Инфоурок Информатика КонспектыКурс лекций по теме "Двоичное кодирование информации"

Курс лекций по теме "Двоичное кодирование информации"

Скачать материал

Представление информации.

Двоичное кодирование информации.

Одну и ту же информацию можно представить и передать по-разному. Например, в книгах, газетах и журналах информация представлена в виде текстов и изображений. Ту же самую информацию, мы можем услышать по радио или увидеть по телевидению. Здесь она будет представлена в виде последовательности звуков (речи диктора в соответственно в виде некоторого видеоряда). При этом отличаются лишь способы представления информации, а сама информация остается неизменной. От того, как представлена информация, зависит очень многое, например, в практических задачах важно выбрать тот способ преставления информации, который будет наиболее удобен.

 Естественные и формальные языки.

Для обмена информацией с другими людьми человек использует естественные языки. Основу любого языка составляет алфавит, или набор символов, которые различаются по начертанию. Основные объекты языка - слова - образуются из последовательностей символов, составленных в соответствии с правилами грамматики. Из слов строятся предложения. Причем они также строятся в соответствии с опреде­ленными правилами, которые называются синтаксисом языка. Здесь следует отметить, что в естественных языках и грамматические и синтаксические правила имеют исключения.

Наряду с естественными языками существуют и разработанные человеком формальные языки - нотная азбука, транскрипция, языки программирования и др. Основное отличие формальных языков от естественных состоит в наличии не только жестко зафиксированного алфавита, но и строгих привил грамматики и синтаксиса, которые не имеют исключений.

Таким образом, представление информации посредством формальных • естественных языков производится с помощью алфавита - определенного набора знаков.

Знаки могут иметь различную физическую природу, например, для письма служат знаки, которые являются изображением на бумаге, а при обработке текста на компьютере знаки представляются в виде последовательностей электрических импульсов (т. е. некоторым образом кодируются). Вообще, кодированием называется представление символов одного алфавита символами другого. В качестве простейшей системы кодирования можно привести известную всем азбуку Морзе.

В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации.

 

 

 

1. Двоичное кодирование информации.

Вся информация, которая попадает в компьютер, преобразуется в последовательность электрических импульсов. Наличие импульса принято условно обозначать "1", а его отсутствие - "0".Такой способ кодирования информации называется двоичным или бинарным. Один двоичный символ получил название бит (bit - от английского binary digit двоичная цифра"). Таким образом, двоичное кодирование это представление информации при помощи минимально возможного числа элементарных символов.

С точки зрения инженеров двоичное кодирование привлекательно тем, что легко реализуется технически. Действительно, электронные схемы для обработки двоичных кодов должны находится только в одном из двух состояний - есть сигнал/нет сигнала (или высокое напряжение/низкое напряжение). А так как состояний всего два, то их легко различать, а схему легко переключать из одного состояния в другое.

В настоящее время созданы технические устройства, которые могут надежно сохранять и распознавать информацию, закодированную с помощью всего двух состояний (т.е. в двоичной системе кодирования):

- Электромагнитные реле (замкнуто/разомкнуто), которые -широко использовались при конструировании первых ЭВМ;

- Поверхности магнитных носителей информации (намагничено/размагничено);

- Поверхности лазерных дисков (отражает/не отражает);

- Триггер, который может находиться в одном из двух состояний О или 1, широко используется в оперативной памяти компьютера.

Таким образом, в компьютерах используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:

- для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток - нет тока, намагничен - не намагничен и т. п.), а не, например, с десятью, - как в десятичной;

- представление информации посредством только двух состояний надежно и помехоустойчиво;

- возможно применение аппарата алгебры логики для выполнения логических преобразований информации;

- двоичная арифметика намного проще десятичной. Недостаток двоичной системы - это быстрый рост числа разрядов, необходимых для записи даже относительно небольших чисел.

 

2. Двоичное кодирование текстов. Кодовые таблицы.

Как известно, вся информация, которая попадает в компьютер, преобразуется в последовательность электрических импульсов. Наличие импульса принято условно обозначать "1", а его отсутствие -"О". Такой способ кодирования информации называется двоичным или бинарным. Один двоичный символ получил название бит. (bit - от английскогоbinary digit - "двоичная цифра").

При вводе в компьютер текстовой информации каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Традиционно для кодирования одного символа используется количество информации, равное 1 байту (8 битам). Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код (или соответствующий ему двоичный код). Код символа хранится в памяти компьютера, где занимает, как уже говорилось, 1 байт. При таком способе можно закодировать 256 различных символов (256 = 28). Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и заглавные буквы русского алфавита, цифры, знаки, графические символы и т. д.

Каждому символу такого алфавита ставится в соответствие уникальный десятичный код от 0 до 255, а каждому десятичному коду соответствует 8-разрядный двоичный код от 00000000 до 11111111. Таким образом, компьютер различает символы по их коду.

Для разных типов ЭВМ и операционных систем используются различные таблицы кодировки, отличающиеся порядком размещения символов алфавита в кодовой таблице.

В настоящее время существует несколько различных кодировок (кодовых таблиц) для русских букв. Поэтому если текст создан в одной кодировке, то он не будет правильно отображаться в другой.

Понятно, что каждая кодировка задается своей кодовой таблицей. Одному и тому же двоичному коду в различных кодировках соответ­ствуют различные символы.

Для того чтобы стало возможным чтение и редактирования текста, набранного в другой кодировке, используются программы перекоди­рования русского текста. Некоторые текстовые редакторы(например, MS Word и др.) содержат встроенные программы-конверторы, позволяющие читать текст в различных кодировках.

Присвоение символу конкретного кода является вопросом соглашения, которое и фиксируется в конкретной кодовой таблице. В качестве международного стандарта принята кодовая таблица ASCII. В этой кодовой таблице латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений. Это правило соблюдается и в других таблицах кодировки и называется принципом последова­тельного кодирования алфавитов.

Стандартными в этой таблице кодов ASCII являются только первые 128 символов, т. е. символы с номерами от нуля (двоичный код 00000000) до 127 (01111111). Сюда входят буквы латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы. Остальные 128 кодов, начиная со 128 (двоичный код 10000000) и кончая 255 (11111111), используются для кодировки букв национальных алфавитов, символов псевдографики и научных символов.

 

3. Двоичное кодирование звуковой информации.

Звуковая информация в естественных условиях имеет аналоговую (непрерывную) форму представления. Компьютер же, как известно, способен работать с информацией, представленной в дискретном виде. Поэтому необходимо преобразование звуковой аналоговой формы в дискретную путем дискретизации.

Дискретизация - это процесс преобразования непрерывного звука в набор дискретных значений в форме кодов. Чтобы перевести музы­кальный звук в числовую форму, можно, например, через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме.

Из курса физики нам известно, что звук - это колебания воздуха. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел.

Поступим следующим образом. Будем измерять напряжение через равные промежутки времени и записывать полученные значения в память компьютера. Этот процесс и есть дискретизация (или оциф­ровка). Для того чтобы воспроизвести закодированный таким образом звук, нужно выполнить обратное преобразование, а затем сгладить получившийся ступенчатый сигнал.

Итак, в процессе кодирования звуковой информации происходит временная дискретизация звука (когда звуковая волна разбивается на отдельные маленькие временные участки). Для каждого такого участка устанавливается определенная величина амплитуды. Таким образом, непрерывная зависимость амплитуды сигнала от времени заменяется дискретной последовательностью уровней громкости. Уровни громкости звука можно рассматривать как набор возможных состояний. Чем больше уровней громкости может быть выделено в процессе оцифрования, тем более качественным будет звучание.

Современные звуковые карты позволяют для кодирования каждого значения амплитуды звукового сигнала выделить 16 бит (это так называемая глубина звука). Количество различных уровней сигнала можно вычислить по формуле: N = 2', где i - глубина звука. Таким образом, для современных звуковых карт количество различных уровней сигнала равно N = 216 = 65538.

Ясно, что качество кодирования будет напрямую зависеть от количества измерений уровня сигнала в единицу времени. Этот показатель называется частотой дискретизацииЧем выше частота дискретизации (т. е. количество отсчетов за секунду) и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук. Но при этом увеличивается и размер звукового файла.

Итак, по окончании процесса дискретизации, звуковая информация хранится в памяти компьютера в виде двоичных кодов. При этом качество двоичного кодирования звуковой информации определяется двумя показателями: глубиной кодирования и частотой дискретизации.

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. С помощью программ для компьютера можно выполнить, например, такое преобразование полученной информации, как «наложение» друг на друга звуков от разных источ­ников, изменение музыкального темпа и т. д.

4. Двоичное кодирование графической информации.

Графическая информация в естественных условиях имеет аналоговую (непрерывную) форму представления. Компьютер же, как известно, способен работать с информацией, представленной в дискретном виде. Поэтому необходимо преобразование графической аналоговой формы в дискретную путем дискретизации.

Дискретизация - это процесс преобразования непрерывных изображений в набор дискретных значений в форме кодов. В результате процесса дискретизации, графическую информацию можно хранить в памяти компьютера в виде двоичных кодов (в цифровом виде).

При оцифровке изображения оно делится на такие крошечные ячейки, что глаз человека их не видит, воспринимая все изображение как целое. Сама сетка получила название растровой карты (или растра), а ее единичный элемент называется пикселем. Пиксели подобны зернам фотографии и при значительном увеличении они становятся заметными.

Качество кодирования изображения зависит от размера точки и соответственно от количества точек, составляющих изображение, а также от количества цветов. Например, качество изображения на экране монитора определяется количеством точек, из которых оно складывается. Этот показатель называется разрешающей способностью. Чем больше разрешающая способность, т. е. чем большее количество прок растра и точек в строке, тем выше качество изображения. В современных персональных компьютерах обычно используются следующие разрешающие способности экрана: 800x600, 1024x768 точки.

Для черно-белого изображения (без полутонов) пиксель может принимать только два значения: белый и черный (светится/не светится), для его кодирования достаточно одного бита памяти: 1 - белый, 1 - черный. Такое изображение называют монохромным (черно-белым).

Пиксель на цветном изображении может иметь различную окраску, такому одного бита на пиксель недостаточно. Если для кодировки отвести четыре бита, то можно закодировать 24=16 различных цветов. Если отвести 8 бит, то такой рисунок может содержать 28=256 различных цветов (от 00000000 до 11111111), 16 бит - 216=65 536 различных цветов И, наконец, если отвести 24 бита, то потенциально рисунок может содержать 224=16 777 216 различных цветов и оттенков.

Количество различных цветов — К и количество битов для их кодировки — N связаны между собой простой формулой: 2N = К.

Таким образом, цвет каждого пикселя кодируется определенным числом битов, то есть элементарных единиц информации, с которыми может иметь дело компьютер. Количество битов, используемых для кодирования цвета точки, называется глубиной цвета.

Ясно, что качество кодирования изображения определяется разрешающей способностью экрана и глубиной цвета.

Совокупность всех используемых цветов называется палитрой цветов. Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности. Так, например, при глубине цвета 24 бита на кодирование каждого из цветов выделяется по 8 бит, т. е. для каждого из цветов возможны n = 28 = 256 уровней интенсивности.

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Курс лекций по теме "Двоичное кодирование информации""

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Культуролог-аниматор

Получите профессию

Секретарь-администратор

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 651 281 материал в базе

Материал подходит для УМК

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 12.02.2018 8592
    • DOCX 24.6 кбайт
    • 79 скачиваний
    • Рейтинг: 5 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Воронина Марина Сергеевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Воронина Марина Сергеевна
    Воронина Марина Сергеевна
    • На сайте: 6 лет и 2 месяца
    • Подписчики: 0
    • Всего просмотров: 25459
    • Всего материалов: 7

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Фитнес-тренер

Фитнес-тренер

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Использование нейросетей в учебной и научной работе: ChatGPT, DALL-E 2, Midjourney

36/72 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 583 человека из 76 регионов
  • Этот курс уже прошли 939 человек

Курс профессиональной переподготовки

Информационные технологии в профессиональной деятельности: теория и методика преподавания в образовательной организации

Преподаватель информационных технологий

300/600 ч.

от 7900 руб. от 3950 руб.
Подать заявку О курсе
  • Сейчас обучается 192 человека из 53 регионов
  • Этот курс уже прошли 968 человек

Курс повышения квалификации

Теоретические и методологические основы преподавания информатики с учётом требований ФГОС ООО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 151 человек из 49 регионов
  • Этот курс уже прошли 1 714 человек

Мини-курс

Дизайн-проектирование: практические и методологические аспекты

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Психические защиты и психоаналитический взгляд на личное развитие

10 ч.

1180 руб. 590 руб.
Подать заявку О курсе
  • Сейчас обучается 31 человек из 16 регионов
  • Этот курс уже прошли 15 человек

Мини-курс

Путь к осознанным решениям и здоровым отношениям

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 105 человек из 40 регионов
  • Этот курс уже прошли 11 человек