Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015

Опубликуйте свой материал в официальном Печатном сборнике методических разработок проекта «Инфоурок»

(с присвоением ISBN)

Выберите любой материал на Вашем учительском сайте или загрузите новый

Оформите заявку на публикацию в сборник(займет не более 3 минут)

+

Получите свой экземпляр сборника и свидетельство о публикации в нем

Инфоурок / Математика / Другие методич. материалы / Методические указания по выполнению самостоятельной внеаудиторной работы по дисциплине «Математика» для студентов 2 курса специальности 260807 Технология продукции общественного питания
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Методические указания по выполнению самостоятельной внеаудиторной работы по дисциплине «Математика» для студентов 2 курса специальности 260807 Технология продукции общественного питания

библиотека
материалов


ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ, НАУКИ И МОЛОДЕЖНОЙ ПОЛИТИКИ ВОРОНЕЖСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВОРОНЕЖСКОЙ ОБЛАСТИ

«СЕМИЛУКСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИКО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ»

















методические указания

по выполнению самостоятельной внеаудиторной работы

по дисциплине «Математика»

для студентов 2 курса

(специальность 260807 Технология продукции общественного питания)




















Семилуки , 2014

Методические указания по выполнению самостоятельной внеаудиторной работы по дисциплине «Математика» для студентов 2 курса специальности 260807 Технология продукции общественного питания









Составитель:

М.Д.Евдокимова , преподаватель математики







Учебное пособие содержит указания по выполнению внеаудиторных самостоятельных работ по «Математика», являющейся естественно-научной дисциплиной. Методические указания составлены в соответствии с рабочей программой по дисциплине «Математика» и предназначены для студентов 2-го курса, обучающихся по специальности 260807 Технология продукции общественного питания.














Оглавление



Введение

5

Раздел 1. Основные понятия и методы математического анализа

7

Тема 1.1. Основы дифференциального и интегрального исчисления

7

Тема 1.2. Обыкновенные дифференциальные уравнения

15

Раздел 2. Основные понятия и методы теории вероятностей и математической статистики

18

Тема 2.1. Вероятность. Теоремы сложения и умножения

18

Тема 2.2. Случайная величина, ее функция распределения

23

Тема 2.3. Математическое ожидание и дисперсия случайной величины

26

Тема 2.4. Элементы математической статистики

27

Раздел 3. Основные математические методы решения прикладных задач в области профессиональной деятельности.

32

Тема 3.1. Проценты и пропорции

32

Литература

36

Задачи профессиональной направленности


37



Введение


Методические указания по выполнению внеаудиторной самостоятельной работы по естественно - научной дисциплине «Математика» предназначены для студентов, обучающихся по специальности 260807 Технология продукции общественного питания.

Объем самостоятельной работы студентов определяется государственным образовательным стандартом среднего профессионального образования (ФГОС СПО) по специальности 260807 Технология продукции общественного питания базовой подготовки.

Выполнение внеаудиторной самостоятельной работы является обязательной для каждого студента, её объём в часах определяется действующим рабочим учебным планом Семилукского государственного технико-экономического колледжа по данной специальности.

Самостоятельная внеаудиторная работа проводится с целью:

- систематизации и закрепления полученных теоретических знаний студентов;

- углубления и расширения теоретических знаний;

- развития познавательных способностей и активности студентов, самостоятельности, ответственности и организованности;

- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации.

Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия. По математике используются следующие виды заданий для внеаудиторной самостоятельной работы:

для овладения знаниями: чтение текста (учебника, дополнительной литературы), работа со словарями и справочниками, учебно-исследовательская работа, использование аудио- и видеозаписей, компьютерной техники и Интернета;

для закрепления и систематизации знаний: повторная работа над учебным материалом (учебника, дополнительной литературы, аудио- и видеозаписей), составление плана и алгоритма решения, составление таблиц для систематизации учебного материала, ответы на контрольные вопросы, подготовка сообщений к выступлению на уроке, конференции, подготовка сообщений, докладов, рефератов, тематических кроссвордов;

для формирования умений: выполнение схем, анализ карт, подготовка к деловым играм.


Содержание заданий самостоятельной работы ориентировано на подготовку студентов к освоению профессиональных модулей ОПОП по специальности 260807 Технология продукции общественного питания и овладению профессиональными компетенциями:

ПК 1.1. Организовывать подготовку мяса и приготовление полуфабрикатов для сложной кулинарной продукции.

ПК 1.2. Организовывать подготовку рыбы и приготовление полуфабрикатов для сложной кулинарной продукции.

ПК 1.3. Организовывать подготовку домашней птицы для приготовления сложной кулинарной продукции.

ПК 2.1. Организовывать и проводить приготовление канапе, легких и сложных холодных закусок.

ПК 2.2. Организовывать и проводить приготовление сложных холодных блюд из рыбы, мяса и сельскохозяйственной (домашней) птицы.

ПК 2.3. Организовывать и проводить приготовление сложных холодных соусов.

ПК 3.1. Организовывать и проводить приготовление сложных супов.

ПК 3.2. Организовывать и проводить приготовление сложных горячих соусов.

ПК 3.3. Организовывать и проводить приготовление сложных блюд из овощей, грибов и сыра.

ПК 3.4. Организовывать и проводить приготовление сложных блюд из рыбы, мяса и сельскохозяйственной (домашней) птицы.

ПК 4.1. Организовывать и проводить приготовление сдобных хлебобулочных изделий и праздничного хлеба.

ПК 4.2. Организовывать и проводить приготовление сложных мучных кондитерских изделий и праздничных тортов.

ПК 4.3. Организовывать и проводить приготовление мелкоштучных кондитерских изделий.

ПК 4.4. Организовывать и проводить приготовление сложных отделочных полуфабрикатов, использовать их в оформлении.

ПК 5.1. Организовывать и проводить приготовление сложных холодных десертов.

ПК 5.2. Организовывать и проводить приготовление сложных горячих десертов.

ПК 6.1. Участвовать в планировании основных показателей производства

ПК 6.2. Планировать выполнение работ исполнителями.

ПК 6.3. Организовывать работу трудового коллектива.

ПК 6.4. Контролировать ход и оценивать результаты выполнения работ исполнителями.

ПК 6.5. Вести утвержденную учетно-отчетную документацию.


В процессе освоения дисциплины у студентов должны формироваться общие компетенции:

ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

ОКЗ. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.

ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.

ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

ОК 10. Исполнять воинскую обязанность, в том числе с применением полученных профессиональных знаний (для юношей).


В результате освоения учебной дисциплины обучающийся должен


уметь:

- решать прикладные задачи в области профессиональной деятельности.

- применять простые математические модели систем и процессов в сфере профессиональной деятельности;


знать:

- значение математики в профессиональной деятельности и при освоении профессиональной образовательной программы;

- основные понятия и методы математического анализа, теории вероятностей и математической статистики;

-основные математические методы решения прикладных задач в области профессиональной деятельности.


Перед выполнением внеаудиторной самостоятельной работы студент должен внимательно выслушать инструктаж преподавателя по выполнению задания, который включает определение цели задания, его содержание, сроки выполнения, ориентировочный объем работы, основные требования к результатам работы, критерии оценки. В процессе инструктажа преподаватель предупреждает студентов о возможных типичных ошибках, встречающихся при выполнении задания.

В пособии представлены как индивидуальные, так и групповые задания в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности. В качестве форм и методов контроля внеаудиторной самостоятельной работы студентов используются аудиторные занятия, зачеты, тестирование, самоотчеты, контрольные работы.

Критериями оценки результатов внеаудиторной самостоятельной работы студента являются:

- уровень освоения студентом учебного материала;

- умение студента использовать теоретические знания при выполнении практических задач;

- сформированность общеучебных умений;

- обоснованность и четкость изложения ответа;

- оформление материала в соответствии с требованиями.


В методических указаниях приведены теоретический (справочный) материал в соответствии с темой работы, обращение к которому поможет выполнить задания самостоятельной работы; вопросы для самоконтроля, подготавливающие к выполнению заданий и сами задания.


Раздел 1. Основные понятия и методы математического анализа

Тема 1.1. Основы дифференциального и интегрального исчисления

Самостоятельная работа №1 Подготовка сообщения «Возникновение понятия производной»


Цель: получить представление о понятии производной, ее применении в различных областях науки

Самостоятельная работа: работа с литературой, интернет-ресурсами.

Форма контроля: сообщение на уроке

Самостоятельная работа №2 Подготовка сообщения «Приложение производной в производственных процессах»


Цель: получить представление о применении производной в производственных процессах, при решении прикладных задач в области профессиональной деятельности

Самостоятельная работа: работа с литературой, интернет-ресурсами.

Форма контроля: сообщение на уроке


Самостоятельная работа №3 Подготовка сообщения «Приложение интегралов в производственных процессах»


Цель: получить представление о применении интегралов в производственных процессах, при решении прикладных задач в области профессиональной деятельности

Самостоятельная работа: работа с литературой, интернет-ресурсами.

Форма контроля: сообщение на уроке


Самостоятельная работа №4 Интегрирование заменой переменной и по частям в неопределенном интеграле


Цель: закрепить навыки по вычислению интегралов различными способами.

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Вычислить интегралы по таблице (непосредственное интегрирование)

  2. Вычислить интегралы методом замены переменной

  3. Вычислить интегралы методом интегрирования по частям



Теоретический материал и методические указания к выполнению заданий


Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

F(x) + C. Записывают: hello_html_m136c8b5e.gif, где hello_html_103d2fdf.gif- есть некоторая первообразная функции hello_html_m2ae32f10.gif на этом промежутке, С – const. При этом знак hello_html_m159821fc.gifназывается знаком интеграла, hello_html_m2ae32f10.gif - подынтегральной функцией, hello_html_743f661a.gif - подынтегральным выражением, hello_html_m5e67afe9.gif - переменная интегрирования, С- постоянная интегрирования.

Операция нахождения неопределенного интеграла от данной функции называется интегрированием данной функции.

Интегрирование – операция, обратная операции дифференцирования. У всякой непрерывной на данном интервале функции существует неопределенный интеграл.


Таблица неопределенных интегралов


hello_html_45edcd1.gif

hello_html_m575fb376.gif

hello_html_4189ff0b.gif

hello_html_m693c8804.gif

hello_html_1cd32b4e.gif

hello_html_m4a7b3a18.gif

hello_html_m56ea6159.gif

hello_html_m86f8ffd.gif

hello_html_m3ef3d868.gif

hello_html_10f7ecf3.gif

hello_html_447a74df.gif

hello_html_m95f6b35.gif

hello_html_m11fe54c8.gif

hello_html_2166578a.gif

hello_html_3067834a.gif


Свойства неопределенного интеграла:

hello_html_4dd99637.gif;

hello_html_m7edb340d.gif;

hello_html_49c87865.gif

hello_html_59403b0d.gif;

Методы интегрирования
1. Непосредственное интегрирование

Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

Рассмотрим применение этого метода на примере:

hello_html_m448ca093.gif.

Пример 2.

hello_html_mea971ef.gif.

Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.


2. Метод замены переменных

Теорема: Если требуется найти интеграл hello_html_m9981596.gif, но сложно отыскать первообразную, то с помощью замены hello_html_m3922fc48.gif и hello_html_1296bf57.gif получается:


hello_html_m4bf5068f.gif .


Пример 3. Найти неопределенный интеграл hello_html_m76c04a1d.gif.


Сделаем замену t = sinx, dt = cosxdt.

hello_html_m41eecb34.gif.

Пример 4. hello_html_1ceb1b0d.gif.


Замена hello_html_me13c8dc.gif


Получаем:


hello_html_m2a92c170.gif.


Пример 5.


hello_html_m177bb066.gif.


3. Интегрирование по частям


Способ основан на известной формуле производной произведения:

hello_html_3a9503fa.gif

где u и hello_html_mc35f771.gif – некоторые функции от х.

В дифференциальной форме: hello_html_m41bed2a7.gif

Проинтегрировав, получаем:

hello_html_m5c4eca4e.gif

а в соответствии с приведенными выше свойствами неопределенного интеграла:


hello_html_m49004d01.gif или hello_html_4dedb4e.gif

Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.


Пример 6.

hello_html_m151970e0.gif


hello_html_m413301ae.gif


hello_html_m727a0b11.gif.

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.


Пример 7. hello_html_21705da.gif


hello_html_60cbb77a.gif


hello_html_m34dec583.gif.


Перед выполнением внеаудиторной самостоятельной работы, прочитайте еще раз конспект, учебник и ответьте на следующие вопросы:

  1. Дайте определение неопределенного интеграла.

  2. Чему равен неопределенный интеграл?

  3. Как называется каждый элемент в обозначении неопределенного интеграла?

  4. Что называется интегрированием функции?

  5. Перечислить основные свойства неопределенного интеграла.

  6. Таблица неопределенных интегралов.

  7. В чем заключается метод непосредственного интегрирования при отыскании неопределенного интеграла?

  8. В чем заключается метод замены переменной (метод подстановки) при отыскании неопределенного интеграла?

  9. В чем заключается метод интегрирования по частям при отыскании неопределенного интеграла?


Задание.


  1. Вычислить неопределенные интегралы:


    1. hello_html_m61aadea.gif;


1.11. hello_html_6ba7e7d6.gif;


    1. hello_html_m20909f31.gif;


hello_html_5556585e.gif;


    1. hello_html_372d6d6d.gif;


hello_html_m124605e.gif;

    1. hello_html_5bfaf39.gif;


hello_html_13362a63.gif

    1. hello_html_59834bd7.gif


hello_html_221411f0.gif;


    1. hello_html_m7dc0ba06.gif


1.16.hello_html_3a8267e4.gif;


    1. hello_html_1fd904d7.gif


hello_html_4df3b157.gif;


    1. hello_html_1c3f2508.gif;


1.18.hello_html_5871d7e3.gif

    1. hello_html_m4eb2074d.gif;


hello_html_76e66f8a.gif;


    1. hello_html_2aa0af88.gif;


hello_html_m6ffc09b.gif.



Самостоятельная работа №5 Вычисление определенных интегралов


Цель: закрепить навыки по вычислению определенных интегралов различными способами.

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Вычислить интегралы по таблице (непосредственное интегрирование)

  2. Вычислить интегралы методом замены переменной

  3. Вычислить интегралы методом интегрирования по частям



Теоретический материал и методические указания к выполнению заданий


Понятие определенного интеграла

Определение. Если интегральная сумма hello_html_24b8714.gif имеет предел hello_html_7a2c4d76.gif, который не зависит ни от способа разбиения отрезка hello_html_m24d51e6d.gif на частичные отрезки, ни от выбора точек hello_html_bab6d2d.gif в них, то этот предел называют определенным интегралом от функции hello_html_m44d905e4.gif на отрезке hello_html_m24d51e6d.gif и обозначают hello_html_m117cbbb6.gif.

Таким образом, hello_html_m6203f3c6.gif,

где hello_html_64bca322.gif – нижний предел интегрирования; hello_html_1820d7e6.gif – верхний предел интегрирования;

hello_html_m44d905e4.gif – подынтегральная функция; hello_html_585dddcf.gif – подынтегральное выражение;

hello_html_2b4ee4d9.gif – переменная интегрирования; hello_html_m24d51e6d.gif – отрезок интегрирования.


Основные свойства определенного интеграла

1. Определенный интеграл не зависит от обозначения переменной интегрирования:

hello_html_5f15451f.gif.

  1. Постоянный множитель можно выносить за знак определен-ного интеграла:

hello_html_4a01ca93.gif, где hello_html_m22c635c9.gif.

  1. Интеграл от суммы (разности) двух или нескольких интегрируемых на отрезке hello_html_m24d51e6d.gif функций равен сумме (разности) интегралов от этих функций, то есть

hello_html_m3c916f11.gif.

  1. hello_html_7f096019.gif.

  2. Если hello_html_4dad90cf.gif, то hello_html_41abd238.gif.

  3. Если функция hello_html_f94f218.gif на отрезке hello_html_m24d51e6d.gif, то hello_html_7f694b04.gif на этом отрезке.

  4. Если на отрезке hello_html_m24d51e6d.gifhello_html_m7e91e1ec.gif, то hello_html_15a5b04c.gif.

Формула Ньютона–Лейбница

Пусть функция hello_html_mf74c802.gif интегрируема на hello_html_m24d51e6d.gif. Если функция hello_html_mf74c802.gif непрерывна на отрезке hello_html_m24d51e6d.gif и hello_html_m4f6f0ec9.gif – какая-либо ее первообразная на hello_html_m24d51e6d.gif, то

hello_html_37582ec7.gif.

Данная формула позволяет вычислить определенный интеграл.

Пример. Вычислить интеграл hello_html_63817e9a.gif.

hello_html_m4b7a713d.gif


Интегрирование заменой переменной и по частям в определенном интеграле

Замена переменной в определенном интеграле


Теорема. Пусть функция f (x) непрерывна на отрезке [a;b] и пусть функция x = (t) имеет непрерывную производную j '(t) на отрезке [;], область значений этой функции – отрезок [a;b], то есть a j (t) b для x t [a;b], причем j (a) = a, j (b) = b.

Тогда справедливо равенство:

hello_html_140c806f.gif.

Пример.

hello_html_m6fc59dfe.gif

При замене переменной часто бывает удобно пользоваться не подстановкой hello_html_m7be062e8.gif для перехода к новой переменной hello_html_m6789c367.gif, а наоборот, обозначать буквой hello_html_m6789c367.gif некоторую функцию от hello_html_m3994c581.gif и принимать ее за новую переменную: hello_html_7ba849f6.gif. В этом случае новые пределы hello_html_m2ed0621a.gif и hello_html_43067fdc.gif определяют сразу по формулам hello_html_m1ffb3fed.gif, hello_html_m3ab73791.gif.


Интегрирование по частям в определенном интеграле


Теорема. Пусть функции u(x) и V(x) имеют непрерывные производные на [a;b]. Тогда справедливо равенство:

hello_html_4e937255.gif

Пример. hello_html_67dbf787.gif.

Решение. Положим hello_html_4c9699f7.gif, hello_html_m611dbe83.gif, тогда hello_html_m7b664c26.gif, hello_html_22277148.gif.

Применяя формулу, получим

hello_html_24cfb802.gif.

Пример. hello_html_m29039d38.gif

hello_html_m65c106ed.gifhello_html_m4163ba01.gif


Перед выполнением внеаудиторной самостоятельной работы, прочитайте еще раз конспект, учебник и ответьте на следующие вопросы:

  1. Назовите задачи, приводящие к понятию определенного интеграла.

  2. Что называется определенным интегралом?

  3. Каков геометрический смысл определенного интеграла?

  4. Перечислите основные свойства определенного интеграла.

  5. Напишите формулу Ньютона-Лейбница.

  6. Напишите формулу интегрирования по частям в определенном интеграле.


Задание.


  1. Вычислить определенные интегралы:

  1. hello_html_m18e4e17b.gif

  2. а) hello_html_31a17fb7.gif; б) hello_html_m7bab19b5.gif.

  3. а) hello_html_m40c3b921.gif; б) hello_html_m45a3e0e.gif.


Самостоятельная работа №6 Подготовка сообщения «Практические приложения определенных интегралов»


Цель: получить представление о применении определенных интегралов в различных областях науки

Самостоятельная работа: работа с литературой, интернет-ресурсами.

Форма контроля: сообщение на уроке



Самостоятельная работа №7 Вычисление площадей фигур с помощью определенных интегралов

Цель: закрепить навыки по вычислению площадей фигур с помощью определенных интегралов

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Вычислить площади фигур с помощью определенных интегралов


Теоретический материал и методические указания к выполнению заданий


Вычисление площади плоской фигуры


hello_html_1b98e4f5.jpghello_html_1b98e4f5.jpghello_html_1b98e4f5.jpg

Пример: Вычислить площадь фигуры, ограниченной линиями: hello_html_m3ff48016.gif и hello_html_7d885833.gif.

Рhello_html_2da33982.gifешение: Найдем координаты точек пересечения линий: hello_html_574b0172.gifhello_html_6f1877b0.gifhello_html_39bcdcee.gifhello_html_m3dbb3ab7.gifhello_html_39bcdcee.gif

hello_html_512c6915.gif; hello_html_m2cd5713a.gifhello_html_1b730b13.gifhello_html_777e2159.gif; hello_html_31b784c2.gif.

hello_html_m53e6fba6.gif

hello_html_24d7556f.gif;



Перед выполнением внеаудиторной самостоятельной работы, прочитайте еще раз конспект, учебник и ответьте на следующие вопросы:

  1. Назовите задачи, приводящие к понятию определенного интеграла.

  2. Что называется определенным интегралом?

  3. Каков геометрический смысл определенного интеграла?



Задание:

  1. Вычисление площадей фигур с помощью определенных интегралов

  1. Найти площадь фигуры, ограниченной параболойhello_html_m592cdb15.gif , прямой x=2 и осью OX

  2. Найти площадь фигуры, ограниченной параболойhello_html_m4abe8b97.gif и осью OX

  3. Найти площадь фигуры, ограниченной линиями hello_html_513c5e64.gif

  4. Найти площадь фигуры, ограниченной линиями hello_html_m3839936d.gif



Тема 1.2. Обыкновенные дифференциальные уравнения


Самостоятельная работа №8 Подготовка сообщения «Уравнение Бернулли»


Цель: получить представление о дифференциальных уравнениях Бернулли, о применении дифференциальных уравнений в различных областях науки

Самостоятельная работа: работа с литературой, интернет-ресурсами.

Форма контроля: сообщение на уроке



Самостоятельная работа №9 Решение линейных однородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами

Цель: закрепить навыки по решению линейных однородных дифференциальных уравнений 2-го порядка с постоянными коэффициентами

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Решить дифференциальные уравнения 1-го порядка с разделяющимися переменными.

  2. Найти общее решение дифференциальных уравнений.

  3. Решить задачу Коши:


Теоретический материал и методические указания к выполнению заданий


Обыкновенные дифференциальные уравнения


Дифференциальным уравнением первого порядка называется уравнение, в которое, кроме независимой переменной hello_html_m3994c581.gif и искомой функции hello_html_3be09a5d.gif, входит либо производная hello_html_532d7c1.gif:

hello_html_52e0cc99.gif,

либо дифференциалы hello_html_27df142e.gif и hello_html_m3905683f.gif:

hello_html_bbd1018.gif.

Удобнее рассматривать уравнение, разрешенное относительно hello_html_532d7c1.gif:

hello_html_5a3c079.gif. (1)

Задачей Коши для дифференциального уравнения первого порядка называют задачу, состоящую в отыскании решения hello_html_2b172c90.gif уравнения (1), удовлетворяющего заданному начальному условию hello_html_1c175151.gif.

Решение задачи Коши называют частным решением дифференциального уравнения.


Пример: Проверить является ли функция hello_html_m3e6f1460.gifрешением дифференциального уравнения hello_html_6e2ae3dc.gif.

Решение: Найдём производную функции:

hello_html_4f35a787.gifhello_html_166427e2.gifhello_html_m23d47a5c.gif

Подставим найденное выражение в левую часть уравнения:

hello_html_m28a87603.gif Левая часть равна правой, следовательно, данная функция hello_html_m3e6f1460.gif является решением дифференциального уравнения hello_html_6e2ae3dc.gif.


Уравнения с разделяющимися переменными

Уравнение вида

hello_html_e123d51.gif (2)

называется уравнением с разделяющимися переменными.


Алгоритм решения дифференциальных уравнений с разделяющимися переменными

1. Перепишем уравнение (2) в виде hello_html_m4b49dbbd.gif.

2. Разделим переменные, т. е. в правую часть уравнения «перенесем» все выражения, содержащие hello_html_6de8aff0.gif, а в левую часть содержащие hello_html_3be09a5d.gif.

3. В результате получим уравнение hello_html_m13d08c7c.gif,

где коэффициент при hello_html_27df142e.gif функция только от hello_html_6de8aff0.gif, при hello_html_m3905683f.gif функция только от hello_html_3be09a5d.gif).

4.Интегрируя обе части этого уравнения:

hello_html_62a3490f.gif.

5.Получим его общее решение:


Пример . Найти общее решение: hello_html_15af8ec0.gif

Решение: преобразуем уравнение к виду: (3x-2)dy=(y+4)dx

hello_html_m6b3bbd40.gif Можно интегрировать: hello_html_439f3b85.gif.

hello_html_m48ad302f.gif, где Сhello_html_m3132e3c.giflnC

hello_html_372602c3.gif( по теоремам о логарифмах)

hello_html_m2a407c20.gif

hello_html_5de53d79.gif

hello_html_3ed7294a.gif-общее решение


Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами



Это уравнения вида hello_html_m4d2dfe16.gif, где p и q – некоторые действительные числа.

Заменив в нем hello_html_m65a1b035.gif на hello_html_m73ad1b64.gif, hello_html_532d7c1.gif – на k и у – на hello_html_m48c174ef.gif, получим hello_html_m57b50bae.gif - характеристическое уравнение.


Вид общего решения уравнения (1) зависит от корней характеристического уравнения


Корни hello_html_m57b50bae.gif

Общее решение hello_html_m4d2dfe16.gif

hello_html_m621a6d49.gif, hello_html_m771aeac3.gif – действительные числа и hello_html_m6ef6243.gif

hello_html_4788e9a7.gif

hello_html_m621a6d49.gif, hello_html_m771aeac3.gif – действительные числа и hello_html_m6ef5093f.gif

hello_html_m2448cdb8.gif

hello_html_m621a6d49.gif, hello_html_m771aeac3.gif – комплексные числа: hello_html_1a45bf53.gif, hello_html_52911322.gif

hello_html_64532285.gif

Пример. Найти общее решение дифференциального уравнения: а) hello_html_m7ef4f780.gif; б) hello_html_5159b8c1.gif; в) hello_html_7a1a2c38.gif.

Решение.

Для каждого из данных уравнений составляем характеристическое уравнение и решаем его. По виду полученных корней записываем общее решение дифференциального уравнения (см. табл.):

а) hello_html_5cedd31b.gif, корни hello_html_1bc26cbd.gif – действительные и равные, поэтому общее решение уравнения hello_html_m2231f94.gif;

б) hello_html_26ad1eb1.gif, hello_html_1240a8ce.gif, корни hello_html_4c94af7e.gif, hello_html_3add5c35.gif – действительные и различные, поэтому общее решение уравнения hello_html_2ab362e0.gif;

в) hello_html_m19502244.gif, корни hello_html_7ac044cd.gif – комплексно-сопряженные, поэтому общее решение уравнения hello_html_5f54a4cb.gif.

Пример. Найти решение задачи Коши: hello_html_m43a3b32a.gif.

Решение.

Характеристическое уравнение hello_html_m5dfe5c81.gif. Его корни комплексные числа, так как hello_html_212621de.gifhello_html_m179fa224.gifhello_html_m1b406118.gif. Поэтому общее решение будет иметь вид hello_html_77568bfd.gif. Теперь найдем hello_html_m35dd18dc.gif и hello_html_3dc92be3.gif, удовлетворяющие начальным условиям hello_html_m25064f60.gif. Подставим х = 0, у = 1 в общий интеграл, получим

hello_html_m4747e99e.gif.

Откуда hello_html_m35dd18dc.gif=1. Найдем производную hello_html_2fb1fa03.gif и подставим в ее выражение начальное условие hello_html_75a291e1.gif, получим

hello_html_m1c7eb0.gif;

hello_html_m24dc3962.gif; hello_html_m59449240.gifhello_html_61d6074b.gif.

Значит, частное решение имеет вид hello_html_36f37aa5.gif.


Перед выполнением внеаудиторной самостоятельной работы, прочитайте еще раз конспект, учебник и ответьте на следующие вопросы:

  1. Какое уравнение называется дифференциальным?

  2. Как найти решение дифференциального уравнения?

  3. Что такое график решения?


Задание:

Решить дифференциальные уравнения 1-го порядка с разделяющимися переменными:

  1. hello_html_m640871c8.gif

  2. hello_html_5c90b0bb.gif;

  3. hello_html_m7cd6499a.gif;

  4. hello_html_m3cb514e3.gif;

  5. hello_html_m3ac9ce13.gif;

  6. hello_html_m2f359b1d.gif.


Решить задачу Коши:

  1. hello_html_m4566d6d4.gif, hello_html_m128570bc.gif;

  2. hello_html_m59b0eea5.gif, hello_html_380f3299.gif;

  3. hello_html_60f50314.gif, hello_html_380f3299.gif.


Найти общее решение дифференциальных уравнений.

1) hello_html_1f17a631.gif; 2) hello_html_3bb8495a.gif; 3) hello_html_4f400317.gif.

1) hello_html_m20c47a3b.gif; 2) hello_html_m37c60d16.gif; 3) hello_html_m4074533.gif.

1) hello_html_2ccd8f30.gif; 2) hello_html_m685e3623.gif; 3) hello_html_m3323548.gif.

1) hello_html_m34152b9c.gif; 2) hello_html_m1196d897.gif; 3) hello_html_m77a74bbf.gif.

1) hello_html_4d20b2f6.gif, 2) hello_html_m72d1cfef.gif; 3) hello_html_54ee34c7.gif.

Решить задачу Коши:


hello_html_m55277ccc.gifhello_html_m4ebc0a3f.gifhello_html_m2a3c6e37.gif

hello_html_m350c0d90.gifhello_html_m393b2480.gifhello_html_m78dde8f3.gif

hello_html_m68cd52dc.gifhello_html_m520e5470.gifhello_html_66dfdd86.gif

hello_html_70a73cbe.gifhello_html_m2ad5719a.gifhello_html_4f40687f.gif



Раздел 2. Основные понятия и методы теории вероятностей и математической статистики

Тема 2.1. Вероятность. Теоремы сложения и умножения



Самостоятельная работа №10 Вычисление вероятностей событий по классической формуле определения вероятности

Цель: закрепить навыки вычислять вероятности событий по классическому определению вероятности, закрепить умения решать задачи на вычисление вероятности с использованием элементов комбинаторики

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Вычислять вероятности событий по классическому определению вероятности


Теоретический материал и методические указания к выполнению заданий


Размещения (упорядоченные выборки) hello_html_m7cc2d29e.gif – число размещений из n элементов по r элементов(r n).

hello_html_78d22546.gif

Перестановки Pn – число перестановок из n элементов.

hello_html_5e82706e.gif

Сочетания (неупорядоченные выборки) hello_html_387635.gif – число сочетаний из n элементов по r элементов(r n).

hello_html_m5bb75ff2.gif

Вероятностью р события А называется отношение числа m благоприятствующих случаев к числу всех возможных случаев n, образующих полную группу равновозможных несовместных событий

hello_html_m14f8a464.gif.

Пример: В ящике находится 20 деталей, из них 8 бракованных. Из ящика наудачу извлекают 5 деталей. Найти вероятность того, что среди них окажутся две бракованные детали.

Решение: Опыт состоит в выборе наудачу 5 деталей из 20. Все исходы опыта – множество сочетаний из 20 деталей (находящихся в ящике) по 5.

Число всех исходов опыта n=hello_html_20cb380b.gif=hello_html_5fad6bd2.gif

Рассмотрим событие А – среди 5 деталей, извлеченных из ящика, две бракованные.

Если среди 5 деталей две бракованные, то остальные 3 небракованные. Тогда число исходов, благоприятствующих

событию А, можно найти по принципу умножения. Нужно выполнить одно за другим два действия: из 8 бракованных выбрать 2 детали и затем из 12 небракованных выбрать 3 детали. Первое действие можно выполнить n1=hello_html_2aeff68.gifвторое действие можно выполнить n2=hello_html_d43e95d.gif способами. Итак, m=n1.n2=hello_html_2aeff68.gifhello_html_d43e95d.gif.

Найдем вероятность события А:

hello_html_m2f4dbf7f.gif



Перед выполнением внеаудиторной самостоятельной работы, прочитайте еще раз конспект, учебник и ответьте на следующие вопросы:

  1. Что такое случайное событие?.

  2. Какие виды событий вы знаете?

  3. Дайте классическое определение вероятности.


Задание:

  1. Вычислить вероятности событий по классической формуле определения вероятности


    1. Из ящика, в котором 10 белых и 6 черных шаров, берут наудачу 3 шара. Какова вероятность того, что один из них белый, а два черных?

    2. Набирая номер телефона, абонент забыл три последние цифры, запомнив лишь, что они различные, набрал их наудачу. Найти вероятность того, что набраны нужные цифры?

    3. 25 экзаменационных билетов содержат по две вопроса, которые не повторяются. Студент подготовил 45 вопросов. Какова вероятность того, что вытянутый студентом билет состоит из подготовленных им вопросов?

    4. В мастерскую для ремонта поступило 15 телевизоров. Известно, что 6 из них нуждаются в общей регулировке. Мастер берет первые попавшиеся 5 телевизоров. Какова вероятность того, что 2 из них нуждаются в общей регулировке.

    5. Из колоды в 52 карты берется наугад 4 карты. Найти вероятность того, что среди этих 4 карт будут представлены все четыре масти.

    6. На полке в случайном порядке расставлено 40 книг, среди них находится трехтомник А.С.Пушкина. Некто взял наудачу с полки 5 книг. Найти вероятность того, что среди этих пяти книг есть трехтомник Пушкина.

    7. Секретных замок содержит на общей оси 4 диска, каждый из которых разделен на 5 секторов с различными цифрами. Замок открывается только в том случае, если диски установлены так, что образуют определенное число. Найти вероятность того, что при произвольной установке дисков замок откроется.



Самостоятельная работа №11 Подготовка сообщений «Возникновение теории вероятностей», «Применение теории вероятностей в профессии»


Цель: получить представление об истории развития теории вероятностей, ее применении в профессии

Самостоятельная работа: работа с литературой, интернет-ресурсами.

Форма контроля: сообщение на уроке



Самостоятельная работа №12 Нахождение условных вероятностей. Вычисление вероятностей сложных событий с помощью теорем умножения и сложения вероятностей

Цель: закрепить навыки вычислять вероятности сложных событий с помощью теорем умножения и сложения вероятностей

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Вычислить вероятности сложных событий с помощью теорем умножения и сложения вероятностей


Теоретический материал и методические указания к выполнению заданий


Вероятностью р события А называется отношение числа m благоприятствующих случаев к числу всех возможных случаев n, образующих полную группу равновозможных несовместных событий

hello_html_m14f8a464.gif.


Теорема умножения вероятностей

Теорема: Вероятность произведения двух независимых событий равна произведению вероятностей этих событий

P(A.B) = P(A).P(B).

Теорема: Вероятность произведения двух зависимых событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную в предложении, что первое уже наступило.

P(A .B) = P(A).P(BA).

Теорема сложения вероятностей несовместимых событий

Теорема: Вероятность суммы несовместных событий равна сумме вероятностей этих событий:

P(A+B) = P(A)+P(B).

Теорема: Если A и B – совместные события, то

P(A+B) = P(A)+P(B)-P(A .B).


Вероятность противоположного события

Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно должно появиться хотя бы одно из этих событий, Отсюда следует, что сумма событий полной группы есть достоверное событие, вероятность которого равна единице.

Теорема: Два противоположных друг другу события образуют полную группу:

hello_html_3ccfa7a.gif

Пример: Студент разыскивает нужную ему формулу в трех справочниках. Вероятность того, что формула содержится в 1-м, 2-м и 3-м справочниках, соответственно равна 0,6; 0,7; 0,8. Найти вероятность того, что формула содержится:

а) только в одном справочнике;

б) только в двух справочниках;

в) во всех трех справочниках;

г) хотя бы в одном справочнике;

д) ни в одном справочнике.

Решение

Рассмотрим элементарные события и их вероятности:

A1 – формула находится в 1-м справочнике, hello_html_m34ebf7b5.gif, hello_html_5e829d5b.gif;

A2 – формула находится во 2-м справочнике, hello_html_m5d92b9c0.gif, hello_html_556f1af4.gif;

A3 – формула находится в 3-м справочнике, hello_html_5e8601c1.gif, hello_html_m7cc6e1ff.gif.

Выразим через элементарные события и их отрицания все события а) – д) и применим теоремы сложения и умножения вероятностей:

а) Пусть событие A – формула содержится только в одном справочнике:

hello_html_4a34d561.gif,

hello_html_6f1f0014.gif

hello_html_m33a8edae.gif.

б) Пусть событие B – формула содержится только в двух справочниках:

hello_html_m3e1b92a4.gif.

Далее аналогично пункту а) получим, что

hello_html_m1370de5b.gif.

в) Пусть событие C – формула содержится во всех трех справочниках:hello_html_m444f02e3.gif,

hello_html_7fe3865b.gif.

г) Пусть событие D – формула не содержится ни в одном справочнике:hello_html_m5c03dc3.gif,

hello_html_m6d5921f5.gif.

д) Пусть событие E – формула содержится хотя бы в одном справочнике:

hello_html_m4d3cfaa6.gif.

Для вычисления вероятности события E удобно воспользоваться формулой:

hello_html_m64c86bb8.gif.


Перед выполнением внеаудиторной самостоятельной работы, прочитайте еще раз конспект, учебник и ответьте на следующие вопросы:

  1. Что такое случайное событие?.

  2. Какие виды событий вы знаете?

  3. Дайте классическое определение вероятности.

  4. Сформулируйте теорему умножения вероятностей.

  5. Сформулируйте теорему сложения вероятностей.

  6. Как найти вероятность противоположного события?


Задание:


  1. Вычислить вероятности сложных событий с помощью теорем умножения и сложения вероятностей


  1. Вероятность того, что электрическая лампочка, принадлежащая данной партии, проработает гарантийный срок, равна 0,7. Какова вероятность того, что из трех лампочек этой партии гарантийный срок проработает только одна?

  2. Система состоит из двух блоков. Первый из них выходит из строя с вероятностью 0,15, а второй – с вероятностью 0,1. Система выйдет из строя, когда откажут оба блока. Найти надежность безотказной работы системы

  3. В партии из 20 деталей имеется 2 бракованные. Сборщик взял из партии 3 детали. Найти вероятность того, что среди них не белее одной бракованной.

  4. Имеется 6 потребителей электрического тока, два из которых выходят из строя с вероятностью 0,2, а остальные с вероятностью 0,3. Определить вероятность того, что генератор тока будет отключен, если все 6 потребителей соединены последовательно.

  5. В одном ящике находятся 3 конусных и 7 эллиптических валиков. Сборщик взял наудачу один валик, а затем второй. Найти вероятность того, что первый из взятых валиков конусный, а второй эллиптический.

  6. В телестудии имеется 3 телевизионные камеры. Для каждой камеры вероятность того. что она в данный момент включена, равна 0,4. Найти вероятность того, что в данный момент включена хотя бы одна из трех камер.


Тема 2.2. Случайная величина, ее функция распределения


Самостоятельная работа №13 Запись распределения ДСВ, заданной содержательным образом

Цель: закрепить навыки вычислять вероятности сложных событий с помощью теорем умножения и сложения вероятностей

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Построить функцию распределения

  2. Построить ряд распределения случайной величи­ны


Теоретический материал и методические указания к выполнению заданий


Случайная величина. ДСВ

Случайной величиной называется величина, которая в результате опыта примет одно и только одно возможное значение, при этом зара­нее неизвестно, какое именно.

Дискретной называют случайную величину, которая принимает от­дельные, изолированные значения.

Случайную величину в дальнейшем мы будем обозначать большой буквой Х, а ее возможные значения маленькой буквой х.

В результате опыта случайная величина Х примет только одно из этих значений, т.е. произойдет только одно из полной группы событий: Х=х1 ,Х=х2, … Х=хn.

Поскольку сумма вероятностей полной группы попарно несовместных событий равна 1, то

hello_html_m110419f4.gif

Таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности:

хi

х1

х2

. . .

хn

Pi

р1

р2

. . .

рn

называется законом или рядом распределения дискретной случайной величины.


Функция распределения ДСВ


Определение: Функцией распределения случайной величины hello_html_m11c65b7d.gif называется функция  hello_html_2a087742.gif, определяющая вероятность того, что случайная величина hello_html_2d589d49.gif примет значение, меньшее hello_html_21f0f5da.gif.

Свойства функции распределения:

а) функция распределения принимает значения только из отрезка [0,1]:

0 ≤ F(x) ≤ 1;

б) F(x) – неубывающая функция, т.е. если x2 > x1, то F(x2) > F(x1) ;

в) F(- ∞ ) = 0; F(+ ∞) = 1;

г) вероятность того, что случайная величина примет значение из

интервала hello_html_m369e2252.gif (причем hello_html_1d2f9d3b.gif), равна:

hello_html_m6a9a667.gif;


Пример: Случайная величина X задана функцией распределения

x

1

2

3

4

p(x)

0,2

0,3

Р3

0,1

Найти вероятность р3. Построить функцию распределения. Найти числовые характеристики с.в.

РЕШЕНИЕ:

Проверим тождество hello_html_m325d424c.gif

0,2+0,3+р3+0,1=1.

р3=0,4.

Построим функцию распределения этой случайной величины.

Имеем:

hello_html_m408d796b.gif

hello_html_cb0d588.pnghello_html_62d6c561.gif


Пример построения ряда распределения ДСВ


Пример: Два стрелка стреляют по мишени, делая по два выстре­ла каждый. Вероятность попадания в мишень при каждом выстреле для первого стрелка равна 0,7, а для второго - 0,6. Построить ряд распределения случайной величины Х – общего числа попаданий в мишень.

Решение: Случайная величина Х - общее число попаданий в мишень может принимать следующие значения: х1=0, х2=1, х3=2, х4=3, х5=4.

Случайная величина Х примет значение х1=0. когда прои­зойдет событие С - ни один из стрелков не попал в мишень. Со­бытие С произойдет в том случае, если одновременно произойдут следующие четыре события:

А1 - 1-й стрелок не попал в мишень при первом выстреле;

А2 - 1-й стрелок не попал в мишень при втором выстреле;

В1 - 2-й стрелок не попал в мишень при первом выстреле;

В2 - 2-й стрелок не попал в мишень при втором выстреле.

Отсюда следует: что событие С равно произведению независимых событий А1, А2, В1, В2. С= А1 .А2 .В1 .В2.

Откуда Р(С)=Р(А1).Р(А2).Р(В1).Р(В2).

По условию задачи 1-й стрелок попадает в мишень вероятностью 0,7, а 2-й - с вероятностью 0,6. Тогда вероятности непопадании в мишень для каждого стрелка будут следующими:

Р(А1) =Р(А2)=1-0,7=0,3; Р(В1 )=Р(В2)=1-0,6=0,4.

Вероятность того, что случайная величина Х примет значе­ние х1 = 0, равна вероятности события С :

Р(Х=0)=Р(С)=0,3 .0,3 .0,4 .0,4=0,0144.

Аналогично подсчитываем и другие вероятности:

Р(Х=1)=0,7.0,3.0,4 .0,4+0,3.0,7.0,4 .0,4+0,3.0,3.0,6.0,4+0,3.0,3.0,4 .

.0,6=0,1104.

Р(Х=2)=0,7.0,7.0,4 .0,4+0,3 .0,3 .0,4 .0,4+4 .(0,7 .0,3 .0,6 .0,4)=0,3124.

Р(Х=3)=0,3.0,7.0,6.0,6+0,7.0,3.0,6.0,6+0,7.0,7.0,4.0,6+0,7.0,7.0,6.0,4==0,3864.

Р(Х=4)=0,7 .0,7 .0,6 .0,6=0,1764.

Составим ряд распределения случайной величины Х.

хi

0

1

2

3

4

Pi

0,0144

0,1104

0,3124

0,3864

0,1764

Проверим тождество hello_html_m110419f4.gif.

0,0114+0,1104+0,З124+0,3864+0,1764 =1.



Перед выполнением внеаудиторной самостоятельной работы, прочитайте еще раз конспект, учебник и ответьте на следующие вопросы:

  1. С.в. ДСВ.

  2. Как построить ряд распределения ДСВ.

  3. Дайте определение функции распределения с.в.

  4. Как построить функцию распределения ДСВ


Задание:


  1. Случайная величина X задана рядом распределения

x

4

6

8

10

12

p(x)

0,2

0,4

0,2

0,1

0,1

Построить функцию распределения

  1. Случайная величина X задана рядом распределения

x

2

4

10

6

8

p(x)

0,1

0,4

0,1

Р4

0,1

Найти р4. Построить функцию распределения.

  1. Пять однотипных приборов испытываются при пере­грузочных режимах. Вероятность пройти испытание для каждого при­бора равна 0,85. Испытания заканчиваются после выхода из строя первого же прибора. Построить ряд распределения случайной величи­ны- числа произведенных испытаний.

  2. Батарея состоит из трех орудий. Вероятности по­падания в цель при одном выстреле из 1-го, 2-го, 3-го орудия рав­ны соответственно 0,5; 0,6; 0,8. Каждое из орудий стреляет по некоторой цели один раз. Построить ряд распределения случайной ве­личины числа попаданий в цель.

  3. В ящике семь изделий, одно из которых бракован­ное. Из ящика извлекают одно изделие за другим, пока не обнаружат брак. Составить ряд распределения случайной величины - числа вы­нутых изделий.

Тема 2.3. Математическое ожидание и дисперсия случайной величины



Самостоятельная работа №14 вычисление числовых характеристик случайной величины

Цель: закрепить навыки вычислять числовые характеристики случайной величины

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Вычислить характеристики ДСВ.



Теоретический материал и методические указания к выполнению заданий


  1. Математическое ожидание ДСВ

Определение: Математическое ожидание ДСВ находится по формуле:

hello_html_m62750439.gif

Вероятностный смысл этого выражения таков: при большом числе измерений среднее значение наблюдаемых значений величины Х приближается к ее математическому ожиданию.

Механический смысл этого равенства заключается в следующем: математическое ожидание есть абсцисса центра тяжести системы материальных точек, абсцис­сы которых равны возможным значениям случайной величины, а массы - их вероятностям.


  1. Дисперсия ДСВ

Определение: Дисперсия случайной величины Х есть

hello_html_7c23bdc2.gif

Дисперсию случайной величины Х иногда удобнее вычислять по формуле

hello_html_2f5dcbf0.gif.

Вероятностный смысл Дисперсия случайной величины Х есть характеристика рассеива­ния разбросанности значений случайной величины около ее математи­ческого ожидания. Дисперсия случайной величины имеет размерность квадрата случайной величины.


  1. Среднее квадратическое отклонение

Для более наглядной характеристики рассеивания удобнее пользоваться величиной, имеющей размерность самой случайной величины. Поэтому вводится понятие среднего квадратического отклонения: hello_html_5345d9de.gif.

Пример: Случайная величина X задана функцией распределения

x

1

2

3

4

p(x)

0,2

0,3

Р3

0,1

Найти вероятность р3. Найти числовые характеристики с.в.

РЕШЕНИЕ:

Проверим тождество hello_html_m325d424c.gif

0,2+0,3+р3+0,1=1.

р3=0,4.

Найдем числовые характеристики случайной величины Х:

hello_html_m4991b756.gif

М(Х)=1.0,2+2.0,3+3.0,4+4.0,1=0,2+0,6+1,2+0,4=2,4.

Для вычисления дисперсии применим формулу: hello_html_579ad4ac.gif.

М(Х2 )=12. 0,2+22.0,3+32.0,4+42.0,1=0,2+1,2+3,6+1,6=6,6.

hello_html_3c6da1c4.gif.

hello_html_m52c2351d.gif


Перед выполнением внеаудиторной самостоятельной работы, прочитайте еще раз конспект, учебник и ответьте на следующие вопросы:

  1. Дать определение дискретной случайной величины.

  2. Что такое математическое ожидание?

  3. Что такое дисперсия?

  4. Что такое среднее квадратичное отклонение?

  5. Дать определение закона распределения дискретной случайной величины.


Задание:

Вычислить характеристики ДСВ.

  1. Батарея состоит из трех орудий. Вероятности по­падания в цель при одном выстреле из 1-го, 2-го, 3-го орудия рав­ны соответственно 0,5; 0,6; 0,8. Каждое из орудий стреляет по не­которой цели один раз. Построить ряд распределения случайной величины числа попаданий в цель. Вычислить числовые характеристики.

  2. В ящике семь изделий, одно из которых бракован­ное. Из ящика извлекают одно изделие за другим, пока не обнаружат брак. Составить ряд распределения случайной величины - числа вы­нутых изделий. Найти ее числовые характеристики.

  3. Дискретная случайная величина X задана рядом распределения:

xi

-2

1

2

3

pi

0,08

0,40

0,32

0,2

Найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение случайной величины X; г) функцию распределения (найти и построить).


Тема 2.4. Элементы математической статистики


Самостоятельная работа №15 Построение для заданной выборки ее графической диаграммы

Цель: закрепить навыки строить для заданной выборке ее графической диаграммы

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

    1. По заданному статистическому ряду требуется:

а) построить гистограмму относительных частот;

б) перейти к вариантам и построить полигон относительных частот;

в) построить эмпирическую функцию распределения.


Теоретический материал и методические указания к выполнению заданий

1. Основные понятия математической статистики

На практике функция распределения случайной величины бывает неизвестна и ее определяют по результатам наблюдений или, как говорят, по выборке. Выборкой объема n для случайной величины называется последовательность независимых наблюдений этой величины, где hello_html_68500c12.gif – совокупность значений, принятых независимыми случайными величинами hello_html_meb6daac.gif, имеющими тот же закон распределения hello_html_26b980f2.gif, что и величина X. В этом случае говорят, что выборка hello_html_68500c12.gif взята из генеральной совокупности величины X, а под законом распределения генеральной совокупности понимают закон распределения случайной величины X. Значения hello_html_68500c12.gif называют выборочными значениями или вариантами. Последовательность вариант, записанных в возрастающем порядке, называется вариационным рядом. Число, указывающее, сколько раз наблюдается данная варианта, называется частотой варианты, а отношение частоты варианты к объему выборки – относительной частотой.

Если hello_html_68500c12.gif – вариационный ряд, а x – произвольное число, и nx – количество выборочных значений, меньших x, то hello_html_m63071de5.gif – частота попадания выборочных значений левее точки x в данной выбоке объема n, т. е. частота события hello_html_m474bf77d.gif.

Эта частота является функцией от x и называется эмпирической функцией распределения случайной величины X, полученной по данной выборке. Если обозначить эту функцию через hello_html_m1ed857d5.gif, то по определению

hello_html_631c298.gif.

Эмпирическая функция распределения hello_html_m1ed857d5.gif обладает всеми свойствами функции распределения hello_html_26b980f2.gif. Так как частота события в n независимых опытах является оценкой вероятности этого события, то значение эмпирической функции распределения в точке x есть оценка вероятности события hello_html_m474bf77d.gif, то есть оценка теоретической функции распределения hello_html_26b980f2.gif:

hello_html_2fda62a.gif.

Статистическим рядом распределения называется таблица, которая содержит вариационный ряд и соответствующие частоты или относительные частоты членов этого ряда (табл. 1).

hello_html_mf40e831.gif,

hello_html_53f61c9b.gif, hello_html_m3cea7577.gif.

Таблица 1 Таблица 2

x1

x2

...

xk


hello_html_m58047882.gif

hello_html_m1b02f8b2.gif

...

hello_html_2b713f75.gif

n1

n2

...

nk


n1

n2

...

nk

w1

w2

...

wk


w1

w2

...

wk

В случае непрерывного распределения величины X статистический ряд распределения представляет собой таблицу, в которой заданы интервалы значений величины X и соответствующие им частоты или относительные частоты, причем интервалы располагаются в порядке возрастания величины X (табл. 2).

Второй случай легко сводится к первому, если в качестве вариант брать середины интервалов:

hello_html_58e33c6.gif, hello_html_678918b2.gif.



Графическое изображение выборки

Графически вариационный ряд изображается полигоном частот, представляющим собой ломаную, отрезки которой соединяют на плоскости соседние точки hello_html_m5a62a6a4.gif и hello_html_1753e213.gif или hello_html_7f91596d.gif и hello_html_m2d12cadc.gif, если строится полигон относительных частот.

В случае табл. 2 исходный интервал, в котором заключены все наблюдаемые значения признака, разбивают на определенное количество равных интервалов длины hello_html_6b3b763b.gif. После этого строится гистограмма частот – ступенчатая фигура, состоящая из прямоугольников, основания которых равны h, а высоты равны отношению hello_html_3f998266.gif (или hello_html_b37c3c.gif для гистограммы относительных частот).

Пример: По заданному статистическому ряду требуется:

а) построить гистограмму относительных частот;

б) перейти к вариантам и построить полигон относительных частот;

в) построить эмпирическую функцию распределения.

hello_html_262cb400.gif

12 –15

15 – 18

18 – 21

21 – 24

24 – 27

27 – 30

hello_html_5b76c0e0.gif

2

6

12

19

7

4

Решение

а) Объем выборки hello_html_m202eddc7.gif.

Определяем относительные частоты hello_html_53f61c9b.gif и составляем таблицу с относительными частотами:

hello_html_262cb400.gif

12 –15

15 – 18

18 – 21

21 – 24

24 – 27

27 – 30

hello_html_m12365aca.gif

0,04

0,12

0,24

0,38

0,14

0,08

Для построения гистограммы относительных частот на оси абсцисс откладываются частичные интервалы длины hello_html_3239bea8.gif, а над ними проводятся горизонтальные отрезки на расстоянии hello_html_m66a6151d.gif

hello_html_631049da.gif

б) Перейдем к вариантам, положив их равными серединам частичных интервалов hello_html_m3a4aa47c.gif, где hello_html_569c243.gif, hello_html_62e8887e.gif– концы интервалов. Тогда вариационный ряд имеет вид:

hello_html_569c243.gif

13,5

16,5

19,5

22,5

25,5

28,5

hello_html_m12365aca.gif

0,04

0,12

0,24

0,38

0,14

0,08

Отметим на плоскости точки hello_html_m44092c85.gif и, соединив соседние точки, получим полигон относительных частот.

hello_html_617e59d4.gif

в) Эмпирическая функция распределения hello_html_m1ed857d5.gif строится по закону:hello_html_41ce35b6.gif

В нашем случае получаем:

hello_html_f8c2d6c.gif

hello_html_m60b986b.gif
График функции hello_html_m1ed857d5.gif:

Задание:


  1. Статистический ряд задан таблицей. Требуется:

а) построить гистограмму относительных частот;

б) перейти к вариантам и построить полигон относительных частот;

в) записать эмпирическую функцию распределения и построить ее график;

1.

(–6; –4)

(–4; –2)

(–2; 0)

(0; 2)

(2; 4)

(4; 6)

2

6

17

18

4

3


2.

(0; 2)

(2; 4)

(4; 6)

(6; 8)

(8; 10)

(10; 12)

1

3

19

21

4

2


3.

(–4; –2)

(–2; 0)

(0; 2)

(2; 4)

(4; 6)

(6; 8)

3

8

14

15

9

1


4.

(–2; 0)

(0; 2)

(2; 4)

(4; 6)

(6; 8)

(8; 10)

1

4

20

19

4

2



Самостоятельная работа №16 Расчет по заданной выборке ее числовых характеристик

Цель: закрепить навыки вычислять числовые характеристики выборки

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Найти точечные оценки hello_html_m726c2fb0.gif, hello_html_m72b2ff92.gif, hello_html_m6c04fa8e.gif;


Теоретический материал и методические указания к выполнению заданий



Точечные оценки параметров распределения

По аналогии с такими числовыми характеристиками случайной величины, как математическое ожидание, дисперсия и среднее квадратическое отклонение, для выборки hello_html_68500c12.gif случайной величины X и для статистического ряда определяются следующие числовые характеристики:

выборочная средняя hello_html_m70006db5.gif, где k – число вариант и hello_html_mecfa664.gif;

выборочная дисперсия hello_html_m22b4c097.gifили hello_html_m2afd7cb1.gif, hello_html_m3c2fe3b8.gif;

выборочное среднее квадратическое отклонение hello_html_m1b7f03f9.gif

Исправленная дисперсия hello_html_5f4df1f9.gifвычисляется по формуле:

hello_html_m23147a16.gif.


Задание:


Статистический ряд задан таблицей. Требуется найти точечные оценки hello_html_m726c2fb0.gif, hello_html_m72b2ff92.gif, hello_html_m6c04fa8e.gif;

1.

(–6; –4)

(–4; –2)

(–2; 0)

(0; 2)

(2; 4)

(4; 6)

2

6

17

18

4

3


2.

(0; 2)

(2; 4)

(4; 6)

(6; 8)

(8; 10)

(10; 12)

1

3

19

21

4

2


3.

(–4; –2)

(–2; 0)

(0; 2)

(2; 4)

(4; 6)

(6; 8)

3

8

14

15

9

1


4.

(–2; 0)

(0; 2)

(2; 4)

(4; 6)

(6; 8)

(8; 10)

1

4

20

19

4

2



Раздел 3. Основные математические методы решения прикладных задач в области профессиональной деятельности.


Тема 3.1. Проценты и пропорции


Самостоятельная работа №17 Решение задач на вычисление сложных процентов

Цель: закрепить навыки решения задач на вычисление сложных процентов

Самостоятельная работа: индивидуальная домашняя работа

Форма контроля: проверка работы

Виды заданий:

  1. Вычислить процент от целого

  2. Вычислить целое по процентам


Теоретический материал и методические указания к выполнению заданий


Процент – это сотая часть единицы. Запись 1% означает 0.01. Существует три основных типа задач на проценты:


Задача 1. Найти указанный процент от заданного числа.

Заданное число умножается на указанное число процентов, а затем произведение делится на 100.

П р и м е р . Вклад в банке имеет годовой прирост 6%. Начальная сумма вклада равнялась 10000 руб. На сколько возрастёт сумма вклада в конце года?

Р е ш е н и е : 10000 · 6 : 100 = 600 руб.


Задача 2. Найти число по заданному другому числу и его величине в процентах от искомого числа.

Заданное число делится на его процентное выражение и результат умножается на 100.

П р и м е р . Зарплата в январе равнялась 1500 руб., что составило 7.5% от годовой зарплаты. Какова была годовая зарплата?

Р е ш е н и е : 1500 : 7.5 · 100 = 20000 руб.


Задача 3. Найти процентное выражение одного числа от другого.

Первое число делится на второе и результат умножается на 100.

П р и м е р . Завод произвёл за год 40000 автомобилей, а в следующем году – только 36000 автомобилей. Сколько процентов это составило по отношению к выпуску предыдущего года?

Р е ш е н и е : 36000 : 40000 · 100 = 90% .


Расчет простых и сложных процентов


Основные понятия

В хозяйственной и финансовой практике различают два способа исчисления процентов – так называемые простые и сложные проценты.

Простые проценты исчисляются в течение всего срока от исходной, первоначальной суммы кредита или вклада, и, следовательно, база для их расчета остается постоянной. Сложные проценты – это проценты с капитализацией, когда начисленные в предыдущем периоде проценты включаются в базу для вычисления процентов за данный период.

При расчете простых и сложных процентов используются следующие понятия и обозначения:

Pсумма денег в начальный момент времени;

Fсумма денег в конечный момент времени;

Aсумма каждого платежа в постоянном ряду равных платежей;

n - число периодов, за которые начисляются проценты;

iставка процента за период.

Используются следующие формулы для расчета простых и сложных процентов.


Показатели

Простые проценты

Сложные проценты

F

hello_html_madf8e5d.gif

hello_html_m1d2454ca.gif

A

hello_html_1633c65a.gif

hello_html_m4867e6f0.gif

P

hello_html_6b315d2d.gif

hello_html_4dcf5692.gif

Пример: Какие условия приобретения депозитного сертификата в размере 250 ден.ед. на 5 лет выгоднее: под 20% годовых на основе сложного процента или под 22% годовых на основе простого процента с выплатой 1 раз по окончании срока?

Решение. hello_html_25a85765.gifсл = 20% = 0,2; Iпр = 22% = 0,22.

Fсл =hello_html_mdb0b838.gif

Fпр = hello_html_39c53d4d.gif

Fсл > Fпр , следовательно, предпочтительнее приобрести сертификат под 20% годовых на основе сложного процента.


Пример: Сколько необходимо лет, чтобы утроить 100 ден.ед. при ставке сложного процента 40% годовых, начисляемых ежегодно?

Решение. hello_html_17fe7a24.gif

hello_html_5e2094bc.gif

hello_html_69a1241a.gif; hello_html_m40793907.gif

hello_html_m1ff77fe5.gif(лет).

Первоначально вложенная сумма будет утроена через 3,24 года. Требуемый срок вложения составит 4 полных года.


Пример: Определим годовую ставку простых процентов, при которой первоначальная сумма в 5 тыс.руб. за 3 квартала возрастет до 6,5 тыс.руб.


P=5000руб.

S=6500руб.

n=3/4

_______________

i=?

Решение: S=P(1+in) , значит i=(S-P)/(P*n) = (6500-5000)/(5000*3/4)=0,4=40%


Пример: Через сколько лет удвоится первоначальная сумма вклада под простую годовую ставку 16% годовых?

Решение

Искомый срок определяем из равенства множителя наращения величине 2 :

hello_html_m41f09217.gif

1+n×0,16=2, поэтому

n=1/0,16= 6,25 лет.

Сумма, размещенная в банке под 16% годовых, в два раза увеличится через 6,25 лет.


Пример: Найдите современное значение инвестиции, если наращенная к концу пятого года сумма составляет 15тыс.руб. Проценты начисляются по следующим ставкам (проценты сложные): а) 120% в конце каждого года; б) 60% в конце каждого полугодия?

Решение: По формуле hello_html_6d8d2471.gif

hello_html_m16366739.gif

а) hello_html_m92abd0.gif

б) hello_html_7c1a3066.gif

Пример: Найдите сложные проценты за полтора года, начисленные на 40тыс.руб. по ставке 30% в квартал.

Решение:

По формуле hello_html_7c02c865.gif

hello_html_3e79a9f4.gifруб.


Пример: За сколько лет удвоится сумма долга, если применяется простая годовая ставка 17%?

Решение: hello_html_m32e66f3b.gifлет.


Пример:За сколько лет удвоится сумма долга, если применяется сложная годовая ставка 17%?

Решение: hello_html_m274c8b57.gifгода.


Пример:На какой срок необходимо вложить 7 тыс.руб. в банк, чтобы получить 8 тыс.руб.? Годовая процентная ставка (простая) равна 35%?

Решение: hello_html_272dfa86.gifвыразим n. Получим

hello_html_m93c4141.gifгода или hello_html_m76ad78b7.gifдней.


Задание:


Решить задачи

  1. Проезд на автобусе стоит 14 рублей. В дни школьных каникул для учащихся ввели скидку 25%. Сколько стоит проезд на автобусе в дни школьных каникул?

  2. Курящие дети сокращают себе жизнь на 15%. Определите, какова предположительная продолжительность жизни нынешних курящих детей, если средняя продолжительность жизни в России 56 лет (47,6г.). Часто детям подают пример взрослые и в первую очередь, родители. Дети, рожденные в семьях курильщиков, в 4-5 раз чаще болеют простудными заболеваниями, хроническими заболеваниями.

  3. При покупке любой мобильной техники вы получаете бонус в размере 20% от суммы покупки. Сколько будет стоить электронная книга, если её стоимость 9490р.?

  4. Куртка стоила 2500р. Цену снизили на 15%. На сколько снизилась цена куртки?

  5. В банке у вкладчика было 10000р. Годовой процент по вкладам составляет 6%. Сколько это будет денег?

  6. Найдите сложные проценты за полтора года, начисленные на 12тыс.руб. по ставке 30% в квартал.

Литература


Основные источники:

  1. Григорьев В.П., Дубинский Ю. А. Элементы высшей математики : ”Москва, “Академия” – 2012.

  2. Г р и г о р ь е в В. П., С а б у р о в а Т. Н. Сборник задач по высшей математике: учеб. пособие: Рекомендовано ФГУ «ФИРО». — 2-e изд., стер. — 160 с.

  3. М.С. Спирина, П.А. Спирин Теория вероятностей и математическая статистика: ”Москва, “Академия” – 2012.


Дополнительные источники:

  1. И.Д.Пехлецкий Математика:Учебник-М.: Мастерство,2010

  2. Н.В.Богомолов Практические занятия по математике.-М.:Высшая школа, 2009

  3. П.Е. Данко, А.Г. Попов Высшая математика в упражнениях и задачах. Часть 1 и 2.- М.:Высшая школа 2008

  4. В.С. Щипачев Основы высшей математики.-М.: Высшая школа, 2001

  5. Л.А. Кузнецов Сборник заданий по высшей математике (типовые расчеты) - электронная книга


Периодические издания:

Журнал «Математика и логика»

Журнал «Журнал вычислительной математики и математической физики»


Интернет-ресурсы:

1.Информационно-справочная система «В помощь студентам». Форма доступа: http://window.edu.ru

2. Информационно-справочная система Форма доступа: http://dit.isuct.ru.

3. Информационно-справочная система Форма доступа: http://www.resolventa.ru

4. http://www.bymath.net/    Математическая школа в Интернете.

5. www.aonb.ru/depart/is/mat.pdf Для учителей математики.

6. .www.imc-new.com/index.php/teaching…/210-2011-04-19-06-23-55 Методические рекомендации.

7..uztest.net/course/view.php?id=11 Олимпиады по математике

8. www.nsc.ru/win/mathpub/ математические публикации

  1. http://metodisty.ru/m/groups/files/matematika_v_shkole?cat=32 Математика в школе

  2. http://pedsovet.su/load/18 Pedsovet.su

  3. http://mathematic.su/ Математика

  4. http://mathedu.ru/ Математическое образование: прошлое и настоящее

http://ilib.mccme.ru/ Интернет- библиотека


Справочники:

  1. М. Я. Выгодский Справочник по высшей математике: Астрель, 2003

  2. В. М. Брадис Четырехзначные математические таблицы: Дрофа, 1996



Приложение


ЗАДАЧИ ПРОФЕССИОНАЛЬНОЙ НАПРАВЛЕННОСТИ


Тема «Действия с числами. Проценты»


1) ПРИМЕР: Дана следующая рецептура мясного бульона: мясо – 300г

морковь – 8г

петрушка (корень) – 6г

лук репчатый – 8г

вода – 1250г

_______________________

Выход: 1000г

Вычислите содержание белка для данного блюда и его процентное содержание.

Для решения данной задачи необходимо воспользоваться таблицей:

«Содержание белка в 100г продукта».


Пищевые продукты

Количество белка (г)

Сыры, нежирный творог, мясо, рыба, бобовые, грецкие орехи и фундук.

Более 15

Жирный творог, колбасы вареные, сосиски, яйца, мука, макароны, крупы: манная, гречневая, овсяная, пшено.

10 – 15


Молоко, кефир, сметана, сливочное масло, шпинат, цветная капуста, овощи, фрукты, ягоды, грибы.

4,9 – 0,4


Хлеб ржаной, пшеничный, рис, перловка, зеленый горошек.

5 – 9,9


Определим содержание белка в данном блюде:

мясо - (15г * 300г) : 100г = 45г

морковь - (0,9г * 8г) : 100г = 0,072г

петрушка - (0,4 * 6г) : 100г = 0,024г

лук - (0,6 * 8) : 100г = 0 ,048г

Тогда полное содержание белка равно: 45г + 0,072г + 0,024г + 0 ,048г = 45,144г ≈ 45г.

