Инфоурок Другое СтатьиМАТЕМАТИЧЕСКОЕ РАЗВИТИЕ ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА СРЕДСТВАМИ ДИДАКТИЧЕСКОГО МАТЕРИАЛА «ПАЛОЧКИ КЮИЗЕНЕРА»

МАТЕМАТИЧЕСКОЕ РАЗВИТИЕ ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА СРЕДСТВАМИ ДИДАКТИЧЕСКОГО МАТЕРИАЛА «ПАЛОЧКИ КЮИЗЕНЕРА»

Скачать материал

 

 

 ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ МАТЕМАТИЧЕСКОГО РАЗВИТИЯ ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА СРЕДСТВАМИ ДИДАКТИЧЕСКОГО МАТЕРИАЛА «ПАЛОЧКИ КЮИЗЕНЕРА»

 

 

1.1.          Анализ психолого-педагогической и методической литературы по математическому развитию детей дошкольного возраста

Понятие математическое развитие дошкольников является очень непростое, комбинированным, многогранным. Оно состоит из связанных между собой и обусловленных понятий о пространстве, форме, величине, времени, количестве, их свойствах и отношениях служащие для формирования жизненных и научных суждений. В ходе изучения элементарных математических представлений ребенок вступает в своеобразные социально- психологические отношения со временем и пространством (как физическим, так и социальным).

Анализируя психолого-педагогическую и методическую литературу видно, что математическое развитие детей дошкольного возраста уходит своими корнями в классическую и народную педагогику. Разные считалки, прибаутки, загадки, пословицы, поговорки были первым хорошим материалом для обучения детей формированию понятий: величина, форма, понятия числа, промежуток времени.

Толкование понятия «математическое развитие» дошкольников изложена в работах Л. А. Венгера и по сей день является популярной в теории и практике обучения математики дошкольников. Объясняется это, как становление и приобретение математических знаний и умений [Венгер 1989].

Также суждение «математического развития» содержится в исследованиях В. В. Абашиной и этому у нее посвящена целая глава. В работе заложена мысль, что «математическое развитие» детей дошкольного возраста-это процесс изменения в интеллектуальной области личности, происходящий в процессе развития математических представлений и понятия.

Из исследования Е. И. Щербаковой «математическое развитие» дошкольников можно рассматривать, как изменения в познавательной деятельности ребенка, возникающий в следствии формирования элементарных математических представлений и относящиеся к ним логических приемов.

В педагогических трудах Я.А. Коменского, М.Г. Песталоцци,                    К.Д. Ушинского, Ф.Фребеля, Л.Н.Толстого поднимается вопрос содержания методов обучения детей дошкольного возраста математике и формирование у них знания о измерении, о размере, о времени и пространстве  [Щербакова 1998].

Я.А. Каменский предлагает обучать детей дошкольников счету в пределах двадцати, учить названия геометрических фигур, сравнивать предметы по величине, научить различать числа больше – меньше.

В классических системах сенсорного обучения Ф. Фребеля и                                       М. Монтессори разработана методика знакомства детей с геометрическими фигурами, величинами, измерением и счетом. А разработанный Ф.Фребелем развивающий материал актуален и в наше время. Система Марии Монессори предполагала использование для воспитания и обучения детей, информацию по развитию математических представлений, которая складывается в стиле сотрудничества взрослого с ребенком, где взрослый выступает наблюдателем в специально созданных условиях и устраивает совместно с ребенком свободную деятельность. Ее система предполагает развитие у ребенка сенсомоторной сферы, а далее - интеллекта. Большое значение уделяется математическому ма­териалу, для начала овладение ребенком набор бус в разной каличественности, после этого— в символах (цифрах), затем — как средство освоения способности сравнивать числа. Отсюда следует, что де­сятичная система счисления представленную ребенку, которую он видит и ося­зает, ведет к успешному изучению арифметикой [Щербакова 2005].

 

К.Д. Ушинский писал, что необходимо учить детей еще до школы, считать предметы и их группы, выполнять действия сложения и вычитания, пополнять знания о десятке, как единицы счета. Советы были обращены к родителям и воспитателям, в связи с отсутствием, в России в то время общего дошкольного образования.

На рубежах XIX — XX в. у методистов появилась необходимость в разработке научной основы методики арифметик. В ней участвовали передовые учителя и методисты П. С. Гурьев, А. И. Гольденберг, Д. Ф. Егоров,                         В. А. Евтушевский, Д. Д. Галанин и др.

Первая методическая теория разрабатывается в 20 годы Ф. Н. Блехер,                         Л. В. Глаголевой, Е. И. Тихеевой, Л.К. Шлегер, принцип которой в том, что освоение математических представлений личности происходит на протяжении жизни и различного вида деятельности. Играя, занимаясь любимым делом или просто живя, ребенок приобретает знания, необходимые ему из окружающего его мира. Взрослый должен лишь создать условия, и тогда игра как средство обучения и метод развивает интересы детей, находчивость, активность, наблюдательность, память и осознание своих ошибок. Разработки в этом направлении и принцип деятельности детского сада обучению детей счету с играли роль как на образования методики как таковой, так и на показатель подготовки детей детского сада к обучению в школе.

На практике работы с детьми (1920г.) опубликовал методическое пособие «Математика в детском саду». Он предлагал на ряду с провидением игр, бесед, практических упражнений, для математического развития дошкольников также знакомить их с такими понятиями, как «один», «много», «поровну», «столько же», «пара», «больше», «меньше» и т д.

Л. А. Леушина положила начало дидактической теории формирования математических представлений разработала программу, средства и систему работы с детьми от 3 до 6 лет. Методическая работа сложилась в результате экспериментальной и научно-теоритической деятельности Л.А. Леушиной и состоит: из неразделенного восприятия множества предметов детям следует демонстрировать отдельных частей этого множества элементов путем попарного сопоставления их, что является до числовым этапом обучения (овладения понятиями «столько же», «больше», «меньше»). Обучение счету происходит на основании овладения детьми действий с множеством и опирается на сравнение двух множеств. А элементарное представление о числе складывается у ребенка в ходе накопления им опыта сравнения ряда предметных групп по признаку количества, не зависимо то других признаков (качественных особенностей, расположения в пространстве).

Разработанная А. М. Леушиной концепция формирования элементарных математических представлений у детей служит началом для многих современных исследований, а дидактическая система прошла испытания временем, результативно действует уже несколько десятков лет, показала свою эффективность в условиях общественного дошкольного воспитания, реализована в «Программе обучения и воспитания в детском саду».

Анализируя психолого-педагогическую и методическую литературу по математическому развитию детей дошкольного возраста доказывает, необходимость и в будущем рассматривать вопросы организации и обучения математике. Создавать и продвигать инновационные технологии, динамично использовать различные средства для работы умственной активности детей: использовать сюрпризные моменты, игровые упражнения, осуществлять работу с наглядным дидактическим материалом, активно участвовать воспитателю в совместной деятельности с детьми, внедрять новые умственные задачи и наглядный материал, выполнение нестандартных задач и решение проблемных ситуации.

 

 

1.2.          Характеристика дидактического материала «палочки Кюизенера»

 

В современном мире существует множество различных методических пособий, форм и средств для эффективного повышения образовательной работы, развития сенсорного воспитания, обучения и использование прочих дидактических средств.

Таким дидактическим материалом является «палочки Кюизенера» (см. Приложение 1), автором этого изобретения является бельгииский учитель начальных классов Джорж Кюизенер (1981-1976гг.). Пособие служит для развития у детей математических способностей в игровой форме. Его используют педагоги всего мира, как в младших группах детских садов, так и в старших классах школы. «Палочки Кюизенера» еще называют «числа в цвете», счетные палочки, цветные линеечки.

Главной особенностью дидактического материала – абстрактность, универсальность, высокая эффективность. Эффективно использовать «палочки Киюзинера» в сочетании с другими пособиями, дидактическим материалом «Логические блоки», а также и самостоятельно.

Методика «палочек в цвете» направленна на достижение целей:

- формирование у ребенка понятие счет;

- развитие понятии в числах: больше-меньше;

- приобретение опыта сложения и вычитания, умножения и деления;

- отличать правую и левую стороны, находить середину,

- развитие творческих способностей, опыт в моделировании и конструировании;

- развивается познавательный интерес, наглядно-действенное и наглядно-образное мышление, активизируется внимание, память и речь.

- развивается мелкая моторика.

Цветные палочки представляют собой 10 различных по цвету и величине параллелепипедов, выполненных из дерева или пластика.

Классический набор содержит 241 палочку, сделанную из дерева, с поперечным сечением 1 см2. В наборе содержатся палочки 10-ти цветов и имеют длину от 1см до 10см.

 

 

 

 

 

Состав классического набора «Цветные счетные палочки»

 

Класс

Цвет

Длина в сантиметрах

Количество

белых

         белый 

 

 

1

 

50

красных

 

     красный  

 вишневый  

коричневый

 

2

8

4

 

50

12

25

 

синих

зелёный  

   синий    

 голубой  

 

3

6

9

 

 

33

16

11

жёлтых

 жёлтый         оранжевый

 

5

10

 

20

10

чёрных

 

  чёрный   

 

7

 

14

 

Существуют разные варианты и модификации наборов палочек. Они могут отличаться цветовой гаммой, но в каждом из наборов существует одно и то же правило: палочки одинаковой длины окрашены в один и тот же цвет и обозначают одно и то же число. В Санкт-Петербурге ООО «Корвет» выпускает комплект палочек, выполненных из пластмассы и содержит 116 палочек 10-ти цветов.

Класс

Цвет

Длина в сантиметрах

Количество

белых

 

 

 

 

белый     

 

 

1

 

25

красных

 

 

 розовый  

 красный  

бордовый  

 

2

4

8

 

20

12

7

синих

 

     

        голубой                      фиолетовый      

          синий      

 

3

6

9

 

16

9

5

жёлтых

 

           жёлтый  

     оранжевый   

5

10

10

4

чёрных

 

 

 

чёрный 

 

7

 

8

 

Близкие по цветам палочки объединяются в семейства или классы. Например, красная палочка обозначает число 4, бордовая 8, розовая 2 - все эти палочки можно отнести к семейству чисел кратных 2; семейство синих палочек кратно 3, жёлтых - 5, чёрных - 7. Белая палочка имеет форму куба со стороной 1см. Она укладывается по длине каждой палочки целое число раз и является условной меркой для определения состава числа из единиц.

Работать с комплектом палочек можно как в вертикальной, так и в горизонтальной плоскости, в зависимости от поставленных задач. Для детей младшего дошкольного возраста целесообразно использовать самодельные плоскостные наборы цветных полосок, выполненных из картона в масштабе 2:1. Если на цветных полосках закрепить магнитную ленту или липучку, то их можно использовать как демонстрационный материал.  

       Цветные палочки Кюизенера изначально были рекомендованы как средство для формирования элементарных математических представлений у детей дошкольного возраста, но в процессе работы с палочками выявился более широкий диапазон их применения в различных видах деятельности.

      Рассмотрим варианты применения технологии цветные «палочки Кюизенера» в рамках реализации программных задач в образовательной области «Познание».

1.     Сенсорное развитие. В процессе работы с цветными палочками у детей развивается способность сравнивать предметы по цвету, форме, величине; определять их место положения в пространстве, развивается глазомер, уточняются и закрепляются знания об основных цветах и их оттенках.

Примерные задания:

- Назови, какого цвета самая длинная (короткая) палочка.

-Какой формы белая (голубая, оранжевая) палочка.

-Выложи все красные палочки слева от себя, а голубые - справа.

- Какого цвета палочки длиннее (короче) фиолетовой.

- Выложи все палочки в ряд, в порядке убывания. Какого цвета палочка стоит между…

2.        Развитие познавательно-исследовательской и конструктивной деятельности. При конструировании из палочек у детей развивается умение устанавливать связь между создаваемыми конструкциями и реальными объектами окружающего мира.

Моделирование из палочек по замыслу даёт детям возможность путём проб, сравнений, обследовательских действий самостоятельно подбирать нужный материал. Дети учатся выдвигать предположения и самостоятельно их проверять, осуществляя практические и мыслительные действия.

Примерные задания:

-Выложи из любых палочек мебель для куколки.

-Выложи разные машины, самостоятельно подбирая палочки.

-Выложи коврик для собачки из любых палочек.

-Выложи из палочек любых животных.

3. Формирование элементарных математических представлений.

Использование цветных палочек Кюизенера позволяет развивать у дошкольников представления о числе на основе счёта и измерения; формировать осознание соотношений «больше - меньше», «больше - меньше на…»; формировать умение делить целое на части; находить состав числа из единиц и двух меньших чисел; упражнять в порядковом и количественном счёте; измерять объект условной меркой. Развивается умение различать и называть геометрические фигуры; происходит ознакомление с пространственными отношениями (слева, справа, вверху, внизу и т.д.)

Примерные задания:

-Белая палочка обозначает число 1. Положите под розовой палочкой столько белых, чтобы их края уравнялись. Сколько белых палочек уместилось под розовой, такое число и будет обозначать розовая палочка. Самостоятельно определите числовое значение жёлтой палочки (голубой, красной и т.д.).

-Разложите карточки с цифрами по порядку. Положите к каждой цифре палочку, соответствующую данному числовому значению.

-Я назову число, а вы покажите соответствующую палочку (и наоборот).

-Разложите палочки в порядке убывания (от самой длинной к самой короткой).

-Сосчитайте сколько всего палочек. Назовите, которая по счёту красная палочка (синяя, оранжевая и т.д.).

-Выложите из палочек треугольник, ромб, квадрат, многоугольник и т.д.

-Разложите палочки на листе так: в левый   верхний угол положите синюю палочку, в верхний правый угол - красную, в левый нижний угол - розовую, в правый нижний - фиолетовую. Белую палочку положите на середину листа.

3.       Предметный мир. Используя «палочки Кюизенера» как мозаику или конструктор, дети могут создавать конструкции различных предметов, а также предметов по лексическим темам, что способствует усвоению видовых и родовых представлений.

4.     Развитие речи. «Палочки Кюизенера» позволяют упражнять детей:

1.     в использовании сравнительных прилагательных: длинный, длиннее, самый длинный; короткий, короче, самый короткий.    

2.     В построении предложно-падежных конструкций.

3.     В употреблении порядковых и количественных числительных.

4.     В запоминании и назывании основных цветов и их оттенков.

На приведённых примерах мы убеждаемся, что дидактическое пособие «Цветные палочки» Кюизенера универсально и может использоваться в различных видах деятельности. Оно соответствует современным требованиям дидактики и позволяет успешно решать программные задачи.

 

1.3. Анализ программ дошкольного образования по использованию палочек Кюизенера в процессе математического развития дошкольников

 

           В наше время существует не одна программа дошкольного образования, а именно программа «От рождения до школы», «Радуга», «Детство», «Школа 2100» и основные (специализированые) и дополнительные программы: «Школа 200», «Математические ступеньки».

         Мы проанилизируем программы дошкольного образования, которые предлагают в процессе математического развития дошкольников использование палочек Кюзиинера.

Программа развития и воспитания в детском саду» Детство», под редакцией Т.И. Бабаевой, З.А. Михайловой, Л.М. Гурович.  Программа создавалась в целях разностороннего развития детей дошкольного возраста, обеспечения единого процесса социализации—индивидуализации личности через осознание ребенком своих потребностей, возможностей и способностей.

Ее девиз: «Чувствовать—познавать—творить». Эти слова, отмечают авторы, определяют три основных направления в развития ребенка, которые пронизывают все разделы программы. На мой взгляд, авторы смогли придать программе целостность и единую направленность.

В большинстве своем занятия проводятся по подгруппам и имеют интегративный характер, восстанавливая взаимосвязи и естественную зависимость предметов и событий.

Математический блок программы «Детство» разработан известными учеными в области теории и методики формирования элементарных математических представлений у дошкольников З.А. Михайловой и Т.Д. Рихтерман. Программный материал представлен по каждой отдельной возрастной группе и имеет своеобразное название «Первые шаги в математику». Вместо традиционных тематических разделов в математическом блоке выделены такие разделы: «Свойства», и отношения», «Числа и цифры», «Сохранение (неизменность) количества и величин», «Алгоритмы». По каждому из разделов сформулированы «представления», «познавательные и речевые умения». Кроме основных целей, для каждой возрастной группы определены основные задачи развития математических знаний и уровни освоения программы. Расширение способов обучения открывает новые возможности перед воспитателем и способствует более гармоничному развитию детей, более быстрому процессу социализации.

Особое внимание при организации процесса формирования математических представлений у детей третьего и четвертого года жизни уделяется созданию развивающей среды. В данном контексте программы отмечено, что окружающие предметы, игрушки должны отличаться по размеру, форме. В процессе игровых действий с предметами, геометрическими телами и фигурами, песком и водой дети познают их свойства, определяют идентичность и различия предме­тов по свойствам. Таким образом, программа позволяет на основе трех составляющих («чувствовать—познавать—творить») каждому ребенку проявлять свою индивидуальность, участвуя в процессе социализации.

Взрослый создает условия и обстановку, благоприятные для вовлечения ребенка в деятельность сравнения, считывания, воссоздания, группировки, перегруппировки и т.д. При этом инициатива в развертывании игры, действия принадлежит ребенку. Воспитатель, в свою очередь, анализирует ситуацию, расставляет приоритеты и дает процессу познания нужное направление. Авторы считают необходимым использовать игры, развивающие мысль ребенка и приобщающие его к умственному труду. В программе, в частности, предлагаются игры с дидактическим пособим цветные счетные палочки (палочки Кюизенера), модели.

Программа предусматривает углубление представлений детей о свойствах и отношениях объектов, в основном через игры на классификацию и сериацию, практическую деятельность, направленную на воссоздание, преобразование форм предметов и геометрических фигур. Дети не только пользуются известными им знаками и символами, но и находят способы условного обозначения новых, неиз­вестных им ранее параметров величин, геометрических фигур, временных и пространственных отношений и т.д. Дети не только получают знания, но и учатся классифицировать по различным признакам и свойствам.

В содержании обучения преобладают логические задачи, ведущие к познанию закономерностей, простых алгоритмов. В ходе освоения чисел педагог способствует осмыслению детьми последовательности чисел и места каждого из них в натуральном ряду. Это выражено в умении детей образовать число больше или меньше заданного, дока­зывать равенство или неравенство группы предметов по числу, на­ходить пропущенное число. Это все позволяет развивать у ребенка способность выстраивать логические цепочки с соблюдением закономерностей конкретных задач находит необходимое место в системе.

Таким образом, можно заметить, что программа «Детство» достаточно содержательна в плане формирования математических знаний.
Привлекает в ней и то, что программа предполагает усвоение не отдельных представлений, а математических отношений, связей, зависимостей, закономерностей, что благоприятно способствует дальнейшему усвоению данной дисциплины в школе.

По программе «Детство» в рамках формирования математических представлений издано пособие «Математика до школы», состоящее из двух частей. Первая часть представлена авторами А.А. Смоленцевой и                         О.В. Пустовойт, которыми разработаны методические рекомендации и предлагаются игры с дидактическими средствами: «Палочки Кюизенера», «Игры с блоками», представлены варианты работы с моделями и схемами. Вторая часть пособия представлена З.А. Михайловой и Р.Л. Непомнящей. В этой части описаны игры-головоломки, которые рекомендуются для работы с детьми.

«Математические ступеньки».

Автор Е.В. Колесникова.

В практической деятельности дошкольных учреждений нашел ши­рокое признание математический цикл «Математические ступеньки». (Данный цикл является авторским и представлен дидактически­ми пособиями по формированию математических представлений у детей дошкольного возраста от 3 до 7 лет. По каждой возрастной группе автором разработано содержание обучения.

В цикле «Математические ступеньки» реализуются основные идеи концепции развивающего обучения Д.Б. Эльконина и В.В. Давыдова. На основе закономерностей возрастного развития ребенка выбираются содержание формы и методы проведения занятий.

В содержании программы выделены традиционные разделы: «Ко­личество и счет», «Величина», «Геометрические фигуры», «Ориенти­ровка во времени», «Ориентировка в пространстве». Кроме этого, выделен и раздел «Логические задачи».

Содержание процесса формирования математических представ­лений разработано по каждой возрастной группе.

Следует подчеркнуть, что программа для детей седьмого года жизни достаточно содержательна, предполагает формирование знаний и умений, необходимых для дальнейшего школьного обучения.

Большое внимание в программе уделено обучению детей записи чисел, знаков, что, как мы уже отметили выше, отличает данную про­грамму от других.

 Работа по формированию геометрических представлений пред­полагает не только знакомство с геометрическими фигурами, но и их анализ, связанный с выделением их составляющих частей. Применение подобных методик позволяет сделать процесс процесса социализации более быстрым. Но в тоже время позволит сохранить личностную индивидуализацию конкретного ребенка.

Содержание программы сопровождается методическими разра­ботками в виде сценариев занятий и рабочих тетрадей, что создает для педагога-практика практическую модель реализации программ­ного материала.

На занятиях по «Формирование математических представлений» целесообразно использовать современные технологии, приёмы, средства (ТРИЗ, блоки Дьенеша, палочки Кюизенера, В. Воскобовича, А. Зака, Б. Никитина). Благодаря использованию развивающих игр, процесс обучения дошкольников проходит в доступной и привлекательной форме, создаются благоприятные условия для развития интеллектуально-творческого потенциала ребёнка.

С математической точки зрения «палочки» -это множество, на котором легко обнаруживаются отношения эквивалентности и порядка. В этом множестве скрыты многочисленные математические ситуации. Цвет и величина, моделируя число, подводят детей к пониманию различных абстрактных понятий, возникающих в мышлении ребенка, естественно, как результат его самостоятельной практической деятельности. Использование "чисел в цвете" позволяет одновременно развивать у детей представление о числе на основе счета и измерения. К выводу, что число появляется в результате счета и измерения, дети приходят на базе практической деятельности, в результате разнообразных упражнений. С помощью цветных палочек детей также легко подвести к осознанию отношений больше-меньше, больше-меньше на..., научить целое делить на части, измерять объекты условными мерками, поупражнять в запоминании состава чисел из единиц и меньших чисел, подойти вплотную к математическим действиям. Играя с палочками дети легко усваивают понятия "левое", "длинное", "между", "каждый", "одна из...", "быть не одного цвета" и др. Палочки как дидактическое средство вполне соответствуют специфике и особенностям математических представлений дошкольников, уровню развития детского мышления. Ребенок сам оценивает связь и зависимость различных понятий и применяет математические понятия.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал

Краткое описание документа:

В современном мире существует множество различных методических пособий, форм и средств для эффективного повышения образовательной работы, развития сенсорного воспитания, обучения и использование прочих дидактических средств.

Таким дидактическим материалом является «палочки Кюизенера» автором этого изобретения является бельгииский учитель начальных классов Джорж Кюизенер (1981-1976гг.). Пособие служит для развития у детей математических способностей в игровой форме. Его используют педагоги всего мира, как в младших группах детских садов, так и в старших классах школы. «Палочки Кюизенера» еще называют «числа в цвете», счетные палочки, цветные линеечки.

Главной особенностью дидактического материала – абстрактность, универсальность, высокая эффективность. Эффективно использовать «палочки Киюзинера» в сочетании с другими пособиями, дидактическим материалом «Логические блоки», а также и самостоятельно.

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 003 524 материала в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 18.03.2020 1443
    • DOCX 167 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Сверчкова Елена Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Сверчкова Елена Викторовна
    Сверчкова Елена Викторовна
    • На сайте: 4 года и 7 месяцев
    • Подписчики: 0
    • Всего просмотров: 21791
    • Всего материалов: 5

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой