Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Материал для подготовки к государственной итоговой аттестации "Линейная функция на ГИА"

Материал для подготовки к государственной итоговой аттестации "Линейная функция на ГИА"

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

Линейная функция на ГИА.


Представленная работа может быть использована: при самостоятельной подготовке учащихся к ГИА; при организации устной работы к урокам в 7 классе и уроков повторения в 7-9 классах; при организации уроков коррекции (ликвидация пробелов в знаниях); при проведении занятий по подготовке к ГИА. Задачи к работе были взяты из тренировочных и диагностических работ по математике. Использование представленной работы позволит разнообразить форму проведения урока, привлечь к общению большее количество учеников




















  1. Дана функция . Какой из приведенных ниже графиков является графиком этой функции?

у у


1


0 х х

0



а) б)

у у



1 1

х х

-1,5 0 - 2 0



в) г)

у

2. Дан график функции .

Подберите формулу, задающую

эту функцию.

-0,5 0 х

а)

б)

в) -1

г)


3. Среди формул укажите те, которые задают линейную функцию

а) y = 12x - 10; б) y = 4 - 0,5x; в) y = 15x; г) y = x(1-x); д) y =x

1. в,г,д 2. б,г,д 3. а,б,в 4. а,б,


4. Какова формула линейной функции, график которой проходит через точку

А (1;2), В (-1;-2)?

1. y = 2х; 2. y = -2х; 3. y = -0,5х; 4. нет правильного ответа

5. Не, выполняя построения, определите взаимное расположение графиков функций: у = 3х + 2 и у = 2х –3

1) пересекаются; 2) параллельны; 3) совпадают; 4) нельзя определить.

6. В какой четверти находится точка пересечения прямых 2х – 3у = 1 и 3х + у = 7?

1) в I; 2) во II; 3) в III; 4) в IV.







7. Вычислите координаты точки А

hello_html_597e7bf2.png



8. На координатной плоскости отмечены точки P и Q. Какое уравнение задаёт прямую, проходящую через эти точки?hello_html_4d5006ad.png

1) х +у = 16;

2) х + у = 26;

3) х – у = 4;

4) х – у = 5.









9. Используя рисунок, составьте систему двух уравнений с двумя переменными, решением которой является пара (1; 4).


hello_html_2df2ada3.png










10. Какая функция является возрастающей?

hello_html_m328c74af.png

11. На каком рисунке изображён график функции ?

hello_html_m64865928.pnghello_html_m75e10705.png


12. Для каждого графика функции укажите соответствующую ему формулу.


hello_html_38883794.pnghello_html_mc34253d.png

hello_html_76e58c21.pnghello_html_54d08112.png





13 На рисунке изображен график функции у = kx + b. Определите знаки k и b.

1) k > 0, b > 0; hello_html_m153d22cf.png

2) k > 0, b < 0;

3) k < 0, b > 0;

4) k < 0, b < 0/





14. Соотнесите рисунок, изображающий график функции у = kx + b, с одним из условий:

1) k < 0; b = 0; 2) k > 0, b > 0; 3) k =0, b > 0

hello_html_m6ed8dd88.png



15. По графику функции найдите все значения х, при которых значения функции положительны.

hello_html_m3c9b6f80.png



16. Каждую прямую, построенную на координатной плоскости, соотнесите с её уравнением.

1) х = -1; 2) у = х; 3) у = - х; 4) у = -3.

hello_html_m472b9edc.pnghello_html_m732be584.png



17. Прямая l задаётся уравнением х – у = 2. Установите соответствие между уравнениями прямых и утверждениями.

А) 2х – 3у = 2 1) прямая имеет бесконечное число общих точек с прямой l

Б) 2х – 2у = -4 2) прямая имеет одну общую точку с прямой l

В) –х + у = -2 3) прямая не имеет общих точек с прямой l.


18. Постройте график функции у= 6 - х .При каких значениях аргумента выполняется неравенство 0у2?


19. Точки А(1; 2) и В(1; 3) являются концами отрезка АВ. Найдите все значения k, при каждом из которых прямая у = kx + 1 пересекает отрезок АВ?


20. Прямая проходит через точку А(2,5; 1). Угловой коэффициент этой прямой равен -0,4. Запишите уравнение этой прямой и найдите координаты точки, в которой она пересекает ось .

21. Запишите уравнение прямой, параллельной прямой и проходящей через точку С(7; -2,5).

22. Прямая пересекает ось в точке (21; 0), а ось в точке (0; 7). Запишите уравнение этой прямой. Проходит ли эта прямая через точку (-42; -12)?

23. Прямые , и , попарно пересекаясь, образуют треугольник. Вычислите координаты вершин этого треугольника.


24. Выясните, проходят ли прямые , и через одну точку.


25. Постройте график функции . При каких значениях аргумента функция принимает отрицательные значения?


26. Постройте график функции . При каких значения выполняется неравенство ?


27. Постройте график функции и укажите промежуток, на котором функция возрастает.

hello_html_m770bf64c.png


28. Выясните, лежат ли на одной прямой точки А(12; 3), В(14; 7), С(-5; -11)

29. При каких значениях а отрезок с концами в точках А(-5; -6) и В(-5; а) пересекает прямую 2х – у = -3?



Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Автор
Дата добавления 06.07.2016
Раздел Математика
Подраздел Конспекты
Просмотров60
Номер материала ДБ-139158
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх