Инфоурок / Математика / Конспекты / Квадратные уравнения.Урок в 7 кл.

Квадратные уравнения.Урок в 7 кл.

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов


hello_html_28403385.jpg


ОТКРЫТЫЙ УРОК ПО АЛГЕБРЕ

В 8 КЛАССЕ.


Тема: «Квадратные уравнения»



Учитель по алгебре

Гуриева З.Е.








hello_html_25b35048.jpg





ь

Цели:

  1. Показать уровень усвоения программного материала по теме «Квадратные уравнения», навыки решения квадратных уравнений с помощью применения формул корней квадратных уравнений, изучить новый способ решения квадратных уравнений.

  2. Развитие вычислительных навыков: навыков решения квадратных уравнений с помощью формул, навыки нахождения дискриминанта квадратного уравнения, развитие логического мышления,

  3. Способствовать рациональной организации труда, внимательность, активное участие в учебно-познавательном процессе, самостоятельность, самокритичность.

Оборудование к уроку: тест "Квадратные уравнения", интерактивная доска, таблицы, карточки.

 

 

План урока

  1. Организационный момент "Настроимся на урок!"

  2. Проверка домашнего задания

  3. Тест "Квадратные уравнения".

  4. Немного истории.

  5. Продвинутые способы решения квадратных уравнений

  6. Викторина "Дальше, дальше..."

  7. Итог.

 

 

Ход урока

 

1. Организационный момент "Настроимся на урок!"

Здравствуйте, ребята и гости нашего урока! Математику не зря называют "царицей наук", ей больше, чем какой-либо другой науке, свойственны красота, изящность и точность. Одно из замечательных качеств математики - любознательность. Постараемся доказать это на уроке. Мы с вами начали изучать новый большой раздел «Квадратные уравнения».

Сегодня четвертый урок из этой главы, однако, вы уже умеете решать квадратные уравнения. Знания не только надо иметь, но и надо уметь их показать, что вы и сделаете на сегодняшнем уроке, а я вам в этом помогу.

Эпиграфом к уроку я взяла слова великого математика Паскаля "Предмет математики настолько серьезен, что полезно не упускать случая делать его немного занимательным". В течение урока мы еще вернемся к этим словам.

 

2. Проверка домашнего задания

Начнем урок с проверки домашнего задания.

Правильность решения заданий вы не сможете проверить, т.к. на предыдущем уроке каждый получил индивидуальное задание в зависимости от способностей и возможностей.

А вот знание теоретического материала, который понадобится нам на протяжении всего урока, давайте вспомним.

Какой вид имеет квадратное уравнение?

Какие уравнения вы знаете? (полные и неполные)

Сколько решений имеет полное квадратное уравнение? От чего это зависит?

3. Тест "Квадратные уравнения".

Итак, мы повторили, как можно решить квадратное уравнение. Сейчас я хотела бы проверить, как вы усвоили эти формулы и определения.

Ученики получают карточки с заданиями. Заполняют пропущенные слова в карточках.

 

I ВАРИАНТ

1. Уравнение вида , где a, b, c - заданные числа, a0, x - переменная, называется...

2. Полное квадратное уравнение не имеет корней, если D ...

3. Уравнение вида называется...

4. Квадратное уравнение имеет два корня, если...

5. Дано уравнение . D =...

 

II ВАРИАНТ

1. Если квадратное уравнение, то a... коэффициент, с...

2. Уравнение x² = a, где a < 0, не имеет...

3. Полное квадратное уравнение имеет единственный корень, если ...

4. Уравнение вида ax² + c = 0, где a 0, c 0, называют ... квадратным уравнением.

5. Дано уравнение x²- 6x + 8 = 0. D =...

Проводится взаимопроверка. Ответы показываем через интерактивную доску.



 

 

 4. Продвинутые способы решения квадратных уравнений

Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Они находят широкое применение при решении различных тригонометрических, показательных, логарифмических, иррациональных, трансцендентных уравнений и неравенств, большого количества разных типов задач.

В школьном курсе математики подробно изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. В математической науке есть десять способов решения квадратных уравнений.

Способы решения квадратных уравнений, изучаемые в школе:

  • Разложение левой части на множители

  • Метод выделения полного квадрата

  • С применением формул корней квадратного уравнения

  • С применением теоремы Виета

  • Графический способ

Продвинутые способы решения квадратных уравнений:

  • Способ переброски

  • По свойству коэффициентов

  • С помощью номограммы

  • Геометрический

Сегодня на уроке мы познакомимся с новым способом решения квадратных уравнений, который не изучается в школе. Но он очень интересный и вовсе не сложный.

Решение квадратных уравнений по свойству коэффициентов.

Пусть дано квадратное уравнение

ах2 + bх + с = 0, где а ≠0.

Свойство 1.

Если а + b + с = 0 (т е. сумма коэффициентов уравнения равна нулю), то х1 = 1, х2 = с/а

Свойство 2.

Если а – b + с = 0, или b = а + с, то

х1 = – 1, х2 = – с/а

Пример:



Решите самостоятельно:

ю1 вариант:

2вариант:

5. Викторина. "Дальше, дальше..."

В течение одной минуты ребята отвечают на вопросы, приведенные ниже:

1. Уравнение второй степени.

2. Сколько корней имеет квадратное уравнение, если D больше 0?

3. Равенство с переменной?

4. От чего зависит количество корней квадратного уравнения?

5. Как называется квадратное уравнение, у которого первый коэффициент - 1?

6. Сколько корней имеет квадратное уравнение, если дискриминант меньше 0?

7. Что значит решить уравнение?



6. Итог урока.

Учитель:

Что нового мы узнали на уроке?

Какое уравнение называется квадратным?

Какие виды квадратных уравнений вы знаете?

И закончить сегодняшний урок хотелось бы словами великого математика

У. Сойера: «Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи. Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт»

Оценивание учащихся. Сообщение домашнего задания.



Гуриева Зара Елизаровна-учитель математики

МБОУ «СОШ №2с.Камбилеевское».











Общая информация

Номер материала: ДБ-368186

Похожие материалы