Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Классному руководителю / Статьи / Математические средства на уроках математики в начальной школе
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Классному руководителю

Математические средства на уроках математики в начальной школе

библиотека
материалов

Для активизации познавательной деятельности и развития математического мышления на начальном этапе обучения детям предлагаются задачи разных видов. Среди них выделяются поисковые задачи, результатом решения которых, как правило, является догадка, т.е. нахождение пути (способа) решения. Появление догадки свидетельствует о развитии у детей таких качеств умственной деятельности, как смекалка и сообразительность. Смекалка определяется в педагогике как особый вид проявления творчества в нахождении способа решения. Она проявляется в результате анализа, сравнений, обобщений, установления связей, аналогий, выводов, умозаключений. Большая роль отводится интуиции обучаемого. О проявлении сообразительности свидетельствует умение обдумывать конкретную ситуацию, устанавливать взаимосвязи, на основе которых ученик самостоятельно приходит к выводам, обобщениям, оперируя знаниями .

Наиболее полно такие приемы умственной деятельности, как сравнение, обобщение, абстрагирование проявляются при решении в начальной школе задач следующих видов: задачи на нахождение общего признака изображенных предметов, нахождение отличий между ними, на продолжение числового ряда или ряда фигур, поиск недостающей в ряду фигуры, нахождение признака отличия одной группы фигур от другой. Для решения таких задач ученик должен уметь проводить последовательный анализ фигур обеих групп с выделением и обобщением признаков, свойственных каждой из них. Помимо этих, детям могут быть предложены задачи на составление орнаментов, игровые задания с использованием геометрического конструктора, логические задачи.

Проанализируем типологию математических задач программы начальной школы и произведем следующее условное разделение их на два типа, взаимно дополняющих друг друга. В некоторых случаях они могут быть объединены в общее задание.

1 тип – стандартные задачи, обеспечивающие деятельность учащихся по образцу или изученному правилу (выполнение вычислений, измерений, практических заданий и т.п.).

2 тип – задачи, обеспечивающие деятельность по выработке интеллектуальных навыков, включающих в себя ряд исследовательских умений: умение проводить анализ наблюдаемых объектов и выполнять описание наблюдений; умение классифицировать объекты (выделять существенные признаки объекта или последовательности объектов, устанавливать основание классификации или делать выбор основания); умение обобщать и находить закономерности; умение конструировать математические объекты.

Наличие задач второго типа в учебниках по математике начальной школы способствует формированию научного стиля мышления, что соответствует основным положениям концепции развивающего обучения.

В последние годы изданы и внедряются в практику экспериментальные учебные комплекты для начальной школы, которые содержат немалое количество задач второго типа, позволяющих обеспечить пропедевтику формирования исследовательских умений в ходе обучения математике в средней школе.

Как уже было отмечено, учебная исследовательская деятельность – это специально организованная учебная деятельность под руководством педагога, направленная на исследование различных объектов с соблюдением процедур и этапов, близких научному исследованию, но адаптированных к уровню познавательных возможностей школьников.

Исследовательские задачи (решение которых предполагает выполнение нескольких этапов исследования) являются основной формой организации исследовательской деятельности учащихся. Их решение лежит в зоне ближайшего развития младших школьников.

Рассмотрим два способа, как можно сделать сложную для младших школьников исследовательскую деятельность более доступной и привлекательной. Первый способ состоит в предъявлении некоторых исследовательских задач в игровой форме, второй – в использовании старинных задач и исторических сведений. Оба способа могут использоваться одновременно.

Известно, что у младших школьников учебная деятельность не сразу становится ведущей, еще долгое время игра имеет большое значение в их жизни. Игры на уроках математики в I–IV классах используют в основном для формирования вычислительных навыков, их автоматизации. Примером могут служить игры эстафеты и многочисленные игры вида «Забей мяч в ворота», «Собери букет», «Лучший рыбак» и т.п. Они полезны тем, что делают более привлекательной рутинную работу по выработке автоматизма и правильности вычислительных навыков. В этом случае занимательность носит внешний характер по отношению к содержанию вычислительной деятельности. Учащихся увлекает фабула, никак не связанная с процессом вычислений .