Найдем % содержание белка в данном блюде:

hello_html_m4f146c9.gif.

Ответ: 45г; 4,5 %.


2) Определить энергетическую ценность 100г хлеба пшеничного 1-го сорта.


Решение. Согласно справочнику: «Химический состав пищевых продуктов» в 100г хлеба содержится 7,6г белка, 0,9г жира и 49,7г углеводов.

Следовательно, энергетическая ценность 100г этого хлеба будет равна:

4ккал (16,7кДж) * 7,6 = 30,4ккал (126,92кДж)

9ккал (37,7 кДж) * 0,9 = 8,1 ккал (33,93 кДж)

4ккал (16,7 кДж) * 49,7 = 198,8 ккал (829,99кДж)

_______________________________________________

30,4ккал + 8,1 ккал + 198,8 ккал = 237,3ккал

126,92кДж + 33,93 кДж + 829,99кДж = 990,84кДж

Ответ: 237,3ккал или 990,84кДж.


3) Определить энергетическую ценность следующих пищевых продуктов:

а) молоко цельное – 200г;

б) картофель – 300г;

в) мясо говяжье – 150г;

г) капуста белокочанная – 250г.

4) Масса навески муки до высушивания - 5г, после высушивания – 4,3г. Чему равна влажность муки? Сколько в муке сухих веществ?


5) Чему равна влажность крахмала, если масса навески картофельного крахмала - 5г, бюксы с крахмалом до высушивания – 14,9г, после высушивания 14,3г?


6) Какой % крошки в сахаре, если в мешке с прессованным колотым сахаром массой нетто 70кг оказалось 2,3кг кусочков массой менее 5г? Соответствует ли это допустимым нормам по стандарту?


7) Чему равна зольность муки, если масса тигля с мукой до сжигания муки – 9г, после сжигания – 7,01г, а масса тигля – 7г?


8) Масса навески хлеба – 5г, после высушивания - 2,5г. Чему равна влажность хлеба? Соответствует ли полученная вами влажность стандарту?


9) Масса замороженной говяжьей туши 244кг, потери сока из тканей мяса при размораживании составляет 1,2% массы туши. Определите массу туши после оттаивания и массу естественной убыли.


10) Охлажденная птица массой 1,5кг подверглась замораживанию до температуры - 8hello_html_m789e59b6.gifС в толще грудной мышцы, это сопровождалось потерей массы до 0,6%. Определите массу птицы после замораживания и массу естественной убыли.


11) При замораживании печени массой 3,5кг в открытом виде естественная убыль составила 1,3%, а при замораживании в металлических формах с крышками – 0,6%. Определите массу печени после замораживания различными способами и сделайте выводы.


12) Энергетическая ценность 50г отварной говядины 146ккал. Каким количеством молочных сосисок можно заменить отварную говядину, чтобы не изменилась энергетическая ценность?

(в 100г сосисок молочных содержится12,3% белка и 25,3% жира.)


13) Определите энергетическую ценность 120г жареного кофе, если в 100г жареного кофе содержится 13,2г белка, 4,1г углеводов, 14,1г жира.


14) Чему равна энергетическая ценность 120г черного байхового чая, если в 100г этого чая содержится 20г белка и 6,9г углеводов?


15) Повару необходимо замариновать мясо для шашлыка 6%-ным раствором уксуса, а у него имеется 30%-ный раствор. Сколько воды ему необходимо добавить к имеющемуся раствору, чтобы получить уксус необходимой концентрации?


16) В книге рецептов написано, что на три порции фруктового салата необходимо взять 150гр киви, 210гр манго,180гр папайи и 60гр миндальных орехов. По сколько грамм каждого ингредиента нужно для приготовления 20 порций фруктового салата.


Тема «Производная»


1) ПРИМЕР: Маховик тестомеса за время t поворачивается на угол hello_html_m3bacb859.gif (t – сек.; hello_html_dff8f3a.gif - радианы). Определите угловую скорость hello_html_6333e54c.gif в конце 3 секунды. Найдите момент, когда прекратится вращение.

Решение:

hello_html_m4200c9fe.gif (8t – 0,5t2)′ = 8 – 0,5·2t = 8 – t

hello_html_dff8f3a.gif′(t) = hello_html_6333e54c.gif = 8 – t

hello_html_6333e54c.gif(3) = 8 – 3 = 5 рад/с.

Вращение прекратится в момент, когда hello_html_76dd23a0.gif

8 – t = 0

t = 8 с.

Ответ: 8 секунд.


 2) Закон накопления сухой биомассы у винограда сорта Шалса определяется уравнением  y=0,003x-0,0004x  , где x- число дней от распускания почек, y-накопление биомассы в кг на 1 куст. Равенство отражает зависимость величин x и y как средний результат массовых наблюдений. Выясните, как изменится сухая биомасса при изменении от 50 до 60 дней.


3) Зависимость суточного удой У в литрах от возраста коров Х в годах определяется

уравнением У(х)= -9,3+6,86х-0,49х , где х>2.Найдите возраст дойных коров, при котором суточный удой будет наибольшим.


4) Объем продукции V хлебобулочного цеха в течение дня зависит от времени по закону     V(t) = -5/3t3+15/2t2+50t+70. Вычислите производительность труда П(t).


5) Пусть количество вещества, вступившего в химическую реакцию при приготовлении суфле задается зависимостью: р(t) = t2/2 + 3t –3 (моль)

  Найти скорость химической реакции через 3 секунды.


6hello_html_ma3778e6.gif) Зависимость между издержками производства y (ден. ед.) и объемом выпускаемой продукции x (ед.) выражается функцией Определить средние и предельные издержки при объеме продукции, равном 10 ед.

7hello_html_mab891cf.gif) . Объем продукции V, произведенный бригадой рабочих, задается уравнением ,

, 1 ≤ t ≤ 8, где t – рабочее время в часах. Вычислить производительность труда через час после начала работы и за час до ее окончания.

Тема «Первообразная «Интеграл»


1) Производительность труда рабочих хлебозавода в течении смены определяется формулой hello_html_m7fbb6a64.gif, где t – рабочее время в часах. Вычислить объём выпускаемой продукции за рабочую смену.


Тема «Показательная функция»


1) Стоимость оборудования в цехе составляет 32,5 млн. рублей. Амортизация оборудования (износ) составляет ежегодно 2%. Через сколько лет стоимость оборудования составит 25 млн. рублей?


Тема «Объёмы геометрических тел»


  1. Какова должна быть высота цилиндрической кастрюли с диаметром дна 26 см, чтобы в ней можно было приготовить 0,75 л плодово-ягодного киселя?

Ответ: 14 см


  1. Необходимо разлить 1 л фруктового мусса в конические бокалы высотой 9 см и диаметром основания 8 см. Сколько бокалов потребуется?

Ответ: 6 бокалов


3) В цилиндрической кастрюле диаметром 20 см и высотой 12 см готовят суфле. После приготовления его нужно разлить в цилиндрические формы диаметром 8 см и высотой 5 см. Сколько форм потребуется?

Ответ: 30 форм


4) Определите объём наполнителя для вафельного рожка конической формы, диаметр основания которого 6 см, а образующая 15 см. Сколько литров наполнителя потребуется для приготовления 20 таких рожков?

Ответ: 2,76 л


5) Цилиндрическая форма имеет диаметр 20 см и высоту 6 см. В неё выливают 1,2 л смеси для пудинга, объём которой при кипячении увеличивается в 1,5 раза. Не будет ли пудинг переливаться через край формы?

Ответ: не будет


6) Для приготовления трёхцветного желе составы красного, зелёного и жёлтого цвета выливают послойно в стаканы усечённой конической формы так, чтобы толщина каждого слоя была одинаковой. Каков объём каждого слоя, если диаметры стакана 10 см и 4 см, а высота 9 см?

Ответ: 19 π см3; 37 π см3; 61 π см3


Тема «Площади многоугольников»


  1. Сколько круглых печеньев диаметром 6 см можно вырезать из прямоугольного листа теста размером 0,5Х0,3 м?


Тема «Функции»


  1. На графике изображено изменение силы тока в катушке индуктивности тестомеса в интервале времени от t=0,02 с до t=0,08 с. Определите силу тока в начальный момент времени и характер его изменения на всём промежутке времени. Найдите на графике экстремальное значение силы тока на этом участке и момент времени, при котором оно достигается.

hello_html_m7abf97da.gifhello_html_m49aa8cc5.gifhello_html_m393ce894.gifhello_html_m238d5e8.gifI, А

0,5

0,4

0,3

0,2

0,1


0 0,02 0,04 0,08 t, с



Краткое описание документа:

Учебное пособие содержит  указания по выполнению внеаудиторных самостоятельных работ по «Математика», являющейся естественно-научной дисциплиной. Методические указания составлены  в соответствии с рабочей программой  по дисциплине «Математика» и предназначены для студентов 2-го курса, обучающихся по специальности 260807 ТЕХНОЛОГИЯ  ПРОДУКЦИИ ОБЩЕСТВЕННОГО ПИТАНИЯ. В пособии представлены как индивидуальные, так и групповые задания в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности. В качестве форм и методов контроля внеаудиторной самостоятельной работы студентов используются аудиторные занятия, зачеты, тестирование, самоотчеты. В методических указаниях приведены теоретический (справочный) материал в соответствии с темой работы, обращение к которому поможет выполнить задания самостоятельной работы; вопросы для самоконтроля, подготавливающие к выполнению заданий и сами задания.
Автор
Дата добавления 11.05.2014
Раздел Математика
Подраздел Другие методич. материалы
Просмотров1121
Номер материала 101074051124
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх