Инфоурок Математика Другие методич. материалыЛогические задачи 5-6 классы

Логические задачи 5-6 классы

Скачать материал

Задача 1

В пещере старый пират разложил свои сокровища в 3 цветных сундука, стоящих вдоль стены: в один - драгоценные камни, а в другой - золотые монеты, а в третий - оружие. Он помнит, что:

- красный сундук правее, чем драгоценные камни;

- оружие правее, чем красный сундук.

В сундуке какого цвета лежит оружие, если зелёный сундук стоит левее, чем синий?



Решение:

ДК

ЗC

О

зелёный

красный

синий

 


Задача 2

Девять осликов за 3 дня съедают 27 мешков корма. Сколько корма надо пяти осликам на 5 дней?



Решение:

1 шаг 9 осликов в 1 день - 27 : 3= 9м.

2 шаг 1 ослик в 1 день - 9 : 9 = 1 м.

3 шаг 5 осликов в 1 день - 5 * 1 = 5 м.

4 шаг 5 осликов за 5 дней - 5 * 5 = 25 м.


Задача 3

Кенгуру мама прыгает за 1 секунду на 3 метра, а её маленький сынишка прыгает на 1 метр за 0,5 секунды. Они одновременно стартовали от бассейна к эвкалипту по прямой. Сколько секунд мама будет ждать сына под деревом, если расстояние от бассейна до дерева 240 метров



Решение:

1 шаг 240 : 3 = 80 (с) скакала мама Кенгуру

2 шаг сын за 0,5 с - 1 м, за 1 с - 2 м

3 шаг 80 * 2 = 160 (м) проскачет кенгурёнок за 80 с

4 шаг 240 - 160 = 80 (м) осталось проскакать кенгурёнку когда

мама уже под эвкалиптом

5 шаг 80 : 2 = 40 (с)

Ответ: 40 секунд


Задача 4

На скотном дворе гуляли гуси и поросята. Мальчик сосчитал количество голов, их оказалось 30, а затем он сосчитал количество ног, их оказалось 84. сколько гусей и сколько поросят было на школьном дворе?



Решение:

1 шаг Представьте, что все поросята подняли по две ноги вверх

2 шаг на земле осталось стоять 30 * 2 = 60 ног

3 шаг подняли вверх 84 - 60 = 24 ноги

4 шаг подняли 24 : 2 = 12 поросят

5 шаг 30 - 12 = 18 гусей

Ответ: 12 поросят и 18 гусей.

Аналогичная задача: Сколько на лугу коров и гусей, если у них вместе 36 голов и 100 ног. (14 коров, 22 гуся)


Задача 5

На книжной полке можно разместить либо 25 одинаковых толстых книг, либо 45 тонких книг. Можно ли разместить на этой полке 20 толстых книг и 9 тонких книг?



Решение:

1 шаг. Заметим, что и 25 и 45 делятся на 5

25: 5 = 5(к) толстых

45 : 5 = 9 (к) тонких

2 шаг обратить внимание на то, что 5 толстых книг занимает столько же места сколько 9 тонких

3 шаг вывод на 20 толстых книг и 9 тонких - места хватит


Задача 6

Можно ли семь телефонов соединить между собой попарно так, чтобы каждый был соединён ровно с тремя другими?



(7* 3 = 21, число нечётное, нельзя)


Задача 7

Имеются двое песочных часов: на 3 минуты и на 7 минут. Яйцо варится 11 минут. Как отмерить это время при помощи имеющихся часов?



Решение:

Перевернуть обои часы. Когда пройдёт 3 минуты в семиминутных часах останется 4 минуты. Поставьте яйца в это время вариться. Когда 4 минуты закончатся, перевернуть семиминутные часы обратно 4 + 7 + 11 мин.


Задача 8

В ящике лежат шары: 5 красных, 7 синих и 1 зелёный. Сколько шаров надо вынуть, чтобы достать два шара одного цвета?



Решение:

подумайте сколько всего шаров различных цветов можно достать не повторяясь (3)

Ответ: надо вынуть 4 шара


Задача 9

Известно, что P - 2 = Q + 2 = X - 3 = Y + 4 = Z - 5



Решение:

Обращаем внимание учащихся на, то что в каждом случае происходило с числами т.е. Р уменьшили на 2, чтобы сравнять с остальными числами и т.д. В ходе дальнейших рассуждений видим, что Y увеличили на 4, т.е. оно было самым маленьким.


Задача 10

Двум парам молодоженов нужно переправиться на другой берег. Для этого имеется двуместная лодка, но сложность состоит в том, что молодые жены отказались оставаться в обществе незнакомого мужчины без своего мужа. Как осуществить переправу всех четверых, соблюдая это условие?



Решение:

М1М2

М1

Ж1Ж2

Ж1

М1Ж1

Ответ: за 5 переездов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача № 1 :

Разность двух чисел на 17 меньше уменьшаемого и на 9 больше вычитаемого.
Найдите уменьшаемое и вычитаемое. 

Задача № 2 :

Будет ли сумма чисел 1 + 2 + 3 + ......+ 2005 + 2006 + 2007 делиться на 2007?
Ответ обоснуйте. 

Задача № 3 :

Нужно разместить 17 кроликов так, чтобы в каждой клетке было разное количество кроликов.
Какое наибольшее число клеток понадобится? 

Задача № 4 :

На выставку привезли 25 собак. 12 из них большие, 8 маленькие, остальные средние.
Только 10 из участников выставки породистые, остальные дворняжки.
Среди дворняжек поровну больших, маленьких и средних.
Сколько больших породистых собак привезли на выставку? 

Задача № 5 :

Все треугольники, изображенные на рисунке, имеют равные стороны.
http://www.5egena5.ru/images1/olimp_mathematics_004.jpg Радиус каждой из окружностей равен 2 см.
Окружности касаются друг друга и сторон квадрата.
Чему равен периметр звездочки, нарисованной жирной линией?







Ответы :

№ 1 : Ответ: 43 – 17.

№ 2 : Ответ: будет. 
Представим данную сумму в виде следующих слагаемых: (1 + 2006) + (2 + 2005) + …..+ (1003 + 1004) + 2007.
Так как каждое слагаемое делится на 2007, то и вся сумма будет делиться на 2007.

№ 3 : Ответ: 5 клеток.

№ 4 : Ответ: 7 больших породистых собак.

№ 5 : Ответ: 64 см

 

 

 

На некотором острове необычайно регулярный климат по понедельникам и средам всегда идут дожди,по субботам - туман, зато в остальные дни - солнечно.
Утром какого дня недели нужно начать свой отдых группе туристов, если они хотят пробыть там 44 дня и захватить при этом как можно больше солнечных дней? 
A - в понедельник; B - в среду; C - в четверг; D - в пятницу; E - во вторник 
Решение:Выясним, сколько полных недель в 44 днях.
Получим 6 недель. В течении этих недель число солнечных дней не зависит от того, когда начнется отдых. В качестве оставшихся двух дней выбираем четверг и пятницу - солнечные дни.
Следовательно, отправляем туристов утром в четверг.
То есть верный ответ - (С). 



Задача № 2 :

У двузначного числа "n" цифра десятков в два раза больше, чем цифра единиц.
Тогда число "n" обязательно: A - четное; B - нечетное; C - меньше 20; D - делится на 3; E - делится на 6. 
Решение :
Ищем число "n" среди ряда чисел: 10 - 99.
По условию, у всех подозреваемых чисел - десятки четны (2,4,6,8), а единицы - в два раза меньше (1,2,3,4,). Перечислим все эти числа: 21, 42, 63, 84. Все они делятся на 3.
Следовательно верен ответ (D). 


Задача № 3 :

Остаток от деления 100 на некоторое число равен 4. При делении 90 на это же число в остатке получается 18. На какое число делили? A - 18; B - 32; C - 24; D - 36; A - 48; 

Решение :
Из условия следует, что 100-4=96 делится на искомое число.
Также 90-18=72 делится на искомое число.
Их разность также делится на искомое число: 96-72=24. 
Следовательно, искомое число - 24, так как на него делится и 96, и 72. 
Верен ответ (С).


Задача № 4:


Раньше называли число, равное миллиону миллионов, словом "легион". Если разделить миллион легионов на легион миллионов, то получится: A - легион; B - миллион; C - миллион миллионов; D - легион легионов; E - 1
Решение:
Перепишем заново:
делимое: миллион легионов - это миллион миллионов миллионов, 
делитель: легион миллионов - это миллион миллионов миллионов,
следовательно частное равно 1.
Верен ответ (Е).

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Логические задачи 5-6 классы"

Рабочие листы к Вашему уроку:

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 461 544 материала в базе

Материал подходит для УМК

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 31.12.2017 12026
    • DOCX 21 кбайт
    • 174 скачивания
    • Рейтинг: 5 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Бегимбаева Гульнара Нурахметовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 7 лет и 6 месяцев
    • Подписчики: 2
    • Всего просмотров: 58881
    • Всего материалов: 29

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Экскурсовод (гид)

Экскурсовод (гид)

1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 451 человек из 72 регионов

Курс повышения квалификации

Система работы учителя математики по подготовке учащихся основной школы к математическим конкурсам и олимпиадам в рамках обновленного ФГОС ООО

36/72 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 90 человек из 38 регионов

Курс повышения квалификации

Особенности подготовки к проведению ВПР в рамках мониторинга качества образования обучающихся по учебному предмету "Математика" в условиях реализации ФГОС ООО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 185 человек из 53 регионов