в подшипниках и уплотнениях гидромашины, оцениваемые механическим КПДт[ы.

Гидродвигатель — это гидромашина, преобразующая энергию потока жидкости в механическую работу.

Кроме перечисленных выше, одним из основных параметров, позволяющих судить о возможностях гидромашины, является ее внешняя характеристика.

Все гидромашины по принципу действия делятся на два основных типа: динамические и объемные.

Динамическая гидромашина — это гидромашина, в которой взаимодействие ее рабочего органа с жидкостью происходит в проточной полости, постоянно сообщенной с входом и выходом гидромашины.

Объемная гидромашина — это гидромашина, в которой взаимодействие ее рабочего органа с жидкостью происходит в герметичной рабочей камере, попеременно сообщающейся с входом и выходом гидромашины.

Динамическую гидромашину можно также назвать «проточной», так как у нее внутренняя проточная полость всегда соединена с входом и выходом, а объемную — «герметичной», потому что у нее имеется герметичная рабочая камера, которая может быть соединена в данный момент времени только или с входом, или с выходом гидромашины.

Это значит, что в объемной гидромашине входная область всегда отсоединена от выходной.

Для рабочего процесса динамической гидромашины характерны большие скорости движения ее рабочих органов и рабочей жидкости, а рабочий процесс объемной гидромашины заключается в силовом взаимодействии рабочей жидкости и вытеснителя гидромашины.

Большие скорости движения жидкости и рабочих органов объемной гидромашины при этом в принципе не обязательны, так как основную роль в рабочем процессе играет давление.

Гидроприводы в зависимости от типа используемых в них гидромашин делятся на объемные гидроприводы и гидродинамические передачи.

Объемный гидропривод — это гидропривод, в котором используются объемные гидромашины.


3.Объемный гидропривод, принцип действия и основные понятия.


Гидроприводы в зависимости от типа используемых в них гидромашин делятся на объёмные гидроприводы и гидродинамические передачи. Объемный гидропривод — это гидропривод, в котором используются объемные гидромашины. Принцип действия объемного гидропривода основан на практической несжимаемости рабочей жидкости и на ее свойстве передавать давление по всем направлениям в соответствии с законом Паскаля. Рассмотрим работу простейшего объемного гидропривода, принципиальная схема которого приведена на рис. 1.

Объёмный гидропривод

Он состоит из двух гидроцилиндров 1 и 2, расположенных вертикально. Нижние полости в них заполнены жидкостью и соединены трубопроводом.

Пусть поршень гидроцилиндра 1, имеющий площадь S1, под действием внешней силы F1 перемещается вниз с некоторой скоростью V1 При этом в жидкости создается давление P = F1/S1. Если пренебречь потерями давления на движение жидкости в трубопроводе, то это давление передается жидкостью по закону Паскаля в гидроцилиндр 2 и на его поршне, имеющем площадь S2, создает силу, преодолевающую внешнюю нагрузку       F2 = P*S2.

Считая жидкость несжимаемой, можно утверждать, что количество жидкости, вытесняемое поршнем гидроцилиндра 1 (расход Q =V1*S1), поступает по трубопроводу в гидроцилиндр 2, поршень которого перемещается со скоростью V2=Q/S2, направленной вверх (против внешней нагрузки F2). Если пренебречь потерями энергии в элементах гидропривода, то можно утверждать следующее. Механическая мощность N1 = F1*V1, затрачиваемая внешним источником на перемещение поршня гидроцилиндра 1, воспринимается жидкостью, передается ею по трубопроводу и в гидроцилиндре 2 совершает полезную работу в единицу времени против внешней силы F2 со скоростью V2 (реализуется мощность N2 = F2*V2). Этот процесс можно представить в виде следующего уравнения мощностей:

N1=F1*V1=P*S1*V1=P*Q=P*S2*V2=F2*V2=N2

Таким образом, гидроцилиндр 1 в рассмотренном случае работает в режиме насоса, т. е. преобразует механическую энергию привода в энергию потока рабочей жидкости, а гидроцилиндр 2 совершает обратное действие — преобразует энергию потока жидкости в механическую работу, т.е. выполняет функцию гидродвигателя. На основании анализа работы этого простейшего объемного гидропривода, а также принимая во внимание задачи, которые необходимо решать по управлению гидроприводом и обеспечению его работоспособности, можно заключить, что реальный объемный гидропривод обязательно должен включать в себя следующие элементы или группы элементов (число перечисленных ниже элементов в составе гидропривода не ограничивается):

энергопреобразователи — устройства, обеспечивающие преобразование механической энергии в гидроприводе: гидромашины, гидроаккумуляторы и гидропреобразователи;

гидросеть — совокупность устройств, обеспечивающих гидравлическую связь элементов гидропривода: рабочая жидкость, гидролинии, соединительная арматура и т.п.;

кондиционеры рабочей среды — устройства для поддержания заданных качественных показателей состояния рабочей жидкости (чистота, температура и т.п.): фильтры, теплообменники и т.д.;

гидроаппараты — устройства для изменения или поддержания заданных значений параметров потоков (давления, расхода и др.): гидродроссели, гидроклапаны и гидрораспределители.

По виду источника энергии жидкости объемные гидроприводы делятся на три типа:

1. Насосный гидропривод — в нем источником энергии жидкости является объемный насос, входящий в состав гидропривода. По характеру циркуляции рабочей жидкости насосные гидроприводы разделяют на гидроприводы с разомкнутой циркуляцией жидкости (жидкость от гидродвигателя поступает в гидробак, из которого всасывается насосом) и с замкнутой циркуляцией жидкости (жидкость от гидродвигателя поступает сразу во всасывающую гидролинию насоса).

2. Аккумуляторный гидропривод — в нем источником энергии жидкости является предварительно заряженныйгидроаккумулятор. Такие гидроприводы используются в гидросистемах с кратковременным рабочим циклом или с ограниченным числом циклов (например гидропривод рулей ракеты).

3. Магистральный гидропривод — в этом гидроприводе рабочая жидкость поступает в гидросистему из централизованной гидравлической магистрали с заданным располагаемым напором (энергией).

Гидроприводы подразделяются также по виду движения выходного звена.

Выходным звеном гидропривода считается выходное звено гидродвигателя, совершающее полезную работу. По этому признаку выделяют следующие объемные гидроприводы:

поступательного движения — в них выходное звено совершает возвратно-поступательное движение;

вращательного движения — в них выходное звено совершает вращательное движение;

поворотного движения — в них выходное звено совершает ограниченное (до 360°) возвратно-поворотное движение (применяются крайне редко).

Если в гидроприводе имеется возможность изменять только направление движения выходного звена, то такой гидропривод называется нерегулируемым. Если в гидроприводе имеется возможность изменять скорость выходного звена как по направлению, так и по величине, то такой гидропривод называется регулируемым.




4.Основные преимущества и недостатки объемных гидроприводов.


Основные преимущества гидроприводов

  1. Высокая удельная мощность гидропривода, т. е. передаваемая мощность, приходящаяся на единицу суммарного веса элементов. Этот параметр у гидравлических приводов в 3...5 раз выше, чем у электрических, причем данное преимущество возрастает с ростом передаваемой мощности.

  2. Относительно просто обеспечивается возможность бесступенчатого регулирования скорости выходного звена гидропривода в широком диапазоне.

  3. Высокое быстродействие гидропривода. Операции пуска, реверса и останова выполняются гидроприводом значительно быстрее, чем другими приводами. Это обусловлено малым моментом инерции исполнительного органа гидродвигателя (момент инерции вращающихся частей гидромотора в 5... 10 раз меньше соответствующего момента инерции электродвигателя).

  4. Высокий коэффициент усиления гидроусилителей по мощности, значение которого достигает = 10^5.

  5. Сравнительная простота осуществления технологических операций при заданном режиме, а также возможность простого и надежного предохранения приводящего двигателя и элементов гидропривода от перегрузок.

  6. Простота преобразования вращательного движения в возвратно-поступательное.

  7. Свобода компоновки агрегатов гидропривода.

  8. К гидравлическому приводу можно подключать любое гидравлическое оборудование: отбойные молотки, дисковые пилы, различные ковши и захваты.

  9. Слабое воздействие вибрации на руки.

Наряду с отмеченными достоинствами гидропривода, при его проектировании или решении вопроса о целесообразности его использования следует помнить также и о недостатках, присущих этому типу привода. Эти недостатки обусловлены в основном свойствами рабочей среды (жидкости).

Основные недостатки гидропривода

  1. Сравнительно невысокий КПД гидропривода и большие потери энергии при ее передаче на большие расстояния.

  2. Зависимость характеристик гидропривода от условий эксплуатации (температура, давление). От температуры зависит вязкость рабочей жидкости, а низкое давление может стать причиной возникновения кавитации в гидросистеме или выделения из жидкости растворенных газов.

  3. Чувствительность к загрязнению рабочей жидкости и необходимость достаточно высокой культуры обслуживания. Загрязнение рабочей жидкости абразивными частицами приводит к быстрому износу элементов прецизионных пар в гидравлических агрегатах и выходу их из строя.

  4. Снижение КПД и ухудшение характеристик гидропривода по мере выработки им или его элементами эксплуатационного ресурса. Прежде всего происходит износ прецизионных пар, что приводит к увеличению зазоров в них и возрастанию утечек жидкости, т.е. снижению объемного КПД.


5.Лопастные насосы.


В современной технике используется значительное разнообразие гидромашин, среди которых наибольшее распространение имеют объемные и лопастные насосы и гидродвигатели.

Отличительной особенностью лопастной машины является рабочие колесо с лопастями, от которого жидкости передается энергия. Лопастные насосы можно разделить на центробежные и осевые.

Центробежный насос состоит из подвода, рабочего колеса и отвода. Принцип работы достаточно простой – по подводу жидкость подается на рабочее колесо, которое вращается двигателем. Рабочее колесо передает энергию от двигателя жидкости. В центробежном насосе рабочее колесо состоит из ведущего и ведомого дисков, между которыми расположены лопатки. С помощью ведущего диска рабочее колесо крепится на валу. В центробежных насосах жидкость движется от центра колеса к периферии. От колеса жидкость подается к отводу или другому колесу, в случае использования многоступенчатых систем.

Самыми распространенными среди лопастных насосов являются радиально-осевые и осевые гидротурбины. Радиально-осевой насос имеет такую же конструкцию, что и центробежные насосы. Такой насос может работать в турбинном и насосном режимах.

Передача энергии в лопастном насосе производится следующим образом. При обтекании потоком жидкости лопасти насоса на верхней и нижней части образуется перепад давления и возникает подъемная сила, направление которой противоположно направлению вращения колеса.

Энергия колеса при движении передается жидкости, увеличивая ее удельную энергию. Трение между слоями жидкости приводит к частичному превращению энергии в тепло. Оставшаяся механическая удельная энергия составляет напор насоса. 

Лопастные насосы могут быть одноступенчатыми, оснащенными одним колесом, или многоступенчатыми. В многоступенчатых насосах несколько рабочих колес последовательно соединяются друг с другом.

Недостатком одноступенчатых лопастных насосов является ограниченный напор. Если необходим значительный напор, применяются многоступенчатые модели. Жидкость проходит через несколько рабочих колес, которые установлены на одном валу. Напор насоса увеличивается прямо пропорционально количеству колес.

 



6.Поршневые насосы.


Простейший поршневой насос состоит из рабочего цилиндра, снабженного двумя клапанами всасывающим  и нагнетательным, поршня, совершающего возвратно-поступательное движение.

Image

Рис. Поршневой насос одинарного  действия:

1—всасывающий трубопровод; 2 — рабочая камера  напорный трубопровод; 4—поршень; 3 — цилиндр; 6 — шток; 7— крейцкопф; 8—шатун;  9—кривошип

Всасывающий трубопровод соединяет камеру цилиндра с резервуаром. При ходе всасывания (поршень движется вправо) в камере вследствие увеличения ее объема, а также в месте соединения всасывающего трубопровода с цилиндром создается разрежение. Под действием перепада давлений жидкость перемещается к насосу, всасывающий клапан открывается и жидкость заполняет рабочую камеру цилиндра.

В процессе возвратно-поступательного движения поршня жидкость перемещается по всасывающему трубопроводу в цилиндр насоса, а из него — в нагнетательную трубу и затем к потребителю. Потребителями могут быть резервуары, паровые котлы, аппараты и др.

Классификация. Поршневые насосы классифицируют следующим образом:

по числу цилиндров — одно-, двух-, трех- и многоцилиндровые;

по роду перекачиваемой жидкости — нефтяные (для перекачки горячих нефтепродуктов), дозировочные (для перекачки химических реагентов), предназначенные для перекачки сжиженных газов, цементировочные (для перекачки цементного раствора и воды при цементировании скважин) и др.;

по конструкции поршня — поршневого типа, плунжерные (поршень представляет собой удлиненный полый цилиндр), диафрагмовые (цилиндр отделен от клапанной коробки упругой диафрагмой), с проходным поршнем;


7.Обозначение элементов гидро и пневмосистем


Условные обозначения основных гидроэлементов

http://gidravl.narod.ru/7a23a.gif

http://gidravl.narod.ru/7a23b.gif

http://gidravl.narod.ru/7a23c.gif

http://gidravl.narod.ru/7a23d.gif















Тема 1.5 «Объемные гидравлические машины»


1.Основные сведения об объемных насосах


 В насосах объемного типа жидкая среда перемещается в результате периодического изменения объема занимаемой ею полости, попеременно сообщающейся со входом и выходом насоса.

По конструктивному признаку объемные насосы делятся на:

     - насосы с возвратно-поступательным движением рабочего органа, к которым относятся приводные поршневые, дозировочные, паровые поршневые, диафрагменные, скважинные штанговые, ручные;

     - насосы с вращательным движением рабочего органа, роторные, к которым относятся шестеренные, винтовые (одно, двух и трехвинтовые), коловратные, шланговые, оксиально-поршневые и шиберные.

В обзоре "Центробежные насосы" бьли рассмотрены некоторые роторные насосы: шестеренные, двух и трехвинтовые и коловратные в разделе "маслонасосы", а также одновинтовые в разделе "химические насосы".

     Рабочий процесс в объемном насосе, как указывалось выше, основан на вытеснении жидкости из рабочей камеры, герметично отделяемой от всасывающего и нагнетательного трактов, что обеспечивает, так называемую, "жесткую" рабочую характеристику насоса при изменении режимных параметров.

     Максимально допустимое давление (напор) определяется прочностью насоса, мощностью двигателя. Поэтому превышение указанного в паспорте рабочего давления,(без согласования с заводом-изготовителем) не допускается. В системе, где устанавливаются объемные насосы, должны быть предусмотрены предохранительные клапаны или другие защитные устройства, обеспечивающие перепуск перекачиваемой жидкости из напорного трубопровода во всасывающий, если давление в системе превысит установленный предел (например, при закупорке трубопровода). Длительность перепуска жидкости через предохранительный клапан (если он предусмотрен конструкцией насоса) ограничивается температурой нагрева клапана или всего насоса.

     Величину давления, при котором происходит полный перепуск перекачиваемой жидкости из полости нагнетания в полость всасывания, регулируют пружиной предохранительного клапана, причем эта величина не должна превышать величину максимально допускаемого рабочего давления насоса.

     Напорная характеристика в привычных координатах для центробежного насоса будет представлять вертикальную прямую, параллельную оси ординат.

     В действительности наблюдается незначительное уменьшение подачи с увеличением давления (напора), определяемое возрастанием утечки жидкости через зазоры внутри насоса.

http://nasos.on.ufanet.ru/files/graf1.gif

     В связи с тем, что объемные насосы, создают напор большой величины, в напорных характеристиках эти значения измеряются в атмосферах (кГс/см2) или мегапаскалях (МПА) и для удобства анализа откладываются по оси абсцисс.

     На рисунке показана напорная характеристика объемного насоса. Она характеризует зависимость подачи насоса от давления на выходе при бескавитационной работе и отсутствии взвешенного воздуха или других газов в перекачиваемой жидкости. Пунктирной линией условно обозначено возможное положение кривой при работе насоса без предохранительного устройства. Величина утечки определяется, как указывалось, давлением, а также зависит от величины зазоров рабочих органов насоса и вязкости жидкости. Наличие в перекачиваемой жидкости взвешенного воздуха или других газов может значительно снизить подачу насоса при давлениях более 100 кГс/см2.

     При определенной величине создаваемого насосом давления (точка А) начинает срабатывать предохранительный клапан и часть жидкости перетекает из полости давления в полость всасывания, не поступая во внешнюю сеть. На характеристике от этой точки "А" прямая переходит в пологую крутую, характеризующую уменьшение величины подачи насосного агрегата. При определенном значении давления (точка "Б"), меньшем чем максимальное допустимое значение давления насоса, подача жидкости во внешнюю сеть прекращается.

     Область применения объемных насосов - сравнительно малые подачи при больших давлениях.

     Характерной особенностью эксплуатации объемного насоса является необходимость обеспечения надёжной работы предохранительных устройств.

     В этой роли может выступать, прежде всего, предохранительный клапан или его разновидность - разрывная мембрана, а так же электроконтактный манометр.

     Последовательное соединение объемных насосов в практике встречается крайне редко, а параллельная работа их - обычное явление. При параллельной работе подача складывается арифметически.





2.Возвратно-поступательные насосы


Возвратно-поступательное движение поршней 1 чаще всего осуществляется посредством кривошипно-шатунного механизма 2, но применяют и другие механизмы (кулачковые, эксцентриковые и т.п.).

Для поршневых насосов характерно наличие всасывающих 3 и напорных 4 клапанов, регулирующих движение жидкости через рабочую камеру 5. При заполнении рабочей камеры жидкостью всасывающий клапан открыт, а напорный закрыт. При вытеснении жидкости (нагнетании), когда вытеснитель движется в обратную сторону, наоборот, всасывающий клапан закрыт, а напорный – открыт. Эти клапаны являются самодействующими, т.е. такими, которые открываются лишь воздействием перепада давления, а закрываются под действием собственного веса или пружины.

В конструкции насоса предусмотрен ползун (крейцкопф) 6, который при работе насоса воспринимает радиальную нагрузку, и она в этом случае не передается на поршень и цилиндр.

Если предположить, что длина шатуна l бесконечно велика по сравнению с длиной кривошипа r, то скорость перемещения поршня изменяется по синусоидальному закону в функции угла поворота кривошипа φ или времени. По такому же закону меняются подача насоса и расход жидкости во всасывающем и напорном трубопроводах.

Секундная теоретическая подача насоса при n двойных ходов в минуту определяется по формуле

Действительная подача Q насоса меньше теоретической. Уменьшение подачи обуславливается следующими причинами: запаздыванием в открытии и закрытии клапанов; неплотностью поршня и сальников, что ведет к утечке некоторого объема жидкости со стороны нагнетания в область всасывания, а также за пределы корпуса насоса; попаданием воздуха в цилиндр насоса извне через неплотности в сальниках и во всасывающей трубе, а также вместе с водой в растворенном состоянии.

3.Общие свойства и классификация роторных насосов


В роторных насосах взаимодействие рабочего органа с жидкостью происходит в подвижных рабочих камерах, которые попеременно соединяются с полостями всасывания и нагнетания. Это дает возможность исключить из конструкций насосов клапаны.

Отсутствие клапанов позволяет иметь у роторных насосов значительно большую быстроходность, т. е. число рабочих циклов в единицу времени. Кроме того, это обеспечивает роторным насосам и второе отличие от поршневых насосов — обратимость, т. е. практически любой роторный насос может быть использован в качествегидродвигателя.

   Важной конструктивной особенностью роторных насосов является многокамерность. Это обеспечивает им большую равномерность подачи по сравнению с возвратно-поступательными насосами. Однако их подача не может быть абсолютно равномерной, и ее пульсация всегда имеет место. Эта пульсация всегда меньше для насосов с нечетным числом рабочих камер.

   Роторные насосы обладают и существенным недостатком, который вытекает из их конструктивных особенностей. Дело в том, что жидкость, которую перекачивает роторный насос, должна одновременно обеспечивать смазывание его поверхностей. Поэтому она должна быть чистой и неагрессивной по отношению к материалу насоса, а также обладать смазывающими способностями.

   Отсутствие клапанов в роторных насосах повлекло за собой значительное уменьшение гидравлических потерь, что позволяет пренебрегать ими и принимать гидравлический КПД равным единице (ηг = 1). Таким образом полный КПД ( ηн ) роторного насоса равен произведению объемного ( ηo ) и механического ( ηм ) КПД   (η н = η м *η0)

   Роторные насосы имеют чрезвычайно большое разнообразие конструкций. Классификацию этих насосов определяет ГОСТ 17398—72, который включает всевозможные конструктивные исполнения. В данной схеме приводится упрощенный вариант классификации роторных насосов, в которую включены наиболее используемые в машиностроении насосы (рис. 1).Классификация роторных насосов

   Как следует из анализа схемы (см. рис. 1), все роторные насосы делятся на две большие группы. В первую группу входят насосы, использующие только вращательное движение. Во вторую группу включены насосы с вращательным и возвратно-поступательным движением.

   Из роторно-вращательных насосов наибольшее распространение получили шестеренные насосы, которые применяются практически во всех отраслях машиностроения. Из роторно-поступательных достаточно широко используются пластинчатые и роторно-поршневые насосы которые в свою очередь делятся на аксиально-поршневые и радиально поршневые.


4.Шестеренные насосы


Зубчатый (шестеренный) насос состоит из двух шестерен, расположенных в корпусе. Одна из шестерен приводится в движение расположенным на одной оси электродвигателем, а вторая получает вращение от первой благодаря плотному зацеплению зубьев. При работе жидкость захватывается зубьями колес, отжимается к стенкам корпуса и перемещается со стороны всасывания на сторону нагнетания. Переток жидкости в обратном направлении практически отсутствует из-за плотного сцепления зубьев.

Схема шестеренного насоса

Рис. 1. Схема шестеренного насоса
1 - корпус; 2 - шестерня

        Число зубьев в пределе может быть уменьшено до двух, при этом вращающиеся элементы будут иметь очертания, напоминающие восьмерку.

Схема нагнетателя восьмерочного типа

Схема нагнетателя восьмерочного типа
1 - корпус; 2 - рабочее колесо

        В таком нагнетателе необходимо обеспечить привод от двигателя обеих "восьмерок", так как в отличие от зубчатых насосов они не имеют зацепления.
        К достоинствам нагнетателей данного вида следует отнести компактность, простоту конструкции, отсутствие клапанов, возможность использования для привода высокоскоростных электродвигателей, независимость подачи от противодавления сети, реверсивность, возможность получения высоких давлений (5 МПа для шесте-ренного насоса, 0,5 МПа для насоса "восьмерочного" типа). Основные недостатки состоят в быстром износе рабочих органов, невысокой подаче и сравнительно низком КПД (до 0,75%).
        Шестеренные насосы являются одним из старейших представителей роторных гидромашин с вытеснителями в виде зубчатых колес.

Схема шестеренного насоса с шестернями внешнего зацепления

Схема шестеренного насоса с шестернями внешнего зацепления

        По характеру процесса вытеснения эти насосы относятся к классу роторно-вращательных машин, где вытесняемая жидкость, двигаясь в плоскости, перпендикулярной оси вращения, переносится из всасывающей полости в нагнетательную полость насоса. Вытеснители при этом совершают лишь вращательное движение.
        Шестеренные насосы выполняются с шестерными внутреннего и внешнего зацепления. Наиболее распространенным типом шестеренного насоса является насос с шестернями внешнего зацепления. Такой насос состоит из пары защемляющихся одинаковых цилиндрических шестерен - ведущей и ведомой, помещенных в плотно охватывающий их корпус, называемый статором. При вращении шестерен в направлении, указанном стрелками, жидкость, заключенная во впадинах зубьев, переносится из полости всасывания в полость нагнетания (отмечена штриховкой), которая образована корпусом насоса и зубьями a1, b1 > b2, a2. Зубья a1 и a2 при вращении шестерен вытесняют большой объем жидкости, чем тот, который может поместиться в пространстве, освобождаемом зубьями b1 и b2, находящимися в зацеплении. Разность объемов жидкости, находящейся под давлением p2, вытесняется в нагнетательную линию насоса.
        Шестеренные насосы с шестернями внешнего зацепления просты по конструкции и надежны, имеют малые габариты и массу. Чаще всего применяются насосы, состоящие из пары прямозубых шестерен с одинаковым числом зубьев эвольвентного профиля. Для увеличения подачи иногда употребляются насосы с тремя и более шестернями, размещенными вокруг центральной ведущей шестерни. Для повышения давления жидкости применяют многоступенчатые шестеренные насосы. Подача каждой последующей ступени этих насосов меньше подачи предыдущей. Для отвода излишка жидкости каждая ступень имеет перепускной клапан, отрегулированный на соответствующее максимально допустимое давление. Максимальное давление, развиваемое этими насосами, обычно 10 МПа (100 а) и реже 20 МПа (200 а). Для приближенного расчета минутной подачи насосов с двумя одинаковыми шестернями можно пользоваться формулой

Q = η0πA(Dг- A)bn,

где η0 - объемный КПД насоса, зависящий от конструкции, технологии изготовления и давления насоса и принимаемый равным 0,7-0,95; А - расстояние между центрами шестерен, равное диаметру начальной окружности D; Dг - диаметр окружности головок зубьев; b - ширина шестерен; n - частота вращения ротора, об/мин.





5.Пластинчатые насосы


Пластинчатый насос — это роторно-поступательный насос с рабочими органами (вытеснителями) в виде плоских пластин. Пластинчатые насосы могут быть однократного, двукратного или многократного действия.

На рис. 1, а приведена конструктивная схема пластинчатого насоса однократного действия.

Пластинчато-роторный насос

В пазах вращающегося ротора 4, ось которого смещена относительно оси неподвижного статора 6 на величину эксцентриситета ( е ), установлены несколько пластин 5 с пружинами 8. Вращаясь вместе с ротором, эти пластины одновременно совершают возвратно-поступательное движение в пазах 7 ротора. Рабочими камерами являются объемы 1 и 3, ограниченные соседними пластинами, а также поверхностями ротора 4 и статора 6. При вращении ротора рабочая камера 1, соединенная с полостью всасывания, увеличивается в объеме и происходит ее заполнение. Затем она переносится в зону нагнетания. При дальнейшем перемещении ее объем уменьшается и происходит вытеснение жидкости (из рабочей камеры 3).

   Для расчета рабочего объема пластинчатого насоса ( Wo ) может быть использована формула 

Wo = к z WK

взятая вот от сюда; при этом объем рабочей камеры ( Wk ) следует определять в ее крайнем левом положении, т. е. когда она изолирована от полостей всасывания и нагнетания. В этом случае

Wk = L*h*b

где h — высота рабочей камеры (h = 2e); L — средняя длина части окружности, ограниченной двумя пластинами; b — ширина пластины.

    Длина ( L ) может быть приближенно определена по диаметру ротора D с учетом толщины пластины ( δ ) и числа пластин ( z ) т. е.

( L = (3.14*D- δ*z) ).

Тогда с учетом вышеописанных формул получим приближенную зависимость для вычисления рабочего объема пластинчатого насоса:

Wo = 2e *(3.14*D- δ*z)*b*k

    Из анализа последней формулы следует, что для увеличения рабочего объема пластинчатого насоса ( Wo ) при сохранении его габаритов, т. е. размеров D и b, необходимо увеличивать эксцентриситет ( е ).

   Кроме того, рабочий объем пластинчатого насоса может быть увеличен за счет кратности его работы ( k ), что достаточно широко применяется на практике. На         рис. 1, б приведена конструктивная схема пластинчатого насоса двукратного действия. Внутренняя поверхность такого насоса имеет специальный профиль, что позволяет каждой пластине за один оборот вала дважды производить подачу жидкости. У пластинчатого насоса двукратного действия имеются две области всасывания 9, которые объединены одним трубопроводом, и две области нагнетания 10, также объединенные общим трубопроводом. На практике применяются насосы и с большей кратностью, но их конструкции сложнее, поэтому использование таких насосов ограничено.

Для пластинчатых насосов важным является обеспечение герметичности в месте контакта пластины и корпуса (точка 2 на подач пластинчатого насоса рис. 1, а). В насосах с высокими скоростями это может быть получено за счет центробежных сил. В конструкции, показанной на рис. 1, а, герметичность обеспечивают пружины 8. В некоторых насосах это достигается за счет давления, создаваемого в пазах 7.

   Насосы могут быть регулируемыми, т.е. иметь переменный рабочий объем. Конструкция пластинчатого насоса однократного действия позволяет изменять его рабочий объем в процессе работы. Для этого достаточно сделать вал ротора подвижным относительно корпуса. Тогда при смещении ротора 4 влево можно не только уменьшить величину ( e ), а следовательно, подачу насоса, но и изменить направление потока жидкости              (при е < 0), не меняя направления вращения вала. Для иллюстрации этого на рис. 2 показаны три характерных положения ротора регулируемого пластинчатого насоса.Пластинчато-роторный насос Следует отметить, что пластинчатые насосы двукратного и многократного действия не могут быть регулируемыми.

    Пластинчатые насосы компактны, просты в производстве и надежны в эксплуатации. Поэтому они нашлиприменение в технике, в первую очередь в станкостроении. Максимальные давления, создаваемые ими, составляют 7... 14 МПа. Частоты вращения пластинчатых насосов обычно находятся в диапазоне 1000... 1500 об/мин. Полные КПД для большинства составляют 0,60...0,85, а объемные КПД — 0,70...0,92


6.Роторно-поршневые насосы


Роторно-поршневые (или кулачковые) насосы относятся к типу роторных насосов, где последовательное вытеснение транспортируемой среды (жидкости) из рабочей камеры обеспечивает поступательно вращающийся дугообразный ротор.

Принцип действия роторно-вращательных насосов

Как и любой роторный насос, ротационно-поршневые насосы имеют объемный принцип работы, при котором требуемое давление в системах перекачки сред обеспечивается за счет постоянного изменения объема рабочей камеры. От поршневых и плунжерных кулачковые насосы отличает отсутствие перепускных клапанов в конструкции, а также использование вращательно-поступательного ротора в качестве рабочего органа.

Принцип работы роторных насосов предполагает несколько циклов:

  • Жидкость заполняет рабочую камеру;

  • Подвижный ротор (или роторы), двигаясь вращательно или вращательно-поступательно, вытесняет жидкость в нагнетательный патрубок. В зоне всасывания создается вакуум, обеспечивающий приток новой порции жидкости в камеру насоса. Жидкость захватывается ротором и перемещается по каналу, создавая давление на выходе.

  • Ротор возвращается в исходную позицию, открывая доступ в камеру новой порции жидкости.

Классификация

Роторно-поршневые (ротационно-вращательные) насосы вместе с лопастными, винтовыми и шестеренчатыми аналогами входят в класс роторных насосов. Собственно роторно-поступательные насосы подразделяются на аксиально-поршневые и радиально-поршневые. Ротор последних не просто вращается, но также и поступательно движется по рабочей камере, изменяя ее объем. Этот принцип позволяет использовать устройство и как насос, и как гидромотор.

Аксиальные кулачковые насосы, в свою очередь, делятся на насосы с наклонным диском и насосы с наклонным блоком. У первых ведущий вал и ротор имеют одну ось. У вторых оси вращения этих элементов пересекаются под определенным углом (от 45 до 90 градусов).

Аксиально-поршневые насосы гораздо более популярны. Однако они имеют свои недостатки: необходимо производить тонкую фильтрацию рабочей среды. Кроме того, эти насосы довольно сложны в изготовлении, а некоторые их элементы относительно недолговечны.

Главное же отличие радиально-поршневых насосов состоит в том, что выпускаются они со значительными рабочими объемами.

Технические характеристики

Специфику роторных насосов этого типа покажем на примере продукции известной марки Waukesha. Эти насосы способны работать с высокотемпературными средами (до 150°С), высоковязкими жидкостями (до 1 млн сПз) и при высоких рабочих давлениях (до 34 бар). Высокая производительность и способность самовсасывания делают их поистине универсальным предложением на рынке роторных насосов.

Компания также разработала особый роторный сплав Waukesha 88, который препятствует истиранию и заеданию ротора. Это значительно увеличивает точность дозирования (например, в химических насосах), а также повышает КПД и способность к самовсасыванию. Более того, кулачковый насос, ротор которого изготовлен из этого сплава, способен работать на сухом ходу практически неограниченно без износа, что происходит за счет отсутствия контакта ротора с корпусом.

Преимущества и недостатки конструкции

  • Роторно-поршневые насосы более «быстроходны» и работают с высокой частотой вращения

  • Вращательно-поступательное движение ротора в рабочей камере обеспечивает равномерную перекачку жидких сред и стабильность давления в системе

  • Отсутствие перепускных клапанов делает конструкцию более надежной, увеличивает КПД насоса и снижает потери мощности

  • Кулачковые насосы, использующие роторный сплав Waukesha 88, способны неограниченно долго работать без жидкости. Кроме того, этот сплав повышает точность дозирования в насосах с этой функцией

  • Насосы этого же производителя обладают самовсасыванием и способны работать с высокотемпературными и высоковязкими средами

Из недостатков этого вида насосов специалисты отмечают сложность и относительно невысокую надежность конструкции, высокую стоимость обслуживания и ремонта, а также повышенные требования к химическим и абразивным свойствам перекачиваемых в системе сред.



        Рис. 1. Схема радиально-поршневого роторного насоса: 1 — ротор; 2 — поршень; 3 — барабан (статор); 4 — цапфа; 5 — полость нагнетания; 6 — полость всасывания.

        Рис. 1. Схема радиально-поршневого роторного насоса: 1 — ротор; 2 — поршень; 3 — барабан (статор);4 — цапфа; 5 — полость нагнетания; 6 — полость всасывания.

        Рис. 2. Продольный разрез аксиально-поршневого роторного насоса с наклонным диском: 1 — корпус: 2 — блок цилиндров; 3 — поршень; 4 — наклонный диск; 5 — вал; 6 — полость всасывания; 7 — палец (стержень); 8 — золотник; 9 — полость нагнетания.

        Рис. 2. Продольный разрез аксиально-поршневого роторного насоса с наклонным диском: 1 — корпус: 2— блок цилиндров; 3 — поршень; 4 — наклонный диск; 5 — вал; 6 — полость всасывания; 7 — палец(стержень); 8 — золотник; 9 — полость нагнетания.


7.Характеристика насос и насосной установки


Насосной установкой называют насосный агрегат, комплектующее оборудование которого смонтировано по определенной схеме, обеспечивающей работу насоса. На рисунке приведена схема насосной установки для перекачки жидкости. Насос 9, приводимый в движение электродвигателем 10, засасывает жидкость из расходной емкости 2 и по всасывающей магистрали 5 и напорной магистрали 13 перекачивает жидкость в приемную емкость 16.

Схема насосной установки

Рис. 1. Схема насосной установки: 

1 - сооружение (помещение) для насосной установки; 2 - расходная емкость; 3 - фильтр; 4 - обратный клапан; 5 - всасывающая магистраль; 6, 7, 14, 17 - вентили; 8 - магистраль для заливки насосов; 9 - насос; 1 О - электродвигатель; 11, 12 - манометры; 13 - напорная магистраль; 15 - расходомер; 16 - приемная емкость; 18 - пульт управления насосной установкой; 19 - противопожарное оборудование; 20 - вспомогательное оборудование; 21 - сливная магистраль

Можно указать, что насосная установка имеет следующие элементы: 

гидробаки (гидроемкости); 

гидролинии (магистрали, трубопроводы); 

контрольно-измерительное оборудование (манометры, расходомеры, электроизмерительные приборы); 

пускорегулирующее оборудование (вентили, задвижки, устройства электрооборудования); 

противопожарное оборудование; 

вспомогательное оборудование (тали, кран-балки). 

Состав сооружений, тип и количество основного и вспомогательного оборудования насосной установки определяется исходя из назначения насосной установки.

На каждую насосную установку заводится журнал (или паспорт), в котором содержатся следующие разделы: 

правила ведения журнала; 

проведение регламента и выполнения работ на установке (оборудовании) в процессе эксплуатации; 

учет наработки установки и оборудования; 

учет технических осмотров установки и оборудования; 

учет неисправности установки и оборудования; 

оценка состояния установки и оборудования; 

регистрация изменений в составе насосной установки и оборудования. 


8.Объемные гидравлические двигатели. Гидроцилиндры. Гидромоторы.


Гидравлический двигатель (гидродвигатель) — гидравлическая машина, предназначенная для преобразования гидравлической энергии в механическую. К гидродвигателям относят гидромоторы, гидроцилиндры, гидротурбины и поворотные гидродвигатели.

Гидравлические двигатели бывают объёмными и гидродинамическими. На практике чаще используют объёмные гидродвигатели, так как при той же преобразуемой мощности они компактнее и меньше по массе. Конструкции объёмных гидромоторов подобны конструкциям соответствующих объёмных насосов. Кроме того, объёмные гидромоторы имеют свои аналоги среди пневмомоторов. Однако не каждый насос может использоваться в режиме гидромотора. Например, поршневые насосы (которые не следует путать с роторно-поршневыми) могут работать только в качестве насоса из-за наличия клапанной системы распределения.


10.Обозначения гидромашин на гидравлических схемах


Трубопроводы на гидравлических схемах показаны сплошными линиями, соединяющими элементы. Линии управления обычно показывают пунктирной линией. Направления движения жидкости, при необходимости, могут быть обозначены стрелками. Часто на гидросхемах обозначают линии - буква Р обозначает линию давления, Т - слива, Х - управления, l - дренажа.

Соединение линий показывают точкой, а если линии пересекаются на схеме, но не соединены, место пересечения обозначают дугой.

Условное обозначение гидравлических линий








Закрытый бак, или емкость, например гидроаккумулятор, показывается в виде замкнутого контура.

Условное обозначение гидроаккумулятора




Центробежные насосы, обычно изображают в виде окружности, в центр которой подведена линия всасывания, а к периметру окружности линия нагнетания:

Центробежный насос на гидросхеме




Объемные (шестеренные, поршневые, пластинчатые и т.д) насосыобозначают окружностью, с треугольником-стрелкой, обозначающим направление потока жидкости.

обозначение насоса




Если на насосе показаны две стрелки, значит этот агрегат обратимый и может качать жидкость в обоих направлениях.

насос на гидросхеме




Если обозначение перечеркнуто стрелкой, значит насос регулируемый, например, может изменяться объем рабоче камеры.

Гидравлическая схема регулируемого насоса



Гидромотор

Обозначение гидромотора похоже на обозначение насоса, только треугольник-стрелка развернуты. В данном случае стрелка показывает направление подвода жидкости в гиромотор.

Условное обозначение гидромотора




Для обозначения гидромотра действую те же правила, что и для обозначения насоса: обратимость показывается двумя треугольными стрелками, возможность регулирования диагональной стрелой.

На рисунке ниже показан регулируемый обратимый насос-мотор.

Обозначение обратимого насос мотора




Распределитель на гидросхеме показывается набором, квадратных окон, каждое из которых соответствует определенному положению золотника (позиции). Если распределитель двух позиционный, значит на схеме он будет состоять из двух квадратных окон, трех позиционный - из трех. Внутри каждого окна показано как соединяются линии в данном положении.

Рассмотрим пример.

Условное обозначение распределителя




На рисунке показан четырех линейный (к распределителю подведено четыре линии А, В, Р, Т), трех позиционный (три окна) распределитель. На схеме показано нейтральное положение золотника распределителя, в данном случае он находится в центральном положении (линии подведены к центральному окну). Также, на схеме видно, как соединены гидравлические линии между собой, в рассматриваемом примере в нейтральном положении линии Р и Т соединены между собой, А и В - заглушены.

Гидросхема. Распределитель



Как известно, распределитель, переключаясь может соединять различные линии, это и показано на гидравлической схеме.

Рассмотрим левое окно, на котором показано, что переключившисьраспределитель соединит линии Р и В, А и Т. Этот вывод можно сделать, виртуально передвинув распределитель вправо.

Гидравлическая схема. Распределитель


Оставшееся положение показано в правом окне, соединены линии Р и А, В и Т.

raspr4.gif


Устройства управления

Для того, чтобы управлять элементом, например распределителем, нужно каким-либо образом оказать на него воздействие.

Ниже показаны условные обозначения: ручного, механического, гидравлического, пневматического, электромагнитного управления и пружинного возврата.

Виды управления



Эти элементы могут компоноваться различным образом.


На следующем рисунке показан четырех линейный, двухпозиционный распределитель, с электромагнитным управлением и пружинным возвратом.

Двухпозиционный распределитель


Клапаны в гидравлике, обычно показываются квадратом, в котором условно показано поведение элементов при воздействии.

Клапан предохранительный условное обозначение


На рисунке показано условное обозначение предохранительного клапана. На схеме видно, что как только давление в линии управления (показана пунктиром) превысит настройку регулируемой пружины - стрелка сместиться в бок, и клапан откроется.

Дроссель - регулируемое гидравлическое сопротивление.

Гидравлическое сопротивление или нерегулируемый дроссель на схемах изображают двумя изогнутыми линями. Возможность регулирования, как обычно, показывается добавлением стрелки, поэтому регулируемый дроссель будет обозначаться следующим образом:

Дроссель

В гидравлике наиболее часто используются следующие измерительные приборы: манометр, расходомер, указатель уровня, обозначение этих приборов показано ниже.

Манометр, расходомер, указатель уровня


Объединения элементов

Довольно часто в гидравлике один блок или аппарат содержит несколько простых элементов, например клапан и дроссель, для удобства понимания на гидросхеме элементы входящие в один аппарат очерчивают штрих-пунктирой линией.

Для того, чтобы правильно читать гидравлическую схему нужно знать условные обозначения элементов, разбираться в принципах работы и назначении гидравлической аппаратуры, уметь поэтапно вникать в особенности отдельных участков, и правильно объединять их в единую гидросистему.

Ниже показана схема гидравлического привода, позволяющего перемещать шток гидроцилиндра, с возможностью зарядки гидроаккумулятора.

Схема гидравлическая







Тема 1.6: «Элементы управления объемными гидравлическими приводами»


1.Гидродроссели. Регулирующие гидроклапаны. Направляющие гидроклапаны.


Гидроклапан (гидравлический клапан) — это гидроаппарат, предназначенный для регулирования параметров потока жидкости путём изменения проходного сечения гидроаппарата за счёт изменения положения запорно-регулирующего элемента под воздействием потока жидкости (непосредственно или опосредовано).

Различают гидроклапаны регулирующие и направляющие. Первые из них осуществляют регулирование давления в потоке жидкости, а вторые — пропускают или останавливают поток жидкости при достижении параметрами потока (давления, разности давлений и т. д.) заданых настройками клапана значений.

К регулирующим гидроклапанам относятся:

  • предохранительный клапан, который поддерживает давление не выше определённого уровня на входе в гидроклапан; в нормальном положении запорно-регулирующий элемент гидроклапана закрыт, и открывается, только тогда, когда давление на входе в гидроклапан достигнет предельно-допустимого значения (давление срабатывания);

  • переливной клапан поддерживает давление на входе в клапан на заданном уровне; в нормальном положении переливной гидроклапан открыт и через него осуществляется постоянный слив части потока рабочей жидкости;

  • редукционный клапан поддерживает постоянным давление на выходе из клапана;

  • клапан разности давлений поддерживает постоянную разность между давлениями на входе и выходе из клапана;

  • клапан соотношения давлений поддерживает постоянным соотношение между давлениями на входе и выходе из клапана.

Условное графическое обозначение предохранительного клапана прямого действия

 Условное графическое обозначение предохранительного клапана непрямого действия

 Условное графическое обозначение редукционного клапана

 Условное графическое обозначение клапана разности давлений

 Условное графическое обозначение клапана соотношения давлений

К направляющим гидроклапанам относятся следующие:

  • обратный клапан, который пропускает поток жидкости только в одном направлении; функциональное отличие обратного клапана от предохранительного заключается в том, что предохранительный срабатывает только в том случае, когда давление на входе достигает определённого уровня, а обратный клапан срабатывает при любом, даже самом минимальном превышении давления на входе над давлением на выходе из клапана; часто к обратным клапанам относятсягидрозамки;

  • клапан последовательности пропускает поток жидкости в том случае, если либо давление на входе в клапан, либо давление в некотором постороннем потоке достигает определённого значения;

  • клапан выдержки времени предназначен для пропускания или остановки потока жидкости через определённый промежуток времени.

  • Условное графическое обозначение клапанов последовательности: а)с управлением от входящего потока жидкости; б)с управлением от стороннего потока жидкости

По характеру срабатывания запорно-регулирующего элемента гидроклапаны бывают прямого действия и непрямого действия. Первые срабатывают непосредственно под воздействием потока рабочей жидкости, а вторые — посредством промежуточного регулирующего элемента. Время срабатывания клапана непрямого действия несколько больше времени срабатывания клапана прямого действия


2.Общие сведения о гидрорасспределителях. Дросселирующие гидрораспределители. Гидрораспределители с электрическим управлением.


Гидроусилитель - совокупность гидроаппаратов и объемных гидродвигателей, в которой движение управляющего элемента преобразуется в движение управляемого элемента большей мощности, согласованное с движением управляющего элемента по скорости, направлению и перемещению

Применяемые в автоматизированных гидроприводах гидроусилители классифицируют по следующим признакам.

По методу управления различают гидроусилители без обратной связи и с обратной связью между управляющим элементом и ведомым звеном исполнительного механизма.

По конструкции управляющего элемента гидроусилители подразделяют на усилители с дросселирующими гидрораспределителями золотникового типа, с соплом и заслонкой, со струйной трубкой, крановые, с игольчатым дросселем.

По числу каскадов усиления гидроусилители подразделяют на одно-, двух- и многокаскадные. Многокаскадные применяют в тех случаях, когда требуется получить на выходе большую мощность и сохранить при этом высокую чувствительность гидроусилителя.

По виду сигнала управления гидроусилители подразделяют на усилители с механическим и электрическим сигналами управления.

Гидроусилители золотникового типа получили наибольшее распространение. Они просты по конструкции, разгружены от аксиальных статических сил давления жидкости, легко управляемы, имеют высокий КПД и обеспечивают достижение значительных коэффициентов усиления по мощности.

Схема следящего гидроусилителя золотникового типа с гидродвигателем прямолинейного движения и жесткой рычажной обратной связью представлена на рис.8.3.

http://gidravl.narod.ru/b8a4.gif

Рис.8.3. Схем гидроусилителя золотникового типа с обратной связью:
1 - шарнир; 2 - тяга; 3 - золотник распределителя; 4 - поршень; 
5 - корпус силового цилиндра; 6 - шарнир; 7 - дифференциальный рычаг

Этот гидроусилитель состоит в основном из тех же элементов что и рассмотренный выше усилитель рулевого привода автомобиля. При перемещении тяги 2, связанной с ручкой управления, перемещается шарнир 1 дифференциального рычага 7 обратной связи, с которым вязаны штоки силового цилиндра 5 и золотника распределителя 3. Так как силы, противодействующие смещению золотника распределителя, значительно меньше соответствующих сил, действующих в системе силового поршня 4, то шарнир 6 может рассматриваться в начале движения тяги 2 как неподвижный, ввиду чего движение его вызовет через рычаг 7 смещение плунжера золотника распределителя 3. В результате при смещении золотника из нейтрального положения, жидкость поступит в соответствующую полость цилиндра 5, что вызовет перемещение поршня 4, а следовательно, и шарнира 6, связанного с "выходом". При этом выходное звено сместится пропорционально перемещению тяги 2.

После того как движение тяги 2 будет прекращено, продолжающийся выдвигаться поршень 4 сообщит через рычаг 7 обратной связи плунжеру золотника распределителя 3 перемещение, противоположное тому, которое он получал до этого при смещении тяги 2 управления. Так как при этом расходные окна золотника будут в результате обратного движения плунжера постепенно прикрываться, количество жидкости, поступающей в цилиндр 5, уменьшится, вследствие чего скорость его поршня будет уменьшаться до тех пор, пока плунжер золотника не придет в положение, в котором окна полностью перекроются, при этом скорость станет равной нулю.

При перемещении плунжера золотника в противоположную строну движение всех элементов регулирующего устройства будет происходить в обратном направлении.

В действительности отдельных этапов движения "входа" и "выхода" рассматриваемого следящего привода с жесткой обратной связью не существует, и оба движения протекают практически одновременно, т.е. имеет место не ступенчатое, а непрерывное "слежение" исполнительным механизмом за перемещением "входа".

Гидроусилитель с соплом и заслонкой (рис.8.4) состоит из управляющего элемента в виде нерегулируемого дросселя 1, междроссельной камеры 2, регулируемого дросселя, выполненного в виде сопла 3, заслонки 4 и задающего устройства 6, а также из исполнительного элемента 5.

http://gidravl.narod.ru/b8a5.gif

Рис.8.4. Гидроусилитель с соплом и заслонкой:
1 - нерегулируемый дроссель; 2 - междроссельная камера; 3 - сопло; 
4 - заслонка; 5 - исполнительный элемент; 6 - задающее устройство

Жидкость подается к гидроусилителю со стороны нерегулируемого дросселя. Из междроссельной камеры одна часть жидкости Q2 вытекает через щель, образованную торцом сопла и заслонкой, а другая Q1поступает к исполнительному элементу. При изменении положения заслонки изменяются давление в междроссельной камере и расход через сопло. Одновременно изменяются усилие на исполнительный элемент, расход Q1 и скорость υ движения выходного звена. Нерегулируемый дроссель может быть выполнен в виде пакета тонких шайб с круглыми отверстиями.

Сопло гидроусилителя выполняется в виде цилиндрического насадка или в виде капиллярного канала. Увеличение диаметра сопла приводит к увеличению расхода и быстродействия системы. Заслонка имеет плоскую форму и перемещается от воздействия на нее сигнала управления.

Гидроусилитель типа сопло-заслонка отличается простотой конструкции, надежностью в работе и быстродействием. К нему можно подводить жидкость с большим давлением питания P0. В устройстве сопло-заслонка отсутствуют трущиеся пары, что обеспечивает его высокую чувствительность. Недостатком является непроизводительный расход жидкости через сопло, низкий КПД и невысокий коэффициент усиления по мощности.

Гидроусилитель со струйной трубкой (рис.8.5) состоит из трубки 5 с коническим насадком на конце, сопловой головки 1 с двумя наклонными коническими расходящимися каналами и устройства управления. Устройство управления струйной трубкой состоит из задающего устройства 4 в виде регулируемой пружины, толкателя 6 и ограничителя 3 хода струйной трубки. Каналы сопловой головки соединены с исполнительным элементом 8 гидроусилителя. Жидкость с параметрами P0 и Q0 подается к трубке от источника питания. По трубе 2 жидкость отводится от гидроусилителя на слив.

Принцип работы гидроусилителя со струйной трубкой основан на преобразовании удельной потенциальной энергии давления в удельную кинетическую энергию струи, вытекающей из конического насадка, и последующем преобразовании этой энергии в удельную потенциальную энергию давления в каналах сопловой головки.

Гидроусилитель работает следующим образом. При отсутствии сигнала управления струйная трубка занимает нейтральное положение по отношению к отверстиям в сопловой головке. Вытекающая из насадка струя в одинаковой мере перерывает оба отверстия (рис.8.5, б), вследствие чего давления в каналах сопловой головки одинаковы, а выходное звено исполнительного элемента неподвижно. При подаче сигнала управления на толкатель струйная трубка смещается из нейтрального положения, равенство площадей отверстий, перекрытых струей, и равенство давлений в каналах сопловой головки нарушается. В результате выходное звено исполнительного элемента начинает перемещаться. При изменении знака сигнала управления выходное звено будет двигаться в другую сторону. Вытесняемая из исполнительного элемента жидкость попадает через канал в сопловой головке в полость 7 усилителя и далее на слив. Для того чтобы в каналы сопловой головки вместе с жидкостью не попал воздух, насадок струйной трубки делают погруженным в жидкость.

http://gidravl.narod.ru/b8a6.gif

Рис.8.5. Гидроусилитель со струйной трубкой:
1 - сопловая головка; 2 - сливной трубопровод; 3 - ограничитель хода; 
4 - задающее устройство; 5 - струйная трубка; 6 - толкатель; 
7 - внутренняя полость; 8 - исполнительный элемент

Для повышения чувствительности усилителя и обеспечения одновременно увеличения мощности выходного сигнала применяют двухкаскадные устройства, первой ступенью усиления которых является обычно усилитель типа сопло- заслонка, а второй - золотник. Принципиальная схема такого устройства показана на рис.8.6. Междроссельная камера a этой схемы соединена с правой полостью основного распределительного золотника, плунжер 2 которого находится в равновесии под действием усилия пружины 4 и давления жидкости в этой камере. Жидкость постоянно подводится в штоковую полость b силового цилиндра, поршень которого при одновременной подаче жидкости в противоположную полость перемещается вследствие разности площадей поршня влево, и при соединении этой полости с баком - в правую сторону.

http://gidravl.narod.ru/b8a7.gif

Рис.8.6. Двухкаскадный усилитель типа сопло-заслонка:
1 - заслонка; 2 - плунжер; 3 - силовой цилиндр; 4 - пружина

На рис.8.6. усилитель показана в нейтральном положении, в котором правая полость цилиндра 3 перекрыта. При смещении заслонки 1 равновесие сил, действующих на плунжер 2 золотника, нарушится, и он, смещаясь в соответствующую сторону, соединит правую полость силового цилиндра 3 либо с полостью питания (давление P Н), либо с баком. Благодаря тому, что усилие, создаваемое давлением жидкости на плунжер 2 золотника, уравновешивается пружиной 4, перемещение распределительного золотника будет пропорционально перемещению заслонки (регулируемого дросселя), в результате чего достигается приближенная пропорциональность расхода жидкости через золотник и перемещения заслонки. Следовательно, в данном случае имеет место обратная связь по давлению.

http://gidravl.narod.ru/b8a8.gif

Рис.8.7. Двухступенчатая следящая система с обратной связью по давлению:
1 - пружина; 2 - плунжер; 3 - дроссель; 4 - клапан; 5 - заслонка

Схема применения этого распределительного устройства в следящей системе приведена на рис.8.7. Плунжер золотника 2 в этой схеме находится в равновесии под действием усилия пружины 1 и давления жидкости в камере a, которая соединена с линией питания через дроссель 3 и со сливом - через сверление b в штоке плунжера. Сопротивление последнего канала, а следовательно, и давление в камере a можно изменять смещением заслонки 5; при этом вследствие нарушения равновесия сил натяжения пружины и давления жидкости плунжер золотника будет следовать за заслонкой. Для повышения чувствительности давление в камере a обычно понижается с помощью клапана 4 или путем питания этой камеры от отдельного источника и, в частности, от сливной магистрали.






Тема 1.7: «Рабочие жидкости, гидролинии, гидроемкости, фильтры и теплообменники»


1.Рабочие жидкости объемных гидроприводов


К рабочим жидкостям для объемных гидравлических приводов предъявляются повышенные требования.

Рабочие жидкости должны иметь хорошие смазывающие свойства по отношению к материалам трущихся пар и уплотнений; малое изменение вязкости в диапазоне рабочих температур; высокий объемный модуль упругости; малое давление насыщенных паров и высокую температуру кипения; быть нейтральными к материалам гидравлических агрегатов и защитным покрытиям; обладать высокой механической стойкостью, стабильностью характеристик в процессе хранения и эксплуатации; быть пожаробезопасными, нетоксичными; иметь хорошие диэлектрические свойства.

В наибольшей степени этим требованиям удовлетворяют минеральные масла и синтетические жидкости на кремнийорганической основе. В гидроприводах, работающих при низких температурах, применяют морозостойкие рабочие жидкости, у которых температура застывания ниже минус 60°С.

При эксплуатации гидросистемы необходимо учитывать, что применяемое масло должно быть свободно от кислот, щелочей, воды, механических примесей.

Класс чистоты масла по ГОСТ 17216-71 должен быть не грубее 12-го.

В путевых машинах ПМГ, РОМ, БУМ, ВПР в качестве рабочей жидкости применяется масло турбинное: Тп22 ГОСТ 9972-74.

При работе гидропривода рабочие жидкости, нефтяное масло постепенно загрязняются, в них попадают механические примеси, вода. Однако, путем восстановления (регенерации) они могут быть подготовлены для повторного применения.

На железнодорожном транспорте, как и в других отраслях народного хозяйства, действует централизованная система сбора отработавших нефтепродуктов, установлены нормы сдачи отработанных масел (от 13 до 45%). На железнодорожном транспорте действует несколько специализированных заводов по регенерации масел.

Простейшими установками для удаления воды и механических примесей из масел являются сепараторы.

Для восстановления незначительных количеств масел применяется маслорегенерационная установка УРИМ-45 производительностью 45 кг/ч, которая может быть смонтирована непосредственно при дистанциях пути, ПМС и других предприятиях. Эта установка потребляет мощность не более 12 кВт, а общая ее масса — не более 1 т. Установка обслуживается одним человеком.


2.Гидролинии. Гидробаки. Гидроаккумуляторы.


Надежность объемных гидромашин и гидроприводов в значительной мере зависит от совершенства гидравлических коммуникаций, а также от качества жидкости и очистки ее в процессе работы. Гидролиниями называют устройства, предназначенные для прохождения рабочей жидкости в процессе работы гидропривода

В соответствии с выполняемыми функциями их разделяют на

всасывающие - по которым рабочая жидкость движется к насосу, 

напорные - по которым рабочая жидкость под давлением движется от насоса к распределителю, гидродвигателю или гидроаккумулятору и 

сливные - по которым рабочая жидкость движется в гидробак. 

Кроме того, различают гидролинии управления, по которым рабочая жидкость движется к устройствам для управления, и дренажные, по которым отводятся утечки рабочей жидкости.

Основным требованием к гидролиниям является обеспечение минимального гидравлического сопротивления и прочность конструкции. Для обеспечения минимального гидравлического сопротивления гидролинии и каналы следует выполнять по возможности максимального сечения с наименьшим числом местных сопротивлений. 

Для напорных гидролиний скорость течения жидкости рекомендуется выбирать в пределах 5-10 м/с и для всасывающих 1-2 м/с.


3.Кондиционеры рабочей жидкости. Отделители твердых частиц


Фильтры служат для очистки жидкости при заправке, очистки воздуха, соприкасающегося с жидкостью, непрерывной очистки рабочей жидкости при работе гидропередачи. Наиболее эффективна установка рабочего фильтра на линии всасывания основного насоса или вспомогательного насоса.

Центробежные очистители жидкости – эти фильтры очищают жидкость от частиц загрязнителя с плотностью, превышающей плотность рабочей жидкости.

Теплообменники поддерживают оптимальную температуру в основных рабочих органах гидропередачи. Устанавливают на сливных линиях после гидродвигателей, переливных клапанов или на линиях отвода утечек из гидросистемы.

Основной технический параметр фильтров и сепараторов – качество фильтрации.

По этому параметру фильтры делятся:

  • Грубой  фильтрации (100-250 мкм)

  • Нормальной фильтрации (10-100 мкм)

  • Тонкой фильтрации (5-10 мкм)

  • Сверхтонкой фильтрации (1-5 мкм)

По конструкции фильтрующие элементы делятся на:

-Поверхностные (металлические сетки, т.е. сетчатые или щелевые)

-Глубинные (внутри тела, т.е. бумажные, керамические)

В сепараторах в отличие от фильтров очистка происходит под действием каких-либо сил:

-гравитационные (простейший гравитационный сепаратор – бак для рабочей жидкости)

-вибрационные

-магнитные (для отделения ферромагнитных частиц)

-центробежные (осаждение частиц на стенках под действием центробежных сил)

-электростатические (под действием поля частицы осаждаются на электродах)

-электромагнитные

-ультразвуковые (дробление крупных частиц на более мелки, которые более безопасны для ГП)


4.Теплообменники. Уплотнительные устройства.


Теплообменники с водяным охлаждением имеют небольшие размеры. В отличие от воздушных, они более эффективны, но требуют дополнительного оборудования для подачи охлаждающей жидкости. Конструктивно теплообменник представляет собой змеевик 2 из стальной трубы (рис.7.2, а), размещенной в гидробаке 1.

Теплообменники с водяным охлаждение целесообразно применять в гидроприводах стационарных машин, работающих в тяжелых условиях.

http://gidravl.narod.ru/b7a2.gif

Рис.7.2. Теплообменники:
а - с водяным охлаждением; 1 - бак; 2 - змеевик;
б - с воздушным охлаждением; 1 - радиатор; 2 - вентилятор; 3 - магнитный пускатель; 
4 - реле; 5 - терморегулятор; 6 - датчик температуры

Теплообменники с воздушным охлаждением выполняют по типу автомобильных радиаторов или в виде труб, оребренных для увеличения поверхности теплопередачи. Для увеличения эффективности теплопередачи поверхность теплообменника обдувается воздухом от вентилятора.

Для поддержания постоянной температуры рабочей жидкости может быть применен автоматический терморегулятор (рис.7.2, б). При повышении температуры рабочей жидкости реле 4 терморегулятора 5 замыкает цепь магнитного пускателя 3 электродвигателя, на валу которого установлен вентилятор 2. Поток воздуха обдувает теплообменник 1. При уменьшении температуры ниже заданного уровня электродвигатель вентилятора отключается. Терморегулятор работает от датчика температуры 6.

Назначение уплотнительных устройств - устранение утечек и перетечек рабочей жидкости через зазоры между сопрягаемыми деталями элементов гидропривода, вызванных перепадом давлений.

К уплотнительным устройствам предъявляются следующие требования: износостойкость; совместимость с конструкционными материалами и рабочей жидкостью; устойчивость к температурным колебаниям; удобность монтажа-демонтажа; невысокая стоимость.

Уплотнительные устройства делятся на две группы:
уплотнения неподвижных соединений, которые должны обеспечивать абсолютную герметичность при всех режимах работы гидропривода;
уплотнения подвижных соединений, допускающие возможность регламентированных утечек и перетечек рабочей жидкости.

Уплотнение считается герметичным, если после длительной выдержки под давлением (для неподвижных соединений) или после установленного числа перемещений (для подвижных соединений) утечки рабочей жидкости не превышают предельно допустимые.

Уплотнение неподвижных соединений.

В неразъемных соединениях герметичность достигается пайкой и сваркой деталей.

В разъемных соединениях утечки устраняются несколькими способами: путем деформации уплотняемых поверхностей внешней силой; взаимной приработкой уплотняемых поверхностей; заполнением микронеровностей на уплотняемых поверхностях различными заполнителями (прокладки из картона, кожи, резины и т.д.). При этом при всех способах между соединяемыми деталями должно быть создано контактное давление (путем затяжки крепежными элементами), превышающее максимальное рабочее давление. Некоторые способы уплотнения неподвижных соединений мягкими прокладками и кольцами представлены на рис.7.13.

http://gidravl.narod.ru/b7a12.gif

Рис.7.13. Герметизация неподвижных соединений

Для изготовления прокладок применяют различные неметаллические и металлические эластичные материалы, способные компенсировать при затяжке соединения неровности и другие дефекты поверхностей уплотняемой пары.


























Тема 1.8. «Гидравлические системы подачи жидкости»


  1. Системы водоснабжения

http://www.ecosibir.ru/pub/editor/5144.jpgВодоснабжение, совокупность мероприятий по обеспечению водой различных её потребителей — населения, промышленных предприятий, транспорта и др. Комплекс инженерных сооружений, осуществляющих задачи водоснабжения, называется Системой водоснабжения или водопроводом. Все современные Системы водоснабжения населённых мест являются централизованными: каждая из них обеспечивает водой большую группу потребителей. 

В зависимости от назначения обслуживаемых объектов современные водопроводы подразделяются на коммунальные и производственные (промышленные или с.-х.). Наиболее крупные потребители воды — предприятия металлургической, химической, нефтеперерабатывающей промышленности, а также ТЭС. Некоторые мероприятия, связанные с использованием воды, по своей классификации не относятся к водоснабжению. Например, подача воды для полива с.-х. полей представляет собой специальную отрасль водного хозяйства — орошение, подача воды по турбинам ГЭС относится к гидроэнергетике.

Для целей водоснабжения используются природные источники воды: поверхностные — открытые водоёмы (реки, водохранилища, озёра, моря) и подземные (грунтовые и артезианские воды и родники). Для нужд населения наиболее пригодны подземные воды. Однако для снабжения водой больших населённых мест подземных источников часто оказывается недостаточно, а получение из них значительного количеств воды экономически невыгодно. Поэтому для водоснабжение крупных городов и промышленных объектов используют преимущественно поверхностные источники пресной воды. Для получения воды из природных источников, её очистки в соответствии с нуждами потребителей и для подачи к местам потребления служат следующие сооружения:

  • водоприёмные сооружения; 

  • насосные станции первого подъёма, подающие воду к местам её очистки; 

  • очистные сооружения; 

  • сборные резервуары чистой воды;

  • насосные станции второго или последующих подъёмов, подающие очищенную воду в город или на промышленные предприятия; 

  • водоводы и водопроводные сети, служащие для подачи воды потребителям. 

Общая схема водоснабжения может видоизменяться в зависимости от конкретных условий. Если, например, вода источника не требует очистки, из схемы выпадают очистные и связанные с ними сооружения. При расположении источника на более высоких отметках, чем снабжаемый водой объект, вода может быть подана самотёком, и поэтому нет необходимости в устройстве насосных станций. Расположение водонапорных башен и резервуаров зависит от рельефа местности. В некоторых системах используется несколько источников водоснабжения, что ведёт к увеличению числа основных сооружений. При большой разности отметок на территории объекта иногда устраивают так называемое зонное водоснабжение, т. е. отдельные сети для районов города, расположенных на разных отметках, с отдельными насосными станциями. Иногда сооружают повысительные насосные станции, забирающие воду из основной сети города и подающие её в возвышенные районы.

Водоприёмные сооружения имеют различное устройство в зависимости от вида источников водоснабжения и местных условий. Для приёма поверхностных вод используются речные, водохранилищные, озёрные, морские водоприёмники. Для приёма подземных вод в зависимости от глубины залегания водоносных пластов применяются трубчатые (буровые) колодцы, горизонтальные водосборы, представляющие собой дренажные трубы или галереи, укладываемые в пределах водоносного пласта. Родниковые воды собираются при помощи капотажных сооружений (каменных резервуаров, приёмных камер и др.), располагаемых в месте наиболее интенсивного выхода родниковой воды.

Вода поднимается из подземных источников в большинстве случаев центробежными насосами. Весьма эффективны погружные насосы, опускаемые под уровень воды в колодец вместе с электродвигателем, заключённым в водонепроницаемый кожух. При использовании артезианских (напорных) вод после сооружения колодца уровень воды в нём устанавливается над водоносным пластом. Иногда давление в пласте столь велико, что вода самоизливается из колодца на поверхность земли. Для городских водопроводов, использующих подземные воды, обычно сооружают группу колодцев. Вода из них поступает в сборный резервуар и оттуда подаётся потребителям насосной станцией. Шахтные колодцы применяют при относительно неглубоком залегании подземных вод. В зависимости от глубины шахтных колодцев подъём воды из них может быть осуществлен обычными или погружными насосами. В системах В. населённых мест водоприёмные сооружения всех типов включаются в зону санитарной охраны.

Насосные станции современных систем В. оборудуются, как правило, центробежными насосами с электрическим приводом, а также регулирующей, предохранительной и контрольно-измерительной аппаратурой. Многие насосные станции имеют телеуправление и полностью автоматизированы.

Очистные сооружения обрабатывают природную воду с целью придания ей качеств, соответствующих требованиям потребителей. Очищенная вода подаётся к объекту по водоводам и разводится по его территории водопроводной сетью. К уличной сети присоединяются домовые ответвления, по которым вода вводится в здания. Внутри зданий устраивается сеть внутреннего водопровода, подводящая воду к точкам её разбора через различные водоразборные устройства (краны). В благоустроенных жилых домах и в некоторых общественных зданиях устраиваются также системы, снабжающие потребителей горячей водой. В производственных зданиях вода подводится к различным технологическим агрегатам, машинам, аппаратам, котлам и т.д. Разбор воды осуществляется частично и из наружной (уличной) сети через водоразборные колонки (краны). Подача воды для тушения пожаров осуществляется из наружных пожарных гидрантов, располагаемых на уличной сети. Внутренние пожарные краны устанавливаются в общественных и производственных зданиях, а также в жилых домах выше 11 этажей.

Для промышленных предприятий (в определённых условиях) применяют так называемые оборотные системы водоснабжения, а также системы с последовательным использованием воды. Оборотные системы служат для предотвращения нерационального использования природных вод и их загрязнения. В таких системах воду после надлежащей обработки (охлаждения или осветления) снова подают потребителям. Для охлаждения воды в оборотных системах применяются градирни, бассейны брызгальные, охладительные пруды. При этом из источника подаётся вода только для восполнения её потерь при охлаждении и безвозвратных её расходов в производстве. Таким образом, количество воды, забираемой из источника, при оборотной системе значительно меньше, чем при обычной прямоточной системе. Это позволяет иногда использовать природный источник, который при прямоточной системе был бы недостаточным для данного потребителя. Системы с последовательным использованием воды применяют в тех случаях, когда вода, сбрасываемая одним производственным потребителем, может употребляться другим. Это также уменьшает количество воды, которое надо забирать из источника водоснабжения.

Вследствие значительного роста водопотребления в населённых местах (в результате роста числа жителей, а также при наличии всех видов благоустройства) и промышленности в некоторых районах местные природные источники оказываются недостаточными для удовлетворения потребностей в воде. В такие районы вода подаётся из удалённых источников. Так, одним из источников водоснабжения Москвы является р. Волга, из которой вода поступает по каналу на расстояние 128 км; в центральные районы Донбасса вода подводится каналом и водоводами на расстояние 130 км.

Санитарный надзор. Качество подаваемой населению воды (на всём пути её транспортирования от водопроводной станции до потребителя) подвергается строгому санитарному контролю. Санитарный надзор, осуществляемый районными и городскими санэпидстанциями, распространяется на все системы хозяйственно-питьевого В. населённых мест и другие системы, подающие воду питьевого качества. Органами Государственного санитарного надзора в СССР утверждено "Положение о проектировании зон санитарной охраны централизованного водоснабжения и водных источников", обязательное для всех организаций, проектирующих и строящих системы водоснабжения, и для всех водопроводных предприятий. На территории, входящей в зону санитарной охраны, устанавливается режим, обеспечивающий надёжную защиту источника водоснабжения от загрязнения и сохранение требуемых качеств воды. Проект зон санитарной охраны составляет неотъемлемую часть каждого проекта водоснабжения, без которой он не может быть утвержден.


  1. Системы подачи смазочно-охлаждающих жидкостей металлорежущих станков. Системы смазки.


Смазочной называется система, обеспечивающая подачу масла к трущимся деталям двигателя.

Система смазки двигателя внутреннего сгорания служит для уменьшения трения и изнашивания деталей двигателя, для охлаждения и коррозионной защиты трущихся деталей и удаления с их поверхностей продуктов изнашивания. В двигателях автомобилей применяется комбинированная система смазки различных типов (рисунок 1).

Классификация смазочных систем

Рисунок 1 – Типы смазочных систем, классифицированных по различным признакам.

Комбинированной называется система смазки, осуществляющая смазывание деталей двигателя под давлением и разбрызгиванием. Давление создается масляным насосом, а разбрызгивают масло коленчатый вал и другие быстровращающиеся детали двигателя.

Под давлением смазываются наиболее нагруженные трущиеся детали двигателей – коренные и шатунные подшипники коленчатого вала, опорные подшипники распределительного вала, подшипники вала привода масляного насоса и др.

Разбрызгиванием смазываются стенки цилиндров, поршни, поршневые кольца, поршневые пальцы, деталигазораспределительного механизма, его цепного или шестеренного привода и другие детали двигателей. В двигателях со смазочной системой без масляного радиатора охлаждение масла, которое нагревается в процессе работы, происходит в основном в масляном поддоне.

При наличии в смазочной системе масляного радиатора охлаждение масла осуществляется и в масляном поддоне, и в масляном радиаторе, которые включается в работу при длительном движении автомобиля с высокими скоростями и при эксплуатации автомобиля летом.

В смазочной системе с открытой вентиляцией картера двигателя картерные газы, состоящие из горючей смеси и продуктов сгорания, удаляются в окружающую среду.

При закрытой вентиляции картера двигателя картерные газы принудительно удаляются в цилиндры двигателя на догорание, что предотвращает попадание газов в салон кузова легкового автомобиля и уменьшает выброс ядовитых веществ в окружающую среду.

По классификации все СОТС по их агрегатному состоянию разделены на четыре типа: газообразные, жидкие, пластичные и твердые.

Газообразные СОТС. В качестве СОТС этого типа применяют нейтральные /азот, аргон, гелий/ и активные, кислородосодержащие /воздух, кислород, диоксид углерода/, газы. Активные газы не только играют роль охладителя, но и защищают поверхность трущихся металлов от изнашивания, образуя на них оксидные пленки.

В среде кислорода можно затачивать режущий инструмент из инструментальных сталей и твердых сплавов, точить и сверлить кислостойкие и жаропрочные сплавы, шлифовать специальные стали и сплавы. Однако применение газообразных СОТС не получило широкого распространения в практике.

Жидкие СОТС наиболее распространены. Их принято называть смазочно-охлаждающими жидкостями /СОЖ/. Они разделены на классы: масляные, водосмешиваемые /водные/, быстрорастворяющиеся и расплавы некоторых металлов.

Масляные СОЖ. Состоят из минерального масла, являющегося базовым, к которому могут быть добавлены антифрикционные, антиизносные и антизадирные присадки, ингибиторы коррозии, антиоксиданты, антипенные и антитуманные присадки.

Минеральное масло в масляных СОЖ занимает 60-95% /в процентах по массе/. Обычно это высокоочищенные нафтеновые или парафиновые масла. Иногда в качестве основы для масляных СОЖ используют смесь из нескольких /2-3/ минеральных масел. Используют также в качестве базы маловязкие экстракты селективной очистки, очищая их каталитическим гидрированием, что снижает их стоимость. При выборе базовых минеральных масел учитывают прежде всего их физико-химические свойства /вязкость, индекс вязкости, групповой углеродный состав/ и обусловленные ими смазочные, антиокислительные и другие характеристики, влияющие на процесс трения и износ инструмента.

Синтетические масла из-за их высокой стоимости используют иногда в виде добавок.

Антифрикционные присадки- это обычно технические растительные масла и жиры /рапсовое масло, свиной жир/, жирные кислоты и их эфиры, а также полимерные ненасыщенные жирные кислоты. Их содержание обычно составляет 5-25%. В связи с их дефицитностью ведутся работы по замене жировых продуктов естественной природы на синтетические.

Антиизносные присадки - уменьшают износ режущего инструмента при возрастании нагрузке. Из них в составе масляных СОЖ наиболее известны диалкилфосфиты, а также осерненные жиры и полимерные жирные кислоты. Концентрация противоизносных присадок в масляных СОЖ обычно 0.5-5%, она зависит от назначения продукта, а также состава других присадок.

Антизадирные присадки предотвращают схватывание и износ режущего инструмента при наиболее тяжелых температурных и механических нагрузках. Это чаще всего вещества, содержащие серу, хлор, фосфор. В зависимости от условий применения масляных СОЖ содержание в них серы составляет от 0,5-3% /сульфиды и полусульфиды/ до 3-20% /осерненные жиры/. Хлоросодержащие противозадирные присадки менее распространены. Самая распространенная из них - хлорированный парафин. Хлоросодержащие присадки в количестве 3-15% применяют при обработке высоколегированных сталей.

Ингибиторы коррозии предотвращают коррозионное воздействие масляных СОЖ на изготовляемые детали и детали станка вызывается продуктами окисления минеральных масел, присадками, а также продуктами их разложения. По склонности к коррозии обрабатываемые материалы различаются весьма широко, и это обстоятельство учитывают того или иного способа противокоррозионной защиты. В ряде случаев достаточно эффективными ингибиторами коррозии являются присадки, используемые для улучшения смазочных свойств СОЖ: полимерные ненасыщенные жирные кислоты, дисульфиды, аминофосфаты.

Антипенные присадки добавляют в масляные СОЖ для предотвращения пенообразования. Наибольшее распространение получили диметилселиконовые полимеры. Требуемые количества этих веществ 0.0005-0.001%.

Антитуманные присадки снижают образование и выделение масляного тумана /аэрозоля/ при работе с СОЖ на масляной основе. В качестве антитуманных присадок рекомендуется полиолефины, аттактический полипропилен. Эти присадки обычно вводят в количестве 0.5-3%. Масляные СОЖ обладают хорошими смазывающими свойствами, обеспечивают продолжительный срок службы режущего инструмента, предохраняют обрабатываемый металл и детали станков от коррозии.

Масла без присадок применяют при обработке магния, латуни, бронзы, меди и углеродистых сталей при легких режимах резания. Однако они мало эффективны при обработке труднообрабатываемых сталей и сплавов, особенно при тяжелых режимах резания.

Водосмешиваемые СОЖ. Такие СОЖ могут содержать эмульгаторы, нефтяные масла, воду, спирты, гликоли, ингибиторы коррозии, бактерициды, противоизносные, противозадирные и антипенные присадки, электролиты и другие органические и неорганические продукты. Эти СОЖ применяют в виде эмульсий или истинных водных растворов при абразивной и лезвийной обработке /легкие и средние режимы резания/ черных и цветных металлов. Преимуществами водосмешиваемых СОЖ является более высокая, чем у масляных СОЖ, охлаждающая способность, относительно низкая стоимость, пожаробезопасность и меньшая токсичность, недостатки- сравнительно невысокие смазывающие свойства, низкая эффективность на отдельных операциях и недостаточно высокая стабильность свойств во времени. Водосмешиваемые СОЖ разделены на четыре подкласса - эмульгирующиеся /эмульсолы/, полусинтетические, синтетические, растворы электролитов.

Эмульгируещиеся СОЖ /эмульсолы/ при смешивании с водой образуют эмульсии. В качестве основы эмульсолов используют средневязкие нефтяные масла нафтенового или смешанного типа, содержание которых в эмульсоле может достигать 85%. Применяют эмульсолыв виде 1-5%-ных эмульсий в воде.

Эмульгаторы являются поверхностно-активными веществами /ПАВ/и, кроме уменьшения поверхностного натяжения, они выполняют роль смазочных веществ и ингибиторов коррозии. В качестве эмульгаторов наибольшее распространение в составе эмульсолов получили анионоактивные ПАВ, а также их смеси: калиевые, натриевыми мыла жирных, смоляных и сульфокислот.

Полусинтетические СОЖ принципиально не отличаются от эмульсолов по компонентному составу, однако они существенно отличаются от них по концентрации компонентов. Основу полусинтетических СОЖ составляет вода /до 50%/ и эмульгаторы /до40%/.Обязательным компонентом является маловязкое /3-10 кв.мм/с при 50 град.С/ нефтяное масло. Полусинтетические СОЖ, как и эмульсолы, могут содержать биоциды, противоизносные и противозадирные присадки. Их используют в виде 1-10%-ных водных растворов. Синтетические СОЖ представляют собой смесь водорастворимых полимеров, поверхностно-активных веществ, ингибиторов коррозии, биоцидов, антипенных присадок и воды. В их состав для повышения смазывающих свойств вводят противоизносные и противозадирные присадки. Синтетические СОЖ могут быть приготовлены в виде порошков. Их применяют в виде 1-10% водных растворов. По универсальности, продолжительности сохранения эксплуатационных свойств синтетических СОЖ, как правило, превосходят эмульсии.

Быстроиспаряющиеся СОЖ. Основу таких СОТС составляют быстроиспаряющиеся галогенпроизводные углеродов. Испаряясь, они охлаждают режущий инструмент и обрабатываемое изделие и оставляют на трущихся поверхностях тонкие смазывающие слои присадок, входящих в их состав. Быстроиспаряющиеся СОТС применяют при обработке резанием труднообрабатываемых сплавов и пакетов из пластин разнородных материалов на операциях сверления, развертывания, нарезания резьбы и протягивания.

Смазывающее действие СОЖ. Смазывающее действие СОЖ проявляется преимущественно в зоне контакта резца и стружки, а также контакта резца и заготовки. Оно обусловлено способностью СОЖ вступать в физическое, химическое и физико-химическое взаимодействие с активированными поверхностями контактной зоны и образовывать на них гидродинамические, физические /адсорбционные/ и химические смазочные пленки. В зависимости от условий резанья такие пленки могут образовываться порознь или одновременно. Физические и химические смазочные пленки принято называть граничными. Их толщина колеблется от нескольких десятков до нескольких сотен ангстрем. Сопротивление сдвигу у них выше, чем у гидродинамических пленок. В случае образования при резании металлов гидродинамических смазочных пленок /например, обработка меди при низких скоростях/ трущиеся поверхности разделены слоем СОЖ в несколько микрон и более. Здесь вязкость СОЖ имеет преобладающее значение и должна быть оптимальной. Иногда вязкость может быть компенсирована серо-, хлор- или фосфорсодержащими присадками.

Адсорбционные смазочные пленки образуются при малых давлениях и низких температурах. Поверхностно-активные молекулы, содержащиеся в СОЖ, адсорбируются слоями на контактирующих металлических поверхностях. Толщина пленки может включать от нескольких до 500 молекулярных слоев. Такая пленка выдерживает большие нормальные нагрузки, однако, слабо сопротивляется действию касательных напряжений. Чем выше устойчивость граничной пленки к действию нормальных и чем ниже к действию касательных напряжений, тем меньше коэффициент трения и тем выше смазывающая способность среды. Наиболее прочно адсорбируются на поверхности металла молекулы олеиновой кислоты, некоторых растительных масел и синтетических ПАВ. Поэтому они широко используются в композициях масляных СОЖ. Присутствие влаги и кислорода ускоряет процессы хемосорбции. Существенную роль при образовании пленок играет температура, при ее повышении рост пленок уменьшается, а скорость образования химических пленок увеличивается. При операциях с высоким выделением тепла более эффективны химические смазывающие пленки, образуемые на контактирующих поверхностях за счет противоизносных и противозадирных присадок. В зоне контакта происходит распад молекул присадок с образованием атомов и радикалов, которые вступают в химическую реакцию с металлом, образуя смазочный слой.

Многими исследованиями установлено положительное влияние смазывающего действия СОЖ на процессы, предотвращающие налипание и наростообразование на лезвии инструмента, изменяющие форму стружки и длину контакта стружки с передней поверхностью инструмента, в результате чего уменьшаются теплообразование, усилия резания и шероховатость обрабатываемой поверхности. Смазывающее действие СОЖ зависит от операции и режима резания, свойств обрабатываемого и инструментального материалов и определяется в основном скоростями образования и изнашивания граничных смазочных пленок, а также их составом, строением и свойствами.

Охлаждающее действие СОЖ. При резании основная часть механической энергии преобразуется в теплоту. Охлаждающее действие СОЖ основано на законах теплообмена. Нагретые до высоких температур режущий инструмент, заготовка и стружка передают путем конвективного теплообмена смазочно-охлаждающей среды часть тепла. Кроме того, теплоотвод при резании может осуществляться вследствие теплопередачи излучением, испарением среды и протекания химических реакций, происходящих при поглощении тепловой энергии. Теплоотводы, связанные с излучением, испарением и химическими реакциями, невелики. Поэтому при оценке охлаждающего действия СОЖ ограничиваются рассмотрением конвективного теплообмена, который зависит, главным образом, от теплофизических свойств и гидродинамических условий подачи жидкости. На теплообмен наиболее сильно влияют вязкость, теплопроводность, теплоемкость, плотность и смачиваемость СОЖ, а также разность температур охлаждаемой поверхности и потока жидкости.

Однако охлаждающее действие СОЖ может иметь и отрицательные последствия. Так, например, при фрезеровании /прерывистое резание/ твердосплавным инструментом с высокой скоростью резания, применение СОЖ приводит к значительным колебаниям температуры режущей части фрезы и уменьшению ее стойкости. Кроме того, интенсивное охлаждение поверхности обрабатываемого изделия приводит, как правило, к возникновению в металле внутренних напряжений растяжения, что ухудшает эксплутационные свойства изделия.

Диспергирующее действие СОЖ. Под этим действием СОЖ подразумевается их способность облегчать деформацию, разрушение и дробление /диспергирование/ металла, т.е оказывать действие, способствующее образованию новой поверхности. В присутствии ПАВ облегчается зарождение и распространение микротрещин в металле. Полярные молекулы продвигаются по стенкам образующихся трещин до тех пор, пока их размеры не станут больше размеров трещин. В результате в самых узких местах микротрещин возникают дополнительные расклинивающие давления, вызываемые адсорбционными слоями, что приводит к "охрупчиванию" металла и его разрушению. Хрупкость металла может повышаться за счет диффузии атомов и ионов СОЖ в деформируемые слои. В результате этого процесса металл в зоне деформации быстрее достигает предельной прочности и разрушается при меньших затратах энергии.


  1. Гидравлические системы охлаждения и нагревания


Гидравлические системы охлаждения и нагревания получили применение в качестве устройств для отвода теплоты от различных машин или объектов (например, от двигателей внутреннего сгорания), а также для подвода теплоты к ним (например, к жилым помещениям). Принцип работы таких гидросистем заключается в следующем жидкость получает теплоту, затем переносит ее по трубопроводам на определенное расстояние и наконец отдает ее. В системах нагревания жидкость получает теплоту от нагревателя, а отдает ее нагреваемому объекту. В системах охлаждения жидкость получает теплоту от охлаждаемого объекта, а передает ее теплообменнику-охладителю. Следует отметить, что в рассматриваемых системах имеет место перенос теплоты жидкостью, но отсутствует преобразование теплоты в работу (или работы в теплоту), как в тепловых машинах  или холодильных установках.

Гидравлические системы нагревания и охлаждения подразделяются на проточные и циркуляционные. В проточных гидросистемах жидкость после совершения рабочего цикла сбрасывается, а в циркуляционных она циркулирует по замкнутому контуру. Проточные системы получают все меньшее применение в технике, так как имеют два существенных недостатка. Первым недостатком является необходимость технической очистки жидкости перед началом рабочего цикла, а вторым —экологические проблемы  из-за ее сброса.

Термосифонная циркуляция жидкости получила ограниченное применение в системах нагревания. Еще реже она используется в системах охлаждения. Значительно чаще применяются насосные гидравлические системы, особенно в системах охлаждения. Наиболее распространенными из таких устройств являются системы охлаждения тепловых двигателей. 


























Раздел 2 Пневматические системы

Тема 2.1 Регулирование скорости движения рабочих органов


1. Способы гидравлического регулирования скорости рабочих органов. Сущность, достоинство и недостатки схем объемного регулирования. Сущность, схемы, достоинства и недостатки дроссельного регулирования.


Очень часто во многих рабочих процессах необходимо изменять скорости движения выходных звеньев гидродвигателей. Изменение скорости может осуществляться разными способами. Одним из них является дроссельное управление.

Дроссельный способ регулирования скорости гидропривода с нерегулируемым насосом основан на том, что часть жидкости, подаваемой насосом, отводится в сливную гидролинию и не совершает полезной работы. Простейшим регулятором скорости является регулируемый дроссель, который устанавливается в системе либо последовательно с гидродвигателем, либо в гидролинии управления параллельно гидродвигателю.

При параллельном включении дросселя (рис.1, а) рабочая жидкость, подаваемая насосом, разделяется на два потока. один поток проходит через гидродвигатель, другой - через регулируемый дроссель.

Скорость поршня для этой схемы определится выражением

http://gidravl.narod.ru/b9a2.gif

где S - эффективная площадь поршня; QН - подача насоса; Sдр - площадь проходного сечения дросселя; μ - коэффициент расхода; FН - нагрузка на шток поршня; ρ - плотность жидкости.

В такой системе при постоянной внешней нагрузке FН = const, скорость движения будет изменяться от υ minдо υmax при изменении Sдр от Sдр max до Sдр =0. Поскольку в рассматриваемом гидроприводе давление на выходе насоса зависит от нагрузки PH = FH /S и не является постоянной величиной, такую систему называют системой с переменным давлением. Клапан, установленный в системе, является предохранительным. Эта система позволяет регулировать скорость только в том случае, если направление действия нагрузки противоположно направлению движения выходного звена гидропривода (отрицательная нагрузка).

http://gidravl.narod.ru/b9a3.gif

Рис.1 Схемы гидроприводов с дроссельным управлением скоростью:
а - с параллельным включением дросселя; б - с дросселем на входе 
гидродвигателя; в - с дросселем на выходе гидродвигателя; 
г - с четырехлинейным дросселирующим распределителем

Последовательное включение дросселя осуществляется на входе в гидродвигатель, на выходе гидродвигателя, на входе и выходе гидродвигателя. При этом во всех трех случаях система регулирования скорости строится на принципе поддержания постоянного значения давления PH на выходе нерегулируемого насоса за счет слива части рабочей жидкости через переливной клапан. Поэтому система дроссельного регулирования с последовательным включением дросселей получила название система с постоянным давлением.

Гидропривод с дросселем на входе (рис.1, б) допускает регулирование скорости только при отрицательной нагрузке. При положительной нагрузке, направленной по движению поршня, может произойти разрыв сплошности потока рабочей жидкости, особенно при зарытом дросселе, когда поршень продолжает движение под действием сил инерции.

Скорость движения поршня в таком гидроприводе определяется выражением

http://gidravl.narod.ru/b9a4.gif

Гидропривод с дросселем на выходе (рис.9.2, в) допускает регулирование скорости гидродвигателя при знакопеременной нагрузке, так как при любом направлении действия силы FН изменению скорости препятствует сопротивление дросселя, через который рабочая жидкость поступает из полости гидродвигателя на слив. Для такой схемы включения дросселя скорость движения выходного звена определится

http://gidravl.narod.ru/b9a5.gif

При установке дросселя на выходе в случаях больших положительных нагрузок давление перед дросселем может превысить допустимый уровень. Поэтому для предохранения системы параллельно дросселю включают предохранительный клапан.

Недостатком дроссельного регулирования является то, что при регулировании часть энергии тратится на преодоление сопротивления в дросселе и предохранительном клапане, вследствие чего повышается температура жидкости, а это отрицательно сказывается на работе гидросистемы. При дроссельном регулировании снижается КПД гидропривода, и отсутствует постоянство скорости движения выходного звена гидродвигателя при переменной нагрузке.

Для изменения скорости рабочих органов применяют системы, у которых вся жидкость от насосов поступает к гидродвигателю, а регулирование его скорости достигается изменением рабочего объема насоса или гидродвигателя.

Ступенчатой регулирование, являясь разновидностью объемного, обычно осуществляется или путем подключения в систему различных по производительности насосов (различных по расходу гидродвигателей).

Изменение скорости перемещения поршня гидроцилиндра (рис.2) осуществляется в результате соединения одного или нескольких насосов 1 с линией слива (при помощи кранов 2). Обратные клапаны 3 в системе отключают разгруженный насос от линии высокого давления.

http://gidravl.narod.ru/b9a6.gif

Рис.2. Объемное ступенчатое регулирование

Подключение в гидросистему трех насосов разной производительности Q1Q2 и Q3 позволяет получать до семи значений скоростей движения выходного звена гидродвигателя.

Плавное изменение скорости движения выходного звена гидропривода реализуется за счет изменения рабочего объема либо насоса, либо двигателя, либо за счет изменения рабочего объема обеих машин.

Регулирование путем изменения рабочего объема насоса может быть использовано в гидроприводах поступательного, поворотного или вращательного движений.

На рис.3, а приведена принципиальная схема гидропривода поступательного движения с замкнутой циркуляцией, в котором регулирование скорости движения штока гидроцилиндра 1 осуществляется за счет изменения подачи насоса 4. Выражение для скорости движения штока при FH /S < Pк записывается в виде

http://gidravl.narod.ru/b9a7.gif

где qН - максимальный рабочий объем насоса; nН - частота вращения насоса; S - эффективная площадь поршня гидроцилиндра; rс - коэффициент объемных потерь системы, определяемый изменением объемного КПД насоса и гидродвигателя в функции давления (нагрузки); FН - нагрузка на шток поршня; Pк - давление, на которое отрегулированы предохранительные клапаны; eН - параметр регулирования насоса, равный отношению текущего значения рабочего объема к максимальному рабочему объему.

Изменение направления движения выходного звена гидропривода осуществляется благодаря реверсированию потока рабочей жидкости, подаваемой насосом (реверс подачи насоса). При этом необходимо вначале уменьшить подачу насоса до нуля, а затем увеличить ее, но в противоположном направлении. Напорная и сливная гидролинии меняются местами. Для компенсации утечек в гидроприводе с замкнутой циркуляцией, а также для исключения возможности кавитации на входе в насос используется вспомогательный насос 3, осуществляющий подачу рабочей жидкости в систему гидропривода через обратные клапаны 5.

При таком способе регулирования скорости усилие, развиваемое выходным звеном гидропривода, не зависит от скорости движения. В этом случае диапазон регулирования определяется объемным КПД гидропривода, а также максимальной подачей насоса, определяемый его рабочим объемом.

На рис.3, б представлена зависимость скорости движения и мощности на выходном звене гидропривода от параметра регулирования при постоянной нагрузке. Такая система объемного регулирования скорости получила наибольшее распространение в гидроприводах дорожно-строительных и подъемно-транспортных машин.

http://gidravl.narod.ru/b9a8.gif

Рис.3. Гидропривод с регулируемым насосом:

а - принципиальная схема; б - зависимость скорости и давления 

от параметра регулирования; 1 - гидроцилиндр; 2 - предохранительный клапан; 3 - вспомогательный насос; 4 - регулируемый насос; 5 - обратный клапан

Регулирование путем изменения рабочего объема гидродвигателя применяется только в гидроприводах вращательного движения, где в качестве гидродвигателя используется регулируемый гидромотор (рис.9.5, а). В этом случае регулирование происходит при постоянной мощности, так как уменьшение рабочего объема гидродвигателя увеличивает скорость выходного звена гидропривода и соответственно уменьшает крутящий момент, развиваемый на выходном звене. Частота вращения вала гидромотора nМ при P1 < Pкопределяется соотношением

http://gidravl.narod.ru/b9a9.gif

где qМ max - максимальный рабочий объем гидромотора; eМ - параметр регулирования гидромотора; P1 - давление в напорной гидролинии; rс - коэффициент объемных потерь (утечек) в системе.

Из выражения следует, что при eМ → 0 nМ возрастает до бесконечности. Практически существует минимальное значение e'M, при котором момент, развиваемый гидромотором, становится равным моменту внутреннего трения, и гидромотор тормозится даже при моменте нагрузки, равном нулю (P1 = 0).

На рис.4, б представлена зависимость частоты вращения и развиваемого момента на валу гидромотора от параметра регулирования при постоянном давлении P1.

http://gidravl.narod.ru/b9a10.gif

Рис.4. Гидропривод с регулируемым гидромотором:

а - принципиальная схема; б - зависимость скорости и давления от параметра регулирования

Регулирование путем изменения рабочих объемов насоса и гидродвигателя используют только в гидроприводах вращательного движения с регулируемым гидромотором. Скорость выходного звена рационально регулировать следующим образом:

1) запустить приводной двигатель при eН = 0;

2) для страгивания и разгона выходного звена привода изменить eН от 0 до 1 при eМ = 1;

3) дальнейшее увеличение скорости осуществлять путем изменения eМ от 1 до e'M при eН = 1.

Уменьшение скорости происходит в обратном порядке. Такой способ позволяет получить большой диапазон регулирования, он обладает всеми достоинствами и недостатками выше рассмотренных схем объемного управления.

http://gidravl.narod.ru/b9a11.gif

Рис.5. Гидропривод с регулируемым насосом и гидромотором

На рис.5 представлены принципиальная схема (а) и характеристика (б) гидропривода с замкнутой циркуляцией и регулируемым насосом и гидромотором.

Комбинированное регулирование или объемно-дроссельное регулирование скорости движения выходного звена гидродвигателя заключается в том, что в систему дроссельного регулирования с постоянным давлением устанавливается регулируемый насос и давление поддерживается постоянным не за сет слива части рабочей жидкости через переливной клапан, а за счет изменения подачи насоса. В такой системе регулирования отсутствуют потери в переливном клапане.

На рис.6 представлена схема гидропривода поступательного движения с объемно-дроссельным управлением скоростью. Постоянное давление PН поддерживается путем совместной работы регулятора 1 и аксиально-поршневого регулируемого насоса 2. Изменение давления PН приводит к изменению положения поршня регулятора 1 и связанного с ним наклонного диска насоса 2. Изменение положения диска приводит к изменению подачи насоса Q.

http://gidravl.narod.ru/b9a12.gif

Рис.6. Гидропривод с объемно-дроссельным управлением
скоростью выходного звена гидродвигателя

Поэтому в такой системе подача насоса всегда равна расходу через гидродвигатель и дроссель при PН = const.
















Тема 2.2. Вспомогательные элементы гидроприводов


  1. Трубопроводы, их соединения и монтаж

Сегодня для монтажа трубопроводов используются трубы из чугуна, стали, полимеров, цветного металла, керамики и пр. Среда, которую транспортируют трубопроводы из этих материалов, может быть самотечной или напорной, нейтральной или агрессивной.

Схема соединения хомутом стальных труб.

Схема соединения хомутом стальных труб.

  1. Трубы из стали отличает надежность и прочность. В многоэтажных домах системы водоснабжения и отопления должны монтироваться из стали. Стальные неоцинкованные трубы неустойчивы к ржавлению. Монтируют их тремя способами: с помощью сварного, муфтового соединения и с использованием пресс-фитингов. Оцинкованные аналоги сваркой не соединяют, так как при этом разрушается защитный слой. Используются стальные трубопроводы, изолированные пенополиуретаном (ППУ), но в системах многоквартирных домов они не проводятся.

  2. Медные трубы отличаются надежностью и долговечностью, но их применение ограничивается из-за высокой стоимости. Их соединение производится с использованием резьбовых фитингов, пресс-фитингов и при помощи капиллярной пайки. Медь обладает повышенной теплоотдачей, поэтому системы из этого материала требуют хорошей теплоизоляции.

  3. Пластиковые трубы легко монтируются, удобны в эксплуатации, не подвержены коррозии, но их применение ограничивается предельными температурой (95°С) и давлением (10 атм). Соединяются они методом пайки и с использованием компрессионных фитингов.

  4. Изделия из металлопластика демонстрируют прогресс в отрасли трубных коммуникаций. По прочностным характеристикам они не уступают стальным аналогам (выдерживают такое же давление). По простоте монтажа, гибкости и коррозионной стойкости они приближены к пластиковым. Металлопластиковые трубы используются в различных видах трубопроводов во внутренних сетях городских квартир и загородных домов. Их минусом является недостаточная надежность при прокладке на открытых местах. Поэтому использование металлопластиковых труб для монтажа централизованных стояков возможно только внутри помещений. Соединение элементов осуществляется с применением обжимных латунных фитингов компрессионного действия.

  5. Гибкая сантехническая подводка представляет собой шланг в оплетке из металла. Она выдерживает достаточное для водопровода давление, но неустойчива к механическому воздействию. Обычно гибкий трубопровод применяется внутри помещений для подводки к водяной системе раковин, нагревателей, стиральных машин и т. д. Монтаж производится с помощью резьбовых соединений.

Схема соединения пластиковых труб.

Схема соединения пластиковых труб.

Для монтажа технических трубопроводов основным методом неразборного соединения является сварка. С ее помощью производится монтаж не только металлических труб, но и изделий из пластика, стекла. По методу воздействия эта технология монтажа разделяется на сварку плавлением и сварку давлением. По типу применяемых сварочных аппаратов сварка делится на ручную, полуавтоматическую и автоматическую.

Сварочных технологий существует множество, чаще всего практикуется электродуговой метод, использующий переменный или постоянный ток. Чаще сварка производится оборудованием, питающимся от переменного тока. Оно дешевле других по стоимости и обслуживанию, расходует меньше электроэнергии.

При монтаже трубопроводов сварка производится встык, внахлест, с образованием угловых соединений, с привариванием отводов, штуцеров и т. д. Стыковое соединение труб может быть продольным и поперечным. Швы могут выполняться в одно- и двустороннем варианте. Второй вариант применяется для трубопроводов большого диаметра (более 500 мм).

Схема устройства муфты.

Схема устройства муфты.

Раструбное нахлестное сварочное соединение характерно для монтажа пластиковых труб и изделий из цветного металла. В раструб также производится сварка труб высокого давления во избежание образования внутренних наплывов металла, которые создают сопротивление движению транспортируемого вещества. Особенно это относится к трубопроводам малого диаметра (Ø10-32 мм). Сваркой осуществляется и стыковка труб с квадратным сечением. Но чаще они монтируются не для проводки трубопроводов, а для сопряжения несущих конструкций и сборки мебельных каркасов.

Сварка неразъемных соединений пластиковых труб происходит на основе взаимной диффузии стыкуемых элементов. В ходе процесса между соединяемыми частями пропадает граница разделения. Шов становится единым целым с материалом трубы.

При диффузионной сварке путем нагрева стыкуемых поверхностей пластик переходит в вязкое состояние, после чего детали соединяются под небольшим давлением. Сварка пластиковых элементов трубопроводов производится инструментом или нагретым газом, используется также присадочный материал

Схема соединения пластиковых и металлических труб

Схема соединения пластиковых и металлических труб

При монтаже трубопроводов не всегда существует возможность или необходимость выполнять соединение труб сваркой. Способов обойтись при этом без сварочных работ довольно много. Один из них – применение резьбовых соединений.

На стальные трубы резьба нарезается на станке или с помощью ручного резьбореза (плашки). На тонкостенные трубы она наносится накаткой. При условии соблюдения технологии нарезания резьбы такое соединение может обеспечить конструкции достаточную герметичность и прочность.

Преимущества соединений на резьбе таковы:

  • монтаж не требует энергозатратного оборудования;

  • соединения удобны в сборке в сложных условиях и существует возможность их демонтажа при необходимости проведения ремонта;

  • узел несложно собрать вновь при помощи простого инструмента.

Основными параметрами резьбы являются:

Схема соединения медных труб.

Схема соединения медных труб.

  • направление – резьба может быть левой и правой;

  • шаг – расстояние между соседними точками профиля параллельно оси резьбы;

  • число заходов – двухзаходная резьба ускоряет процесс монтажа;

  • глубина нарезки – расстояние от основания витка до его вершины;

  • наружный диаметр – диаметр цилиндра, описанного по вершинам наружной резьбы или по впадинам внутренней;

  • внутренний диаметр – диаметр цилиндра, образуемого вершинами внутренней резьбы или впадинами наружной.

Уплотнение резьбового соединения производится с помощью прокладки из различных материалов (при использовании накидной гайки), льна, ленты ФУМ. Достоинством соединения с накидной гайкой является отсутствие контакта резьбы с транспортируемой средой. Стык всегда можно легко разобрать, а дешевая прокладка – единственный расходный элемент соединения.

При температуре транспортируемой среды до 105°С резьба может уплотняться льняной прядью или лентой ФУМ. Лен пропитывается белилами, свинцовым суриком, замешанным на олифе или специальными уплотняющими герметиками-пастами. Для уплотнения резьбовых сопряжений при температуре свыше 105°С применяется асбестовая прядь, соединенная с льняной прядью и пропитанная графитом, смешанным с олифой.

Резьбовые конструкции чаще используются для внутренних трубопроводов тепло- и водоснабжения, санитарно- технической сети. В технологических сетях резьбовые соединения служат, как правило, для монтажа контрольно-измерительных приборов и арматуры на резьбе.


2.Устройства для очистки масла. Типы фильтров, их конструкция, принцип действия.



Фильтры предназначены для предохранения масла от засорения и его очистки от посторонних твердых примесей. Обычно в резервуарах сброса масла устанавливают два фильтра: воздушный и масляный.

Воздушный фильтр предохраняет масло от попадания в него пыли из атмосферного воздуха, а масляный - адсорбирует на своей поверхности пылевидные частицы, принесенные маслом из системы. Масляный фильтр, как правило, ставится на напорной линии системы, так как наличие фильтра на всасывающей линии создает дополнительное разряжение на входе в насос, что может вызвать кавитацию.

Системы гидропередач имеют большое количество устройств, в которых каналы для прохода жидкости (щели, зазоры) имеют малые размеры. В узких щелях происходит облитерация, т.е. задержка молекул гидравлической жидкости на стенках канала, которая приводит к увеличению гидравлического сопротивления и уменьшению скорости течения. Если в жидкости имеются посторонние примеси, то такие каналы чаще засоряются, причем твердые частицы, попадая вместе с маслом в узкие пространства между перемещающимися друг относительно друга поверхностями (например в зазор между штоком и стенками цилиндра, который составляет 4¸6 мкм), вызывают абразивный износ поверхностей, что приводит к ухудшению работы системы.

Частицы, загрязняющие рабочую жидкость, обычно имеют размер не более 10 мкм, поэтому они двигаются вместе с потоком не оседая. Для их удаления используют фильтры.

Воздушный фильтр представляет собой сетку, свернутую в цилиндр, с числом отверстий, приходящихся на 1 см2 равным 1000. Поверхность сетки покрыта пленкой масла и пылевидные частицы оседают на ней. Как воздушный, так и масляный фильтры требуют периодической очистки или смены фильтрующего элемента. Время работы фильтра зависит от запыленности атмосферы, в которой работает машина.

Кроме этого, чистка фильтров осуществляется сезонно: при переходе с зимнего на летний сезон и наоборот.

Материалом для фильтра служит бумага, прессованная и штампованная в виде колец, пластин и др., никелевая фольга, проволока из монель-металла, из которой готовится сетчатая ткань различных профилей, латунь и ряд других материалов.

В последнее время начинают широко применяться металлокерамические фильтры, получаемые путем спекания шариков из соответствующих материалов. Выбор материала и крупности шариков зависит от химических свойств жидкости, предполагаемого характера загрязнений, температуры и давления. Широкое применение имеет бронза, углеродистая и нержавеющая стали, титан, карбиды титана, вольфрам. Такие фильтры способны отфильтровать частицы крупностью до 0,5 мкм. Максимальный диаметр частиц загрязнителя, которые могут пройти через такой зернистый фильтр, определяется по формуле:

d = 0.155D

где D - крупность шариков фильтра.

Кроме указанных материалов в фильтрах тонкой очистки применяют фетр и металлическую сетку саржевого плетения. Из-за малости размеров пор фильтрующих элементов и, следовательно, малых значений чисел Рейнольдса для течений в этих порах, зависимость перепада давлений на фильтре тонкой очистки обычно является линейной, а коэффициент сопротивления такого фильтра обратно пропорционален числу Рейнольдса.

Надежность работы фильтров является одним из факторов, определяющих надежность работы гидравлических систем.


3.Способы подключения фильтров в гидросистему.


При выборе схемы установки необходимо учесть многие факторы: 

- источник загрязнений;

- чувствительность элементов гидропривода к загрязнениям;

- режим работы машины;

- рабочее давление;

- регулярность и нерегулярность обслуживания;

- тип рабочей жидкости;

- условия эксплуатации.

Установка возможна на всасывающей, напорной и сливной гидролиниях (рис.1), а также в ответвлениях.

http://gidravl.narod.ru/b7a10.gif

Рис.1. Схемы включения фильтров:
а - на всасывающей гидролинии; б - в напорной гидролинии; 
в - в сливной гидролинии

Установка фильтров на всасывающей гидролинии обеспечивает защиту всех элементов гидросистемы. Недостатки: ухудшатся всасывающая способность насосов и возможно появление кавитации. Дополнительно устанавливают индикатор, выключающий привод насоса совместно с обратным клапаном, включающимся в работу при недопустимом засорении (рис.1, а).

Установка фильтров в напорной гидролинии обеспечивает защиту всех элементов, кроме насоса. Засорение может вызвать разрушение фильтрующих элементов. Для этого устанавливают предохранительные клапаны (рис.1, б).

Установка фильтров на сливной гидролинии наиболее распространена, так как фильтры не испытывают высокого давления, не создают дополнительного сопротивления на всасывающей и напорной гидролинии и задерживают все механические примеси, содержащиеся в рабочей жидкости, возвращающейся в гидробак. Недостаток такой схемы заключается в создании подпора в сливной гидролинии, что не всегда является желательным.

Установка на ответвлениях не обеспечивает полной защиты, но уменьшает общую загрязненность рабочей жидкости. Монтируется как дополнительная очистка к основной очистке. Наиболее выгодна схема установки фильтра тонкой очистки в ответвлениях от сливной гидролинии.
















Тема 2.3: Структура и составные элементы пневмопривода.


1.Устройство и принцип действия поршневого компрессора.

Поршневой компрессор является одним из первых видов компрессорных установок, который широко используется и на сегодняшний день. Его высокие рабочие показатели и возможность интенсивной эксплуатации при больших объемах производительности позволяют использовать поршневой компрессор в промышленном назначении и на небольших производствах.

Устройство и принцип работы поршневых компрессоров зависит от типа данных установок, которые могут быть различны:

- по количеству в оборудовании цилиндров – бывают одно-, двух- и многоцилиндровые;

- по виду расположения в установке цилиндров – W, V-образные, а также рядные;

- в зависимости от количества ступеней для сжатия воздуха в поршневом компрессорном оборудовании – многоступенчатые, одноступенчатые.

Однако, вне зависимости от своего типа, установки поршневые имеют базовое оснащение, характерное всем типам данных установок.

Устройство поршневых компрессоров является наиболее простым в одноцилиндровых установках. В состав данного оборудования входят такие элементы, как поршень, цилиндр, два клапана - для нагнетания и всасывания воздуха, которые находятся в крышке цилиндра. При работе установки, шатун, соединенный с вращающимся коленчатым валом, передает на поршень ограниченные движения по камере сжатия. В данном процессе происходит увеличение объема, находящегося между клапанами и нижней части поршня, что приводит к разрежению. Превышая сопротивление пружины, которая закрывает клапан, выполняющий всасывающие функции, атмосферный воздух открывает его и поступает в цилиндр по всасывающему патрубку.

Поршневые компрессоры одноцилиндровые

Возвратное действие поршня приводит к сжиманию воздуха и возрастанию его давления. Нагнетательный клапан, который также удерживается пружиной, открывается потоком воздуха, находящегося под высоким давлением, после чего сжатый воздух попадает в нагнетательный патрубок. При этом питание оборудование может осуществляться от электродвигателя или же автономного двигателя, который может быть дизельным или бензиновым.

При этом принцип работы поршневых компрессоров позволяет получить максимально эффективную работу оборудования. Однако есть и один незначительный минус – сжатый воздух, подаваемый данной установкой, поступает в виде импульсов, а не ровным потоком. Для выравнивания давления сжатого воздуха и его пульсации, поршневые компрессоры используются преимущественно с ресиверами, позволяющими исключить возможность перебоев, как в давлении подаваемого воздуха, так и в работе всего оборудования.

Также необходимо рассмотреть особенности конструкции и действия двухцилиндровых установок поршневого типа. В данном случае установка является одноступенчатой и оснащенной двумя одинаковыми по размеру цилиндрами. Работа цилиндров происходит в противофазе, в результате чего они всасывают воздух поочередно. Далее воздух сжимается до максимального уровня давления и вытесняется в нагнетающую часть оборудования.

Поршневые компрессоры двухцилиндровые

В случае с двухступенчатыми двухцилиндровыми установками, оборудование оснащено цилиндрами различных размеров. Сжатие воздуха до определенного значения происходит в цилиндре первой ступени. Далее он переходит в межступенчатый охладитель, где охлаждается до необходимого уровня. Затем, попадая в цилиндр второй ступени, воздух дожимается, что позволяет получить максимально высокий уровень давления воздуха.

Поршневые компрессоры двухступенчатые

В качестве межступенчатого охладителя используется медная трубка, обеспечивающая охлаждение находящегося под давлением воздуха на промежутке между цилиндрами двух ступеней. Охлаждение воздуха позволяет оптимизировать процесс его сжатия и значительно повысить КПД всей установки. При этом специальным образом подбираются размеры обоих цилиндров – так, чтобы одинаковая работа проводилась на всех ступенях сжатия воздуха.

Двухступенчатые поршневые компрессоры, устройство которых позволяет получить более эффективный уровень работы оборудования, в сравнении с одноступенчатыми установками, имеют большое количество важных преимуществ. В первую очередь – это затрачивание минимального количества энергии при одинаковой мощности двигателя. Так при одноступенчатом сжатии воздуха требуется большее количество энергии, чем для сжатия этого же объема воздуха двухступенчатым оборудованием.

Кроме того, температура в цилиндрах двухступенчатых установок имеет значительно более низкий показатель, чем в компрессорах одноступенчатого класса. Низкая температура обеспечивает надежность и эффективность работы всего оборудования, а также повышает ресурс поршневой группы. При этом двухступенчатые установки имеют производительность на 20% выше, нежели компрессоры других типов.

Особенности конструкции и принцип действия компрессоров поршневого типа отличаются своей сравнительной простотой в сочетании с высокой эффективностью работы оборудования, его практичностью и длительным сроком эксплуатации при интенсивном использовании. Эти преимущества сделали установки данного типа одними из наиболее популярных, как в быту, так в полупромышленном и промышленном использовании.



2.Теоретический и действительный процесс сжатия в компрессоре



Теоретический процесс многоступенчатого компрессора состоит из нескольких последовательно происходящих теоретических процессов одноступенчатого сжатия. При этом принимаем следующие допущения:

1. Отсутствует сопротивление движению газа в межступенчатых коммуникациях, и давление нагнетания предыдущей ступени равняется давлению всасывания последующей

                               Р2(i-1) = Р1i

2.     Процесс сжатия в каждой ступени политропический, при этом показатели политроп во всех ступенях равны.

3.     В межступенчатых холодильниках газ охлаждается до температуры всасывания его в первую ступень.

4.     Протекание газа через неплотности отсутствует.

5.     Трение в механизме движения отсутствует.

Поскольку при теоретическом процессе отсутствуют утечки, то массовое количество газа, сжимаемое в каждой ступени, будет одинаково.

Минутная производительность компрессора Vm по всасыванию равна производительности первой ступени/

Vm = n0VhI,

где  VhI - объем, описываемый поршнем ступени за один ход.

Рассмотрим теоретические диаграммы процессов сжатия газа в одноступенчатом и трехступенчатом компрессорах при равных производитеностяз машин, начального и конечного давлений и показателей политроп сжатия n(1< n < k)/

 

Лекция №11Теоретический процесс многоступенчатого компрессор

Кривая 1-а – изотерма, уравнение ее:

PV = GRT1,     PV = mRT1.

где Т1 – температура газа, всасываемого в первую ступень.

Кривые 1-2, 7-8, 10-11 – политропы с показателем n/

Площадь диаграммы, ограниченная линиями 1-а-3-4-1, равна работе сжатия и перемещения газа при изотермическом процессе в одноступенчатом комрессоре.

Lиз. = F1-a-3-4-1.

Площадь диаграммы, ограниченная линиями 1-2-3-4-1, равна работе сжатия и перемещения газа при одноступенчатом политропическом теоретическим процессе.

Lпол. = F1-a-3-4-1.

Рассмотрим трехступенчатое сжатие газа  в теоретическом процессе.

В цилиндр I ст. засасывается объем газа VhI, изображенный на диаграмме отрезком 4-1. Сжатие газа происходит по политропе 1-5 до давления нагнетания первой ступени Р2I.

Сжатый газ, объем которого выражается отрезком 5-6, вытесняется в промежуточный холодильник, где охлаждается до температуры Т1 и затем всасывается в цилиндр II ст. Объем охлажденного газа уменьшится и будет выражаться отрезком 6-7.

Сжатие газа во II ступени происходит по политропе 7-8. Из II ст. газ, объем которого выражается отрезком 8-9, выталкивается в холодильник II ст., где он охлаждается до температуры всасывания в I ст.

Дальше газ поступает в III ст., где сжимается по политропе 10-11 и вытесняется в сеть при давлении р = р кон.

Следовательно, теоретический процесс трехступенчатого сжатия представляет собой 3 теоретических процесса одноступенчатого сжатия. Работа, затрачиваемая на сжатие и перемещение газа при трехступенчатом сжатии ZI-II-III будет равна сумме работ одноступенчатых теоретических процессов.

ZI-II-III = ZI + ZII + ZIII = F1-5-6-4-1 + F7-8-9-6-7 + F10-11-3-9-10 = F1-5-7-8-10-11-3-4-1

Работа сжатия и перемещения газа при трехступенчатом теоретическом процессе LI-II-III будет меньше работы одноступенчатого сжатия Lпол. На величину, эквивалентную заштрихованной площади F5-2-11-10-8-7-5.

Уменьшение работы при трехступенчатом сжатии произошло потому, что газ после каждой ступени охлаждается.

Уменьшение затраты работы в теоретическом многоступенчатом компрессоре тем больше, чем ниже температура газа, охлажденного в холодильнике.

При обычных температурах каждые 3º охлаждения газа в межступенчатом холодильнике уменьшают примерно на 1% работу последующей ступени.

Это свидетельствует о важности охлаждения газа в межступенчатых холодильниках.

Рассмотрим процесс многоступенчатого сжатия в диаграмме T-S.

 

Лекция №11Теоретический процесс многоступенчатого компрессор

Сжатие в адиабатическом процессе.

Политропический процесс.

Лекция №11Теоретический процесс многоступенчатого компрессор

В обоих диаграммах экономия в затрате работы на сжатие и перемещение газа в результате многоступенчатого сжатия составляет           F5-2-11-10-8-7-5.

В идеальном компрессоре чем больше ступеней, тем больше выигрыш в работе.

В реальной машине каждая новая ступень приносит дополнительно потери и это надо учитывать при выборе оптимального количества ступеней.

Рассмотрим, каким образом нужно распределять давления на ступени, чтобы при теоретическом многоступенчатом процессе работа компрессора была бы минимальной.

Общая работа теоретического процесса многоступенчато компрессора будет

 

Лекция №11Теоретический процесс многоступенчатого компрессор     (1)

 

где V1I, V1II,……V1Z – объем газа, всасываемого в соответствующую ступень.

Поскольку при теоретическом рассмотрении процесса компрессор считается абсолютно герметичным и после каждой ступени предполагается охлаждение газа до начальной температуры Т1, то

                           mRT1

Лекция №11Теоретический процесс многоступенчатого компрессор  (2)

 

Из уравнения (1) и (2) получим

Лекция №11Теоретический процесс многоступенчатого компрессор(3)

Для определения наивыгоднейших промежуточных давлений, при которых работа была бы наименьшей, воспользуемся правилом: функция нескольких переменных достигает минимума при их значениях, при которых частные производные первого порядка по каждой из независимых переменных обращается в нуль.

Для определения давления p2I, при котором величина Z  будет минимальной, возьмем от уравнения (3) первую производную по p2I = p1II и приравняем ее к нулю.

Лекция №11Теоретический процесс многоступенчатого компрессор

 

Лекция №11Теоретический процесс многоступенчатого компрессор

Комплекс Лекция №11Теоретический процесс многоступенчатого компрессор  - величина постоянная, поэтому

 

Лекция №11Теоретический процесс многоступенчатого компрессор

 

Лекция №11Теоретический процесс многоступенчатого компрессор;

 

Лекция №11Теоретический процесс многоступенчатого компрессор,

Лекция №11Теоретический процесс многоступенчатого компрессор, или

Лекция №11Теоретический процесс многоступенчатого компрессор

Разделим на Лекция №11Теоретический процесс многоступенчатого компрессор Лекция №11Теоретический процесс многоступенчатого компрессор; Лекция №11Теоретический процесс многоступенчатого компрессор

Тогда: Лекция №11Теоретический процесс многоступенчатого компрессор;   

Для определения p2II, при котором L  будет минимальной, возьмем от уравнения (3) первую производную Лекция №11Теоретический процесс многоступенчатого компрессори приравняем ее к нулю.

Разделив выкладки, аналогичные предыдущим, получим:

 

Лекция №11Теоретический процесс многоступенчатого компрессор. Так как Лекция №11Теоретический процесс многоступенчатого компрессори Лекция №11Теоретический процесс многоступенчатого компрессорЛекция №11Теоретический процесс многоступенчатого компрессор

Аналогично определяются давления и степени повышения давления во всех последующих ступенях. Отсюда ясно, что общая работа сжатия и перемещения газа минимальна при условии

Из последних двух уравнений следует, что при теоретическом процессе многоступенчатого компрессора минимум работы будет затрачиваться при равенстве степеней повышения давления газа в ступенях.

В этом случае работы сжатия и перемещения газа в каждой ступени будут равны, и уравнение (3) примет вид:

 

Лекция №11Теоретический процесс многоступенчатого компрессор;

Равенство работ в ступенях в случае одинаковых ходов поршня означает равенство усилий, действующих на механизм движения.

В реальном компрессоре все будет аналогично, только надо учесть потери давления.

Действительный рабочий процесс многоступенчатого компрессора. Производительность компрессора.

Действительный рабочий процесс многоступенчатого сжатия из ряда происходящих последовательно действительных процессов одноступенчатого сжатия.

При действительном процессе производительность компрессора V1 будет меньше, чем при теоретическом Vm. Это уменьшение производительности учитывается коэффициентом производительности компрессора

где Vm = n0VhI.

Объем газа, подаваемого компрессором в нагнетательный трубопровод, V1 будет в I ст. компрессора, V1I вследствие конденсации влаги в межступенчатых коммуникациях и утечке газа.

Лекция №11Теоретический процесс многоступенчатого компрессор,

где

Величина

Лекция №11Теоретический процесс многоступенчатого компрессор,                   (Лекция №11Теоретический процесс многоступенчатого компрессор)

где

В машинах высокого давления обычно уже после 3-й ступени абсолютная влажность газа мала и ею можно пренебречь.

Коэффициент внешней герметичности можно определить по формуле:

Лекция №11Теоретический процесс многоступенчатого компрессор,

где GIс.г. – вес сухого газа, всасываемого в минуту в I ступень;

     VIс.г. – минутный объем всасываемого в I ступень сухого газа, приведенный к условиям во всасывающем патрубке;

   

Величины

1.     Через неплотности межступенчатых коммуникаций.

2.     Через всасывающие клапаны I ступени компрессора.

3.     Через уплотнения поршней ступеней простого действия.

4.     Сальники крейцкопорного компрессора.

При определении минутного объема газа, всасываемого в I ст. компрессора V1I, необходимо учитывать, что часть полезного объема цилиндра будут заполнены газом, перетекшим в I ступень из соседних полостей с более высоким давлением газа.

Величина V1I может быть определена уравнением:

Лекция №11Теоретический процесс многоступенчатого компрессор,

где VhI – объем, описываемый поршнем I ступени за один оборот.

Величина

Лекция №11Теоретический процесс многоступенчатого компрессор,

где

Величину

Известно, что Лекция №11Теоретический процесс многоступенчатого компрессор

 

                               Лекция №11Теоретический процесс многоступенчатого компрессор

Первые 5 коэффициентов зависят от конструкции машины ее состояния и режима работы.

Коэффициент влажности

Часто учитывают влияние внешних потерь газа и внутренних перетеканий одним коэффициентом

Лекция №11Теоретический процесс многоступенчатого компрессор



3.Достоинства и недостатки поршневого компрессора



Поршневые компрессоры крайне разнообразны по своему конструктивному выполнению, схемам и компоновкам. Они отличаются по устройству кривошипно-шатунного механизма, расположению цилиндров, числу ступеней сжатия.

Область применения данного компрессорного оборудования весьма широка, их используют в машиностроении, текстильном производстве, химической промышленности, в криогенной технике.

Поршневые компрессоры производительностью до 100 куб. м/мин. – это один из самых распространенных вариантов подобного оборудования в странах СНГ.  Основная причина их популярности заключается в приемлемых ценах, простоте производства и простоте их ремонта. Своевременное техническое обслуживание такого агрегата растягивает срок его работы практически до бесконечности. При этом во время ремонта или обслуживания можно заменить абсолютно все рабочие части агрегата.

Поршневые компрессоры могут быть намного более выгодным решением по сравнению с оборудованием других типов в ряде случаев:

  • Если нужна низкая производительность. В этом случае они однозначно превосходят винтовые компрессоры;

  • При кратковременном режиме работы, когда сжатый воздух необходим лишь небольшую часть времени в течение суток. При таком режиме работы поршневые компрессоры экономят существенно больше электроэнергии по сравнению с винтовыми.

  • Сложные условия эксплуатации. Например в установках для фасовки цемента, мельницах, угольных складах, при резких перепадах температуры и т.д. В этом случае затраты на обслуживание существенно ниже, чем у винтовых.

  • Работа с агрессивными газами.

В целом же практически всегда, когда необходимо сильное атмосферное давление (20-30 атмосфер) и низкая производительность (менее 200 л/мин) выбор поршневых компрессоров в качестве оборудования для производства сжатого воздуха оправдан.

К основным недостаткам стоит отнести:

  • необходимость в частом техобслуживании, а так же необходимость в специализированном персонале для их обслуживания;

  • повышенный расход электроэнергии;

  • интервал сервисного обслуживания составляет всего лишь 500 рабочих часов. Из-за этого на промышленных предприятиях, использующих оборудование данного типа, необходимо иметь дополнительно резервный агрегат, который ремонтируется пока работает основной, потом они меняются местами. 

  • высокий уровень вибрации и шума;

  • и др.





4.Схема получения сжатого воздуха



Установки для получения и распределения сжатого воздуха состоят из следующих элементов:

- компрессоров с электрическим приводом и автоматической системой управления пуском и остановкой;

- воздушных всасывающих фильтров для очистки воздуха, засасываемого первой ступенью компрессора из атмосферы;

- змеевиковых охладителей с водомаслоотделителями и продувочными клапанами после каждой ступени компрессора;

- воздухосборников (ресиверов) — сосудов для накопления сжатого воздуха и редукторных клапанов, устанавливаемых на выходе воздуха из воздухосборников в распределительную сеть;

- воздухопроводов, арматуры, приборов и вспомогательных устройств, необходимых для нормальной эксплуатации воздухораспределительной сети.

В настоящее время используются компрессоры на номинальное давление 4 и 4,5 МПа (типов ВШ-3/40М и АВШ-1,5/45) и 23 МПа (типа ВШВ-2,3/230). Компрессоры с номинальным давлением 4 и 4,5 МПа применяются при рабочем давлении воздушных выключателей 2 МПа, а компрессоры с повышенным давлением 23 МПа — при рабочем давлении воздушных выключателей 2,6-4 МПа.

Также применяются небольшие автоматизированные компрессоры типа АВВ-5/2 производительностью 0,3 м3/мин с воздухосборниками объемом 0,5 м3, рассчитанными на давление 2 МПа.

На рис. 6 представлена схема установки получения и распределения сжатого воздуха. В установке применены наиболее распространенные в энергосистемах трехступенчатые поршневые компрессоры типа ВШ-3/40М, всасывающие атмосферный воздух в объеме 180 м3/ч с последующим сжатием его до 4-4,15 МПа.

hello_html_m454beade.png

Рис. 5. Оборудование для систем подготовки сжатого воздуха.


Атмосферный воздух засасывается в первую ступень компрессора через воздушный всасывающий фильтр 3, где он проходит над поверхностью масляной ванны, в которой оседает содержащаяся в воздухе пыль. В первой ступени компрессора воздух сжимается до 250 кПа. Нагретый при сжатии воздух поступает в змеевиковый охладитель, трубки которого снаружи обдуваются окружающим воздухом, нагнетаемым вентилятором 5.

hello_html_m707a1cab.png

Рис. 6. Принципиальная схема установки получения и распределения сжатого воздуха:

1 - электродвигатель компрессора; 2 - система маслосмазки; 3 - воздушный всасывающий фильтр; 4 - компрессор; 5 - вентилятор обдувки; 6 - змеевиковые охладители I, II, III ступеней; 7-9 - водомаслоотделитель; 10 - электромагнитный клапан, управляющий продувкой; 11 - крестовина распределения воздуха; 12 - клапаны поступенчатой продувки; 13 - обратный клапан; 14 - воздухосборник; 1 5 - ручной спускной вентиль и электроподогреватель; 16 - предохранительный пружинный клапан; 17 - манометр; 18 - редукторный клапан; 19 - предохранительный клапан редуктора; 20 - манометры; 21 - линейные масловодоотделители; 22 - магистральные воздухопроводы; 23 - кольцевая воздухораспределительная сеть; 24 - запорный вентиль в распределительном шкафу выключателя; 25 - фильтр; 26 - обратный клапан; 27 - резервуары выключателя; ДТ1, ДТ2 - датчики температуры; ДД1-ДД8 - датчики давления: K 1, K 2, КЗ - компрессорные установки



5.Основное и вспомогательное оборудование поршневой компрессорной установки



ТЭПл3

Рис. 7. Поршневая компрессорная установка.

1 — всасывающее устройство; 2 — фильтр; 3 — первая ступень компрессора; 4 — вторая ступень компрессора; 5 — межступенчатый холодильник; 6 — концевой холодильник; 7 — влаго–маслоотделитель; 8 — ресивер; 9 — магистральный вентиль; 10 — пусковой вентиль; 11 — выпускной вентиль; 12 — сборный бак;

13 — магистраль.


Схема работает следующим образом. Поршневой компрессор, приводимый в движение электродвигателем, через воздухозаборное устройство (1) засасывает атмосферный воздух. Пройдя по прямому участку трубопровода, воздух попадает в фильтр (2), где очищается от примеси атмосферной влаги и пыли. Далее, проходя через всасывающий трубопровод, воздух попадает в первую ступень компрессора (3). После сжатия, через обратный клапан и промежуточный трубопровод, воздух нагнетается в межтрубное пространство промежуточного охладителя (5). Из охладителя воздух всасывается второй ступенью компрессора (4) и через нагнетательный трубопровод подается в межтрубное пространство концевого охладителя (6). После охлаждения воздух поступает в водомаслоотделитель (7) и далее в воздухосборник (8), предназначенный для снижения пульсации воздуха и резервировании его части. Из воздухосборника воздух по магистральному трубопроводу (13) поступает в воздушную сеть предприятия и к потребителю. Через продувочный бак (12) осуществляется слив конденсата из концевого охладителя и водомаслоотделителя. Кроме того схема компрессорной установки должна содержать:

а) предохранительные клапана (сброс излишка воздуха);

б) запорные задвижки (предназначены для переключений, отключений, вывода в ремонт элементов компрессорной установки);

в) обратный клапан (предназначен для избежания утечек воздуха из сети при отключении компрессора);

г) разгрузочный вентиль (предназначен для сброса воздуха и облегчения пуска компрессорной установки).

Компрессорные установки выполненные на базе поршневых компрессоров предназначены для производств, в которых потребителям воздуха требуется воздух высокого давления и в небольшом количестве (при малых расходах). Для повышения давления воздуха используется многоступенчатые компрессоры. После каждой ступени могут быть установлены промежуточные холодильники.























Тема 2.4: Принципиальные схемы пневмоприводов


1.Назначение и область применения пневмоприводов.

Пневматический привод (пневмопривод) — совокупность устройств, предназначенных для приведения в движение частеймашин и механизмов посредством энергии сжатого воздуха.

Пневмопривод, подобно гидроприводу, представляет собой своего рода «пневматическую вставку» между приводным двигателеми нагрузкой (машиной или механизмом) и выполняет те же функции, что и механическая передача (редуктор, ремённая передача,кривошипно-шатунный механизм и т. д.). Основное назначение пневмопривода, как и механической передачи, — преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.). Обязательными элементами пневмопривода являются компрессор (генератор пневматической энергии) и пневмодвигатель.

В зависимости от характера движения выходного звена пневмодвигателя (вала пневмомотора или штока пневмоцилиндра), и соответственно, характера движения рабочего органа пневмопривод может быть вращательным или поступательным. Пневмоприводы с поступательным движением получили наибольшее распространение в технике.

По характеру воздействия на рабочий орган пневмоприводы с поступательным движением бывают:

  • двухпозиционные, перемещающие рабочий орган между двумя крайними положениями;

  • многопозиционные, перемещающие рабочий орган в различные положения.

По принципу действия пневматические приводы с поступательным движением бывают:

  • одностороннего действия, возврат привода в исходное положение осуществляется механической пружиной;

  • двухстороннего действия, перемещающие рабочий орган привода осуществляется сжатым воздухом.

По конструктивному исполнению пневмоприводы с поступательным движением делятся на:

  • поршневые, представляющие собой цилиндр, в котором под воздействием сжатого воздуха либо пружины перемещается поршень (возможны два варианта исполнения: в односторонних поршневых пневмоприводах рабочий ход осуществляется за счёт сжатого воздуха, а холостой за счёт пружины; в двухсторонних — и рабочий, и холостой ходы осуществляются за счёт сжатого воздуха);

  • мембранные, представляющие собой герметичную камеру, разделённую мембраной на две полости; в данном случае цилиндр соединён с жёстким центром мембраны, на всю площадь которой и производит действие сжатый воздух (также, как и поршневые, выполняются в двух видах — одно- либо двухстороннем).

  • Сильфонные применяются реже. Практически всегда одностороннего действия: усилие возврата может создаваться как упругостью самого сильфона, так и с использованием дополнительной пружины.

В особых случаях (когда требуется повышенное быстродействие) применяют специальный тип пневмоприводов — вибрационный пневмопривод релейного типа.


2.Основные элемента пневмопривода и их функциональное назначение


Рассмотрим типовую схему пневмопривода одной степени подвижности ПР. Она состоит из входного штуцера 12, через который осуществляется подвод сжатого воздуха под давлением 0,5…0,6 МПа из заводской пневмосети к ПР.

Вентилем 11 производится включение привода в работу. Влагоотделитель 10 служит для подготовки сжатого воздуха и удаления из него водяного конденсата, который вызывает коррозию и увеличивает трение трущихся деталей. Далее посредством соответствующей регулировки редукционного клапана 9, производится предварительная настройка давления сжатого воздуха, поступающего к элементам привода.

Это давление является номинальным и устанавливается согласно техническим требованиям на данный ПР. Маслораспылитель 8 также участвует в подготовке воздуха и обеспечивает распыление масла, необходимого для смазки перемещающихся элементов исполнительного двигателя (цилиндра 2) и распределителя 6.

В качестве последних используются т.н. золотники и клапаны. Обычно управление распределителем производится от электромагнита. Распределители служат для перераспределения потоков рабочего тела, в данном случае сжатого воздуха, в соответствии с управляющей программой и требованиями технологического процесса.

http://konspekta.net/studopediaorg/baza9/116189721088.files/image046.jpg

Согласно схеме, изображенной на рисунке, перемещение поршня 1 на шаг S происходит вправо вместе со штоком 3, рукой 4 и УЗ 5. Дроссель 7 служит для регулировки скорости перемещения подвижных частей двигателя.

К числу основных параметров, характеризующих пневмодвигатель, относятся: эффективная площадь поршня в рабочей (поршневой) F1 и выхлопной F2 (штоковой) полостях; рабочий ход поршня S; текущая координата x; скорость v и ускорение а поршня; масса mp исполнительного устройства (напр., руки ПР); давление воздуха в рабочей р1 и выхлопной полотях р2; эффективные площади сечений трубопроводов на входе f1 и выходе f2; диаметры поршня D и штока d; движущая сила РД и сила нагрузки (потребная) РН.




3.Достоинства и недостатки пневмопривода


Достоинства

  • в отличие от гидропривода — отсутствие необходимости возвращать рабочее тело (воздух) назад к компрессору;

  • меньший вес рабочего тела по сравнению с гидроприводом (актуально для ракетостроения);

  • меньший вес исполнительных устройств по сравнению с электрическими;

  • возможность упростить систему за счет использования в качестве источника энергии баллона со сжатым газом, такие системы иногда используют вместопиропатронов, есть системы, где давление в баллоне достигает 500 МПа;

  • простота и экономичность, обусловленные дешевизной рабочего газа;

  • быстрота срабатывания и большие частоты вращения пневмомоторов (до нескольких десятков тысяч оборотов в минуту);

  • пожаробезопасность и нейтральность рабочей среды, обеспечивающая возможность применения пневмопривода в шахтах и на химических производствах;

  • в сравнении с гидроприводом — способность передавать пневматическую энергию на большие расстояния (до нескольких километров), что позволяет использовать пневмопривод в качестве магистрального в шахтах и на рудниках;

  • в отличие от гидропривода, пневмопривод менее чувствителен к изменению температуры окружающей среды вследствие меньшей зависимости КПД от утечек рабочей среды (рабочего газа), поэтому изменение зазоров между деталями пневмооборудования и вязкости рабочей среды не оказывают серьёзного влияния на рабочие параметры пневмопривода; это делает пневмопривод удобным для использования в горячих цехах металлургических предприятий.


Недостатки

  • нагревание и охлаждение рабочего газа в процессе сжатия в компрессорах и расширения в пневмомоторах; этот недостаток обусловлен законами термодинамики, и приводит к следующим проблемам:

    • возможность обмерзания пневмосистем;

    • конденсация водяных паров из рабочего газа, и в связи с этим необходимость его осушения;

  • высокая стоимость пневматической энергии по сравнению с электрической (примерно в 3-4 раза), что важно, например, при использовании пневмопривода в шахтах;

  • ещё более низкий КПД, чем у гидропривода;

  • низкие точность срабатывания и плавность хода;

  • возможность взрывного разрыва трубопроводов или производственного травматизма, из-за чего в промышленном пневмоприводе применяются небольшие давления рабочего газа (обычно давление в пневмосистемах не превышает 1 МПа, хотя известны пневмосистемы с рабочим давлением до 7 МПа — например, наатомных электростанциях), и, как следствие, усилия на рабочих органах значительно ме́ньшие в сравнении с гидроприводом). Там, где такой проблемы нет (на ракетах и самолетах) или размеры систем небольшие, давления могут достигать 20 МПа и даже выше.

  • для регулирования величины поворота штока привода необходимо использование дорогостоящих устройств — позиционеров.






Тема 2.5: Основы расчета гидро- и пневмосистем.


1.Основы расчета гидропривода: определение параметров насоса, диаметров трубопровода, потерь давления в гидросистеме.


Основными параметрами насоса любого типа являются производительность, напор и мощность.

Производительность (подача) Q (м3/сек) определяется объёмом жидкости, подаваемой насосом в нагнетательный трубопровод в единицу времени.

Напор Н (м)- высота, на которую может быть поднят 1 кг перекачиваемой жидкости за счёт энергии, сообщаемой ей насосом.

Н = h + pн – рвс/ρg

Напор насоса

Полезная мощность Nп, затрачиваемая насосом на сообщение жидкости энергии, равна произведению удельной энергии Н на весовой расход жидкости γQ:

Nп = γQН = ρgQН

где

ρ (кг/ м3) – плотность перекачиваемой жидкости,

γ(кгс/ м3)  удельный вес перекачиваемой жидкости.

Мощность на валу:

Ne=Nпн = ρgQН/ηн

где ηн  к.п.д. насоса.

Для центробежных насосов ηн– 0,6-0,7, для поршневых насосов – 0,8-0,9, для наиболее совершенных центробежных насосов большой производительности - 0,93 – 0,95.

Номинальная мощность двигателя

Nдв = Ne / ηпер ηдв = Nп / ηн ηпер ηдв,

где

ηпер - к.п.д. передачи,

ηдв - к.п.д. двигателя.

ηн ηпер ηдв- полный к.п.д. насосной установки η, т.е.

η= ηн ηпер ηдв = Nп /Nдв

Установочная мощность двигателя Nуст рассчитывается по величине Nдв с учётом возможных перегрузок в момент пуска насоса:

Nуст = βNдв

гдеβ – коэффициент запаса мощности:

Nдв, кВт

Менее 1

1-5

5-50

Более 50

β

2 – 1,5

1,5 –1,2

1,2 – 1,15

1,1

Напор насоса. Высота всасывания

Н – напор насоса,

рн - давление в напорном патрубке насоса,

рвс- давление во всасывающем патрубке насоса,

h -высота подъёма жидкости в насосе.

Такимобразом, напор насоса равен сумме высоты подъёма жидкости в насосе и разности пьезометрических напоров в нагнетательном и всасывающем патрубках насоса.

Для определения напора действующего насоса пользуются показаниями установленных на нём манометра (рм)и вакуумметра (рв).

рн = рм + ра

рвс = ра - рв

ра – атмосферное давление.

Следовательно,

Напор действующего насоса может быть определён, как сумма показаний манометра и вакуумметра (выраженных в м столба перекачиваемой жидкости) и расстояния по вертикали между точками расположения этих приборов.

В насосной установке напор насоса затрачивается на перемещение жидкости на геометрическую высоту её подъёма(Нг), преодоление разности давлений в напорной (р2) и приёмной(р0) емкостях, т.е.и суммарного гидравлического сопротивления (hп) во всасывающем и нагнетательном трубопроводах.

Н = Нг ++hп

где

hп= hп.н+ hп.вс. – суммарное гидравлическое сопротивление всасывающего и нагнетательного трубопроводов.

Если давления в приёмной и напорной емкостях одинаковы (р2= р0), то уравнение напора примет вид

Н = Нг + hп

При перекачивании жидкости по горизонтальному трубопроводу (Нг = 0):

Н = +hп

В случае равенства давлений в приёмной и напорной емкостях для горизонтального трубопровода (р2= р0 иНг = 0) напор насоса

Н = hп

Высота всасывания насоса увеличивается с возрастанием давления р0 в приёмной ёмкости и уменьшается с увеличением давления рвс, скорости жидкостивс и потерь напора hп..всво всасывающем трубопроводе.

Если жидкость перекачивается из открытой ёмкости, то давление р0 равно атмосферному ра. Давление на входе в насос рвсдолжно быть больше давления рtнасыщенного пара перекачиваемой жидкости при температуре всасывания (рвc > рt), т.к. в противном случае жидкость в насосе начнёт кипеть. Следовательно, т.е. высота всасывания зависит от атмосферного давления, скорости движения и плотности перекачиваемой жидкости, её температуры (и соответственно – давления её паров) и гидравлического сопротивления всасывающего трубопровода. При перекачивании горячих жидкостей насос устанавливают ниже уровня приёмной ёмкости, чтобы обеспечить некоторый подпор со стороны всасывания, или создают избыточное давление в приёмной ёмкости. Таким же образом перекачивают высоковязкие жидкости.

Кавитация возникает при высоких скоростях вращения рабочих колёс центробежных насосов и при перекачивании горячих жидкостей в условиях, когда происходит интенсивное парообразование в жидкости, находящейся в насосе. Пузырьки пара попадают вместе с жидкостью в область более высоких давлений, где мгновенно конденсируются. Жидкость стремительно заполняет полости, в которых находился сконденсировавшийся пар, что сопровождается гидравлическими ударами, шумом и сотрясением насоса. Кавитация приводит к быстрому разрушению насоса за счёт гидравлических ударов и усиления коррозии в период парообразования. При кавитации производительность и напор насоса резко снижаются.

Практически высота всасывания насосов при перекачивании воды не превышает следующих значений:

Таблица 1

Температура, ºС

10

20

30

40

50

60

65

Высота всасывания, м

6

5

4

3

2

1

0

Целью расчета гидролиний является определение внутреннего диаметра трубопроводов, потерь давления на преодоление гидравлических сопротивлений и толщины стенок труб.

Внутренний диаметр (условный проход) трубопровода d определяют по формуле

http://gidravl.narod.ru/b2a10.gif

или

http://gidravl.narod.ru/b2a11.gif

где Q - расход жидкости, м3/с для (2.1) и л/мин для (2.2);

υ- скорость движения жидкости, м/с;

d - внутренний диаметр трубопровода, м для (2.1) и мм для (2.2).

Скорость течения жидкости в трубопроводах зависит в основном от давления в гидросистеме (табл.2).

Таблица 2.

Рекомендуемые значения скорости рабочей жидкости

http://gidravl.narod.ru/b2a12.gif

Потеря давления на преодоление гидравлических сопротивлений по длине каждого участка трубопровода определяется по формуле

http://gidravl.narod.ru/b2a13.gif

где ρ- плотность рабочей жидкости, кг/м3;

λ- коэффициент гидравлического трения;

l - длина трубопровода, м.

Если на пути движения рабочей жидкости встречаются местные сопротивления, то потеря давления в местных сопротивлениях определяется по формуле Вейсбаха

http://gidravl.narod.ru/b2a14.gif

где ζ- коэффициент местных сопротивлений.

Значения коэффициентов ζ для наиболее распространенных видов местных сопротивлений принимают следующими: для штуцеров и переходников для труб ζ = 0,1…0,15; для угольников с поворотом под углом 90° ζ = 1,5…2,0; для прямоугольных тройников для разделения и объединения потоков ζ = 0,9…2,5; для плавных изгибов труб на угол 90° с радиусом изгиба, равным (3÷5)d ζ = 0,12…0,15; для входа в трубу ζ = 0,5; для выхода из трубы в бак или в цилиндр ζ = 1.

При ламинарном режиме Т.М. Башта [3, с.29] для определения коэффициента гидравлического трения λ рекомендует при Re<2300 применять формулу

http://gidravl.narod.ru/b2a15.gif

а при турбулентном режиме течения жидкости в диапазоне Re = 2 300…100 000 коэффициент λ определяется по полуэмпирической формуле Блазиуса

http://gidravl.narod.ru/b2a16.gif

Если

http://gidravl.narod.ru/b2a17.gif

где ΔЭ - эквивалентная шероховатость труб (для новых бесшовных стальных труб ΔЭ = 0,05 мм, для латунных - ΔЭ = 0,02 мм, для медных - 0,01, для труб из сплавов из алюминия - 0,06, для резиновых шлангов - 0,03), то коэффициент гидравлического трения определяется по формуле А.Д. Альтшуля

http://gidravl.narod.ru/b2a18.gif

Потери давления в гидроаппаратуре ΔPга принимают по ее технической характеристике после выбора гидроаппаратуры. После этого суммируют потери давления

ΔPPдлPмP га

При выполнении гидравлического расчета производят проверку бескавитационной работы насоса. Вакуум у входа в насос определяют по формуле

http://gidravl.narod.ru/b2a19.gif

где hs - расстояние от оси насоса до уровня рабочей жидкости в баке; hтр - потери напора на преодоление всех гидравлических сопротивлений во всасывающей гидролинии; υ - скорость движения жидкости во всасывающей гидролинии; α - коэффициент Кориолиса.

Рекомендуемый (с запасом на бескавитационную работу насоса) вакуум Pв у входа в насос должен быть не более 0,04 МПа. Если Pв > 0,04 МПа, то нужно увеличить диаметр всасывающего трубопровода или расположить бак выше оси насоса. При этом считается, что рабочая жидкость находится в баке с атмосферным давлением Pатм = 0,1 МПа. Таким образом, разность давлений в баке Pб (с атмосферным или избыточным давлением) и на входе в насос Pв не должна быть меньше 0,06 МПа.

Определение толщины стенок является проверочным расчетом на прочность жестких труб, подобранных по ГОСТу. Толщину стенки трубы определяют по формуле

http://gidravl.narod.ru/b2a20.gif

где P - максимальное статическое давление;

σв - допускаемое напряжение на разрыв материала труб, принимаемое равным 30…35% от временного сопротивления;

n - коэффициент запаса, n = 3…6, для гнутых труб принимается равным на 25 % ниже.

С учетом возможных механических повреждений толщина стенок стальных труб должна быть не менее 0,5 мм, а для медных - не менее 0,8…1,0 мм.


  1. Понятие о тепловом расчете пневмосистемы.


Инженерные расчеты пневмосистем сводятся к определению скоростей и расходов воздуха при наполнении и опорожнении резервуаров (рабочих камер двигателей), а также с его течением по трубопроводам через местные сопротивления. Вследствие сжимаемости воздуха эти расчеты значительно сложнее, чем расчеты гидравлических систем, и в полной мере выполняются только для особо ответственных случаев. Полное описание процессов течения воздуха можно найти в специальных курсах газодинамики.

Основные закономерности течения воздуха (газа) такие же, как и для жидкостей, т.е. имеют местоламинарный и турбулентный режимы течения, установившийся и неустановившийся характер течения, равномерное и неравномерное течение из-за переменного сечения трубопровода и все остальные кинематические и динамические характеристики потоков. Вследствие низкой вязкости воздуха и относительно больших скоростей режим течения в большинстве случаев турбулентный.

Для промышленных пневмоприводов достаточно знать закономерности установившегося характера течения воздуха. В зависимости от интенсивности теплообмена с окружающей средой расчеты параметров воздуха выполняются с учетом вида термодинамического процесса, который может быть от изотермического (с полным теплообменом и выполнением условия Т = const) до адиабатического (без теплообмена).

При больших скоростях исполнительных механизмов и течении газа через сопротивления процесс сжатия считается адиабатическим с показателем адиабаты k = 1,4. В практических расчетах показатель адиабаты заменяют на показатель политропы (обычно принимают n = 1,3…1,35), что позволяет учесть потери, обусловленные трением воздуха, и возможный теплообмен.

В реальных условиях неизбежно происходит некоторый теплообмен между воздухом и деталями системы и имеет место так называемое политропное изменение состояния воздуха. Весь диапазон реальных процессов описывается уравнениями этого состояния

pVn = const

где n - показатель политропы, изменяющийся в пределах от n = 1 (изотермический процесс) до = 1,4 (адиабатический процесс).

В основу расчетов течения воздуха положено известное уравнение Бернулли движения идеального газа

http://gidravl.narod.ru/b11a1.gif

Слагаемые уравнения выражаются в единицах давления, поэтому их часто называют "давлениями":

z - весовое давление;

p - статическое давление;

http://gidravl.narod.ru/b11a2.gif - скоростное или динамическое давление.

На практике часто весовым давлением пренебрегают и уравнение Бернулли принимает следующий вид

http://gidravl.narod.ru/b11a3.gif

Сумму статического и динамического давлений называют полным давлением P0. Таким образом, получим

http://gidravl.narod.ru/b11a4.gif

При расчете газовых систем необходимо иметь в виду два принципиальных отличия от расчета гидросистем.

Первое отличие заключается в том, что определяется не объемный расход воздуха, а массовый. Это позволяет унифицировать и сравнивать параметры различных элементов пневмосистем по стандартному воздуху (ρ = 1,25 кг/ м3, υ = 14,9 м2/с при p = 101,3 кПа и t = 20°C). В этом случае уравнение расходов записывается в виде

Qм1 = Qм2 или υ1V1S= υ2V2S2

Второе отличие заключается в том, что при сверхзвуковых скоростях течения воздуха изменяется характер зависимости расхода от перепада давлений на сопротивлении. В связи с этим существуют понятия подкритического и надкритического режимов течения воздуха. Смысл этих терминов поясняется ниже.

Рассмотри истечение газа из резервуара через небольшое отверстие при поддержании в резервуаре постоянного давления (рис.1). Будем считать, что размеры резервуара настолько велики по сравнению с размерами выходного отверстия, что можно полностью пренебрегать скоростью движения газа внутри резервуара, и, следовательно, давление, температура и плотность газа внутри резервуара будут иметь значения p0, ρ 0 и T0.

http://gidravl.narod.ru/b11a5.gif

Рис.1. Истечение газа из отверстия в тонкой стенке

Скорость истечения газа можно определять по формуле для истечения несжимаемой жидкости, т.е.

http://gidravl.narod.ru/b11a6.gif

Массовый расход газа, вытекающего через отверстие, определяем по формуле

http://gidravl.narod.ru/b11a7.gif

где ω0 - площадь сечения отверстия.

Отношение p/p0 называется степенью расширения газа. Анализ формулы показывает, что выражение, стоящее под корнем в квадратных скобках, обращается в ноль при p/p0 = 1 и p/ p0 = 0. Это означает, что при некотором значении отношения давлений массовый расход достигает максимума Qmax. График зависимости массового расхода газа от отношения давлений p/pпоказан на рис.2.

http://gidravl.narod.ru/b11a8.gif

Рис.2. Зависимость массового расхода газа от отношения давлений

Отношение давлений p/p0, при котором массовый расход достигает максимального значения, называется критическим. Можно показать, что критическое отношение давлений равно

http://gidravl.narod.ru/b11a9.gif

Как видно из графика, показанного на рис.11.2, при уменьшении p/p0 по сравнению с критическим расход должен уменьшаться (пунктирная линия) и при p/p0 = 0 значение расхода должно быть равно нулю (Qm = 0). Однако в действительности это не происходит.

В действительности при заданных параметрах p0, ρ0 и Tрасход и скорость истечения будут расти с уменьшением давления вне резервуара p до тех пор, пока это давление меньше критического. При достижении давлением p критического значения расход становится максимальным, а скорость истечения достигает критического значения, равного местной скорости звука. Критическая скорость определяется известной формулой

http://gidravl.narod.ru/b11a10.gif

После того, как на выходе из отверстия скорость достигла скорости звука, дальнейшее уменьшение противодавления p не может привести к увеличению скорости истечения, так как, согласно теории распространения малых возмущений, внутренний объем резервуара станет недоступен для внешних возмущений: он будет "заперт" потоком со звуковой скоростью. Все внешние малые возмущения не могут проникнуть в резервуар, так как им будет препятствовать поток, имеющий ту же скорость, что и скорость распространения возмущений. При этом расход не будет меняться, оставаясь максимальным, а кривая расхода примет вид горизонтальной линии.

Таким образом, существует две зоны (области) течения:

подкритический режим, при котором

http://gidravl.narod.ru/b11a11.gif

надкритический режим, при котором

http://gidravl.narod.ru/b11a12.gif

В надкритической зоне имеет место максимальная скорость и расход, соответствующие критическому расширению газа. Исходя из этого при определении расходов воздуха предварительно определяют по перепаду давления режим истечения (зону), а затем расход. Потери на трение воздуха учитывают коэффициентом расхода μ, который с достаточной точностью можно вычислить по формулам для несжимаемой жидкости (μ = 0,1...0,6).

Окончательно скорость и максимальный массовый расход в подкритической зоне, с учетом сжатия струи определятся по формулам

http://gidravl.narod.ru/b11a13.gif


Автор
Дата добавления 30.12.2015
Раздел Другое
Подраздел Конспекты
Просмотров2103
Номер материала ДВ-298602
Получить свидетельство о публикации

"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.