Другая ситуация складывается, если игровые задания носят исследовательский характер, тогда в процессе игры у младших школьников возникает необходимость сосредоточиться на сути выполняемых вычислительных действий, исследовать их механизм. Игровые и занимательные задания исследовательского характера способствуют развитию таких качеств вычислительных умений, как осознанность, рациональность, действенность, правильность.

К числу таких заданий могут быть отнесены:

- фокусы с разгадыванием задуманных чисел, со скоростным сложением трех или пяти многозначных чисел, со скоростным умножением или делением некоторых чисел;

- задания с занимательными рамками и магическими квадратами;

- софизмы (например, доказательство того, что 2 + 2 = 5);

- игры типа «Кто первым получит 50» и т.п.

Такие игры и фокусы можно найти в книгах [6]. Их исследовательский характер относится к разгадыванию способа выполнения фокуса или к выработке выигрышной стратегии игры.

Фокусы с разгадыванием задуманных чисел могут быть разного уровня сложности, который в основном определяется числами, набором и количеством выполняемых над ними действий. Простейшие фокусы включают 2-3 действия сложения и вычитания над числами в пределах 10, затем 20. Достаточно сложные фокусы предполагают действия с многозначными числами, например, одновременное сложение большого количества чисел или последовательное выполнение 5-6 разнородных действий. В одном фокусе может быть разгадано сразу несколько чисел, например, чей-то день, месяц и год рождения. Приведем примеры фокусов разного уровня сложности [5].

Фокус 1. Задумайте число, прибавьте к нему 14, к результату прибавьте 6, вычтите задуманное число. У вас получилось 20.

Формула для разгадывания фокуса: а + 14 + 6 – а = 20. Ее можно проиллюстрировать на схематическом чертеже. Для обоснования можно воспользоваться доступными ученикам знаниями — сочетательным свойством сложения: а + 14 + 6 = = а + (14 + 6) = а + 20; а также взаимосвязью суммы и слагаемых: а + 20 – а = 20 (из суммы а + 20 вычли слагаемое а, получили другое слагаемое 20).

Фокус 2 (старинный фокус из главы «Об утешных неких действиях, через арифметику употребляемых» учебника «Арифметика» Л.Ф. Магницкого). У кого из восьми человек (n1), на каком пальце (n2), на каком суставе (n3) находится перстень.

Загадывающий умножает на 2 номер человека, прибавляет 5, умножает результат на 5, прибавляет номер пальца, умножает результат на 10, прибавляет номер сустава и сообщает полученное число тому, кто отгадывает. Пусть перстень находится у четвертого человека (n1 = 4), надет на пятый палец (n2 = 5), на второй сустав (n3 = 5). Выполнив вычисления, приведенные в таблице, можно отгадать, у кого находится перстень.

Если из результата (у нас число 702) вычесть 250, то в ответе (452) первая цифра обозначает номер человека, вторая – номер пальца, третья – номер сустава.

Формула для разгадывания в общем случае выглядит так:((n1 ∙ 2 + 5) ∙ 5 + n2) ∙ 10 + n3 = n1 ∙ 100 + + n2 ∙ 10 + n3 = 250, в нашем случае: ((4 ∙ 2 + + 5) ∙ 5 + 5) ∙ 10 + 2 = 400 + 50 + 2 = 250. Разгадывание этого фокуса, описанного Л.Ф. Магницким более трехсот лет назад (1703), вызывает у младших школьников интерес и своим содержанием, и происхождением.

Фокус 3 (фокус с числом Шехерезады). Участвуют пять человек. Первый участник задумывает трехзначное число и записывает его на бумаге. Второй приписывает к нему-то же самое трехзначное число. Третий делит шестизначное число на 7. Четвертый делит то, что получилось, на 11. Пятый делит то, что получилось, на 13 и передает ведущему. Ведущий отдает результат первому участнику, который видит задуманное им трехзначное число. (Последовательность деления шестизначного числа на 7, 11, 13 может быть произвольной.) Пусть задумано число 583; после приписывания его же получаем 583 583.

Выполняем деление: 583 583 : 7 = 83 369, 83 369 : 11 = 7 579, 7 579 : 13 = 583 – задуманное число. Разгадка фокуса основана: а) на том, что для нахождения результата умножения трехзначного числа на 1 001 (число Шехерезады) достаточно это трехзначное число записать дважды, например:462 ∙ 1 001= 462 462; б) на том, что произведение чисел 7, 11, 13 равно 1 001; в) на свойстве деления числа на произведение: abc abc : 7 : 11 : 13 = abc abc : (7 ∙ 11 ∙ 13) = abc.

Участие в фокусе не обеспечивает исследовательской деятельности школьника, он решает исследовательскую задачу только при разгадывании его сути. После чего он сам может показать фокус другим. Эта перспектива стимулирует его активную познавательную деятельность. Однако, прежде чем приступить к разгадыванию фокуса, целесообразно несколько раз проверить его с разными числами. В этом случае ученики закрепляют свои вычислительные умения, не испытывая усталости (как при решении обычного столбика примеров), поскольку они заинтересованы в результате.

Исследовательский характер некоторых игр тоже кроется не в процессе игры (играть можно, просто выполняя вычисления в соответствии с правилами), а в поиске способа выигрыша. Например, в игре «Кто первый получит 50?» участвуют два человека. Первый может назвать любое целое число от 1 до 5. Второй прибавляет к нему свое число в тех же пределах и т.д. (каждый игрок прибавляет свое число к предыдущей сумме). Выиграет тот, кто первым получит сумму 50.

Для того чтобы победить, надо решить исследовательскую задачу по выработке стратегии игры. Надо подумать, какое число должен назвать победитель в свой предпоследний ход. Если он назовет 45 (46, 47, 48, 49), то его противник прибавит 5 (4, 3, 2, 1) и выиграет. Если он назовет меньше, например 43 (или 42), то противник может прибавить 1, тогда получится 44 (43), т.е. до 50 будет не хватать 6 (7). Эту разницу за один ход не преодолеть, так как нельзя прибавить больше 5. Значит, победа будет отдана противнику. Тот, кто в свой предпоследний ход назовет результат на 5 + 1 меньше, чем 50, т.е. число 44, тот и выиграет. Какое бы число от 1 до 5 ни назвал затем второй игрок, первый может дополнить его число до 6 и получить 50. Рассуждая так же и вычитая из числа 44 по 6, получим ключевые суммы 38, 32, 26, 20, 14, 8. Их получение обеспечит победу первому игроку, если он начал игру с числа 2.

Эту игру можно варьировать, изменяя «шаг» (число, которое прибавляют за один ход) и конечную сумму. Подчеркнем, что ее исследовательский характер проявляется в процессе разработки стратегии выигрыша. Особый интерес представляют игры, исследовательская суть которых проявляется во время их проведения. Например, суть игры с номерами билетов состоит в том, что из цифр билета для проезда на транспорте надо получить число 100, используя арифметические действия и скобки. Любые две (и даже три) соседние цифры при желании можно рассматривать как одно число. Если с одним номером играет несколько человек, то выигрывает тот, кто находит больше вариантов (время можно ограничить). Так, имея билет с номером 114455, можно составить несколько выражений со значением 100:

1) 1 : 1 + 44 + 55 = 100;

2) 1 + 1 ∙ 44 + 55 = 100;

3) 114 – (4 + 5 + 5) = 100;

4) (1 + 1 + 4 + 4) ∙ (5 + 5) = 10 ∙ 10 = 100;

5) (11 – 4 : 4) ∙ (5 + 5) = 10 ∙ 10 = 100;

6) (1 – 1) ∙ 4 + 4 ∙ 5 ∙ 5 = 4 ∙ 5 ∙ 5 = 100.

Подбор вариантов может происходить по-разному. Сначала целесообразно предоставить учащимся возможность осуществить поиск самостоятельно, хаотично. Потом его можно частично упорядочить, взяв за основу определенное арифметическое действие (чаще сложение или умножение, реже вычитание). При этом в записи имеющихся шести цифр можно увидеть ключевое, как правило, двузначное, число, к которому подбирают остальные слагаемые или множители (комбинация остальных цифр должна дополнить имеющееся число до 100). Например, в вариантах 1 и 2 основу суммы составляют сразу два числа – 44 и 55. Варианты отличаются тем, что в первом случае из двух оставшихся единиц получили 1 (это можно было сделать умножением или делением), а во втором – одну из единиц использовали в качестве нейтрального элемента в произведении. В основе варианта 3 лежит вычитание из числа 114 «лишних» 14 единиц. Остальные варианты получены на основе умножения: 100 = 10 ∙ 10 (варианты 4, 5), 100 = 4 ∙ 5 ∙ 5 (вариант 6). В варианте 6 первые три цифры оказались лишними, их можно убрать за счет умножения или деления нуля, полученного вычитанием одинаковых чисел. На множестве целых чисел могут быть еще другие варианты, например:

(– 1 · 1 + 4 ∙ 4 + 5) ∙ 5 = 20 ∙ 5 = 100;

(– 1 – 1 + 4) ∙ (45 + 5) = 2 ∙ 50 = 100.

Постепенно поиск усложняется тем, что слагаемые получают умножением и делением как однозначных, так и двузначных чисел. В данной игре развиваются такие качества творческого мышления, как вариативность (способность находить несколько способов решения теоретических и практических задач при отсутствии специальных указаний на это и выбирать из них оптимальный); гибкость (способность легко переходить от явлений одного класса к явлениям другого класса, часто далеким по содержанию); оригинальность (способность выдвигать новые, неожиданные идеи, отличающиеся от широко известных, общепринятых).

Эта игра также развивает общие умственные действия (анализ, сравнение, обобщение), умение устанавливать причинно-следственные связи. Кроме того, она способствует более глубокому проникновению в процесс вычислений, формированию «чувства числа», усвоению правила порядка выполнения действий, формированию вычислительных умений. Известно, что для развития личности важно, чтобы в основе ее творческой деятельности лежали мотивы, непосредственно связанные с содержанием деятельности.

Во время описанной выше игры есть возможность увлечь младших школьников процессом поиска разных вариантов. Играть с номером билета можно одному, с друзьями или родителями в транспорте, в школе, дома. Многолетний опыт использования этой игры показывает, что ребенка (и взрослого) увлекает сам процесс, радует каждый найденный вариант вычисления. Положительные эмоции от интеллектуальной работы – важный фактор приобщения к культуре. Для того чтобы подготовить детей к игре, можно использовать знакомое задание:

«Расставьте скобки так, чтобы равенства стали верными»:

120 – 90 : 15 ∙ 2 + 1 = 5;

120 – 90 : 15 ∙ 2 + 1 = 118;

120 – 90 : 15 ∙ 2 + 1 = 112;

120 – 90 : 15 ∙ 2 + 1 = 107;

120 – 90 : 15 ∙ 2 + 1 = 2;

120 – 90 : 15 ∙ 2 + 1 = 6;

120 – 90 : 15 ∙ 2 + 1 = 229.

Это упражнение проще описанной выше игры тем, что в нем уже зафиксированы числа и арифметические действия. Занимательные здания исследовательского характера развивают учащихся в перечисленных выше направлениях, а также способствуют более осмысленному выполнению арифметических действий, их обоснованию изученными теоретическими знаниями.

Таким образом, обучение школьников специальным знаниям, а также развитие у них общих умений и навыков, необходимых в исследовательском поиске, – одна из основных практических задач современного образования.

Учебное исследование младшего школьника, так же как и исследование, проводимое взрослым исследователем, неизбежно включает основные элементы: выделение и постановку проблемы (выбор темы исследования); выработку гипотез; поиск и предложение возможных вариантов решения; сбор материала; анализ и обобщение полученных данных; подготовку и защиту итогового продукта.

Многим педагогам мысль о том, что ребенок способен пройти через все эти этапы, кажется сомнительной и даже пугающей. Но эти страхи и сомнения рассеиваются сразу, как только начинается реальная исследовательская работа с детьми.

Схема проведения исследования с младшими школьниками выглядит следующим образом [13]:

  1. Актуализация проблемы. Цель: выявить проблему и определить направление будущего исследования.

  2. Определение сферы исследования. Цель: сформулировать основные вопросы, ответы на которые мы хотели бы найти.

  3. Выбор темы исследования. Цель: обозначить границы исследования.

  4. Выработка гипотезы. Цель: разработать гипотезу или гипотезы, в том числе должны быть высказаны и нереальные - провокационные идеи.

  5. Выявление и систематизация подходов к решению. Цель: выбрать методы исследования.

  6. Определение последовательности проведения исследования.

  7. Сбор и обработка информации. Цель: зафиксировать полученные знания.

  8. Анализ и обобщение полученных материалов. Цель: структурировать полученный материал, используя известные логические правила и приемы.

  9. Подготовка отчета. Цель: дать определения основным понятиям, подготовить сообщение по результатам исследования.

  10. Доклад. Цель: защитить его публично перед сверстниками и взрослыми, ответить на вопросы.

  11. Обсуждение итогов завершенной работы.

Педагоги чаще всего задают себе вопрос, с чего и как начать работу с детьми в направлении исследовательского обучения. Обучать детей младшего школьного возраста специальным знаниям, умениям и навыкам, необходимым в исследовательском поиске, а также методам обработки полученных материалов, не просто и практически не рассматривается в специальной педагогической литературе. При кажущемся обилии научного материала по развитию творческого мышления учащихся, приходится признать, что конкретного методического и дидактического материала, позволяющего строить обучение младших школьников с учетом развития творческого мышления нет.

Одним из действенных и наиболее близких направлений является деятельность по развитию мышления ребенка на специальных занятиях. Эти занятия имеют в школах разное наименование. Их называют уроками логики, развития творческого мышления, развития воображения и другими.

Каковы же навыки и умения, необходимые в решении исследовательских задач? К ним относят умение видеть проблемы; умение задавать вопросы; умение выдвигать гипотезы; умение давать определение понятиям; умение классифицировать; умение наблюдать; умение проводить эксперименты; умение делать выводы и умозаключения; умение структурировать материал; умение доказывать и защищать свои идеи .

Остановимся на некоторых из них. Умение видеть проблемы – свойство, характеризующее мышление человека. Развивается оно в течение длительного времени в самых разных видах деятельности, и все же для его развития можно подобрать специальные упражнения и методики, которые в значительной мере помогут в решении этой сложной педагогической задачи.

Одним из главных, базовых умений исследователя является умение выдвигать гипотезы, строить предположения. Эти умения можно специально потренировать. Вот простое упражнение: «Выдвинете гипотезу (предположения), как птицы узнают дорогу на юг?» Гипотезы в данном случае могут быть и такие: «Птицы определяют дорогу по солнцу и звездам; птицы сверху видят растения (деревья, траву и др.)». Но может быть иная, особенная, неправдоподобная гипотеза, провокационная идея: «Птицы точно находят дорогу на юг потому, что они ловят специальные сигналы из космоса». В развитии умения выдвигать гипотезу помогут упражнения на обстоятельства. Отмечу, что при обучении детей строить предположения необходимо учить их использовать следующие слова: может быть; предположим; допустим; возможно; что, если...

Важным умением для любого исследователя является умение задавать вопросы. Дети очень любят задавать вопросы, а если их от этого систематически не отучать, то они достигают высоких уровней в этом искусстве. Для развития умения задавать вопросы используются разные упражнения: задать вопросы тому, кто изображен; ответить, какие вопросы мог бы задать тебе тот, кто изображен на рисунке; задания, предполагающие исправление чьих-то ошибок, логических, стилистических, фактических и др.

Важным средством мышления является вывод или умозаключение. Для формирования первичных навыков и тренировки умения делать простые аналогии можно воспользоваться такими упражнениями: скажите, на что похожи: узоры на ковре; очертания деревьев за окном; старые автомобили; новые кроссовки.

Хотелось бы выделить важнейшее умение, необходимое каждому учащемуся – умение выделить главную мысль. Этим сложным искусством часто не владеют даже студенты, но обучать ему можно и нужно даже детей. Наиболее простой методический прием, позволяющий это делать, – использование простых графических схем. Схема – «дом с колоннами». Главную идею обозначим большим треугольником, а колонны – это факты, ее подтверждающие. Заключительную фразу обозначим прямоугольником, лежащим в основании. Как видим, даже такая простая схема – хороший помощник для того, чтобы выявить логическую структуру текста. Конечно, использование различных видов упражнений не единственный способ решения задачи. Существуют креативные методы обучения, и даже различные типы креативного урока. Но в начальной школе можно применить лишь некоторые из них. В последнее время в практике работы с детьми младшего школьного возраста в плане развития мышления ребенка и в плане формирования у него исследовательских умений используется также метод проектов или проектирование. Суть проектирования заключается в том, что дети, исходя из своих интересов, вместе с учителем выполняют проект, решая какую-либо практическую исследовательскую задачу.

Не менее важно развитие умений и навыков экспериментирования. Эксперимент (проба, опыт) – важнейший из методов исследования и самый главный метод познания в большинстве наук. Эксперимент предполагает, что мы активно воздействуем на то, что исследуем. Любой эксперимент предполагает проведение каких-либо практических действий с целью проверки и сравнения. Однако эксперименты бывают и мысленные, т.е. такие, которые можно проводить только в уме.

Мысленный эксперимент.

В ходе мысленных экспериментов исследователь представляет себе каждый шаг своего воображаемого действия с объектом и яснее может увидеть результаты этих действий.

Попробуем в ходе мысленного эксперимента решить задачу: «Правильно ли нарисованы тени?» Рассмотри рисунок. На нем изображены солнце и геометрические тела. Правильно ли художник нарисовал их тени?

Почему тени должны быть другими? Какая тень соответствует каждому из изображенных геометрических тел?

hello_html_m3d0f0134.gif

Рис. 1

Эксперименты с реальными объектами.

«Измеряем объем капли».

Самый простой способ – капля падает в емкость известного объема (например, в аптечную пробирку). Другой способ – на аптечных весах определяем, сколько капель в одном грамме. Затем грамм поделим на количество капель и получим вес одной капли, таким образом можно вычислить ее объем.

«Определяем плавучесть предметов».

Детям предлагают выбрать для исследования десять самых разных предметов, например: деревянный брусок, чайная ложка, блюдце, камешек, яблоко, пластмассовая игрушка, картонная коробочка, металлический болт и т.д. Затем дети выдвигают гипотезы, какие предметы будут плавать, а какие утонут. Эти гипотезы надо проверить. Дети не всегда могут гипотетически предсказать поведение в воде таких предметов, как яблоко или пластилин; кроме того, блюдце будет плавать, если его аккуратно опустить на воду, но если в него попадает вода, то блюдце тонет. После того как первый опыт будет закончен, продолжим эксперимент.

Изучим плавающие предметы. Все ли они легкие? Все ли они одинаково хорошо держатся на воде? Зависит ли плавучесть от размеров и формы предмета? Будет ли плавать пластилиновый шарик? А если мы придадим пластилину, например, форму тарелки? А что произойдет, если мы соединим плавающий и не плавающий предметы? Они будут плавать или оба утонут? И при каких условиях возможно и то и другое?

Специфика исследовательской работы в начальной школе заключается в систематической направляющей, стимулирующей и корректирующей роли учителя. Главное для учителя – увлечь и «заразить» детей, показать им значимость их деятельности и вселить уверенность в своих силах, а так же привлечь родителей к участию в школьных делах своего ребёнка.

Таким образом, формировать и развивать научный интерес и исследовательскую активность ребенка необходимо и возможно с младшего школьного возраста, так как для этого существуют все необходимые предпосылки.




Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 27.08.2016
Раздел Классному руководителю
Подраздел Статьи
Просмотров170
Номер материала ДБ-167347
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх