Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Исследовательская работа «Об одном видоизменении способа, известного под названием Эратосфенова решета»
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Исследовательская работа «Об одном видоизменении способа, известного под названием Эратосфенова решета»

библиотека
материалов


Муниципальное бюджетное образовательное учреждение

Ставровская средняя общеобразовательная школа

Собинский район Владимирская область


hello_html_m52c37bd4.jpg










На снимке —

скульптура абстрактного экспрессиониста

Марка Ди Суверо «Решето Эратосфена»,

установленная в кампусе

Стэнфорского университета



Исследовательская работа

"Об одном видоизменении способа,

известного под названием Эратосфенова решета"






Работу выполнил

ученица 8Б класса

Ермилова Алиса

научный руководитель

Ларионова Вера Ивановна



2013-2014 учебный год




Аннотация

В работе представлен способ нахождения простых чисел, который несколько отличается от известного способа, известного нам, как решето Эратосфена.



Содержание



стр.

1

Введение…………………………………………………………..

3

2

Теоретическая часть



2.1. Немного о простых числах....................................................

4 - 6


2.2. Решето Эратосфена …………...............................................

6 - 9

3

Практическая часть

Еще раз о поиске простых чисел.................................................



10 - 12

4

Заключение……………………………………………………......

13


Литература………………………………………………………..

13



1. ВВЕДЕНИЕ

Актуальность

В 8 классе мы изучали тему «Квадратные корни». В одном из заданий на данную тему необходимо было вынести множитель из-под знака корня hello_html_m12f8aa82.gif. Конечно, данную задачу в лоб мне решить не удалось. Мне необходимо было разложить число 9648 на простые множители.

9648

2

4924

2

2412

2

1206

2

603

3

201

3

67

?


Но, оказалось, что сделать это было не так уж просто. При разложении числа 9648 на простые множители мне необходимо узнать, является число 67 простым или составным. Но под рукой у меня не оказалось таблицы простых чисел. Поэтому мне пришлось воспользоваться известным методом нахождения простых чисел – "Решето Эратосфена". Но это у меня заняло много времени. Поэтому возникла проблема, которую я хочу решить в ходе работы: выяснить, решето Эратосфена – единственный способ нахождения простых чисел или есть еще способ?

Таким образом, объектом моего исследования являются простые числа, а предметом исследованияспособ нахождения простых чисел.

Предположу гипотезу, что существует еще способ нахождения простых чисел, отличный от решета Эратосфена. Тогда я хочу поставить перед собой следующую цель исследования: если существует еще способ нахождения простых чисел, то исследовать его алгоритм и использовать при решении задач.

Для достижения своей цели я должна решить следующие задачи:

1. Систематизировать знания по теме: "Простые и составные числа";

2. Исследовать закономерности расположения простых и составных чисел.

3. Привести способы нахождения простых чисел.

Методы исследования:

  1. обработка и анализ научно-публицистических и учебных изданий по исследуемой проблеме;

  2. метод сравнения и сопоставления полученных фактов.

2. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1. Немного о простых числах

Сразу замечу, что простые числа принадлежат множеству натуральных чисел. Евклид определял простые числа так: "Простое число есть измеряемое только единицей”. Иными словами, простое число — это натуральное число, которое имеет ровно два различных натуральных делителя: единицу и самого себя. Все остальные числа, кроме единицы, называются составными. Таким образом, все натуральные числа, бо́льшие единицы, разбиваются на простые и составные. Число 1 (единица) не причисляется ни к простым, ни к составным числам.

Для начала приведу ряд простых чисел в интервале (1, 500). Сделаю это в форме таблицы, чтобы лучше увидеть, как распределяются простые числа в  ряду натуральных чисел (табл.1). Ячейки, содержащие простые числа, выделены темным цветом.

hello_html_1fcc08aa.jpg

табл.1. Таблица распределения простых чисел от 1 до 500

Вот так причудливо располагаются простые числа в ряду натуральных чисел! На первый взгляд может показаться, что простых чисел довольно много только в начале натурального ряда, т. е.  пока числа сравнительно не велики, и что с увеличением чисел простые числа станут постепенно редеть и, наконец, совсем исчезнут. Но тaкоe предположение неверно, в действительности существует бесчисленное множество простых чисел.

Плотность распределения простых чисел среди натурального ряда различна, есть участки, где простые числа располагаются гуще (табл. 2, табл.3).


Промежуток натурального ряда

Простых чисел в этом промежутке

От 1 до 10

4

От 10 до20

4

От 20 до 30

2

От 30 до 40

2

От 40 до 50

3

От 50 до 60

2

От 60 до 70

2

От 70 до 80

3

От 80 до 90

2

От 90 до 100

1


табл.2. Количество простых чисел в различных промежутках от 1 до 100


Промежуток натурального ряда

Простых чисел в этом промежутке

От 100 до 200

21

От 200 до 300

16

От 300 до 400

16

От 400 до 500

17

От 500 до 600

14

От 600 до 700

16

От 700 до 800

14

От 800 до 900

15

От 900 до 1000

14


табл.3. Количество простых чисел в различных промежутках от 100 до 1000


Пестрота картины распределения простых чисел увеличивается еще более, если отметить, что существуют пары простых чисел, которые отделены в натуральном ряду только одним числом («близнецы»). Например. 3 и 5, 5 и 7, 11 и 13, 10016957 и 10016959. С другой стороны, существуют пары простых чисел, между которыми много составных. Например, все 153 числа от 4652354 до 4652506 являются составными.

Также нельзя по виду числа определить является оно простым или нет. Например, является ли простым число 261-1, 22^23+1? Математик Первушин доказал, что первое число – простое, а второе – составное. Издавна ведутся записи, отмечающие наибольшие известные на то время простые числа. Один из рекордов поставил в своё время Эйлер, найдя простое число 231 − 1 = 2147483647.

Наибольшим известным простым числом по состоянию на февраль 2011 года является 243112609 − 1. Оно содержит 12 978 189 десятичных цифр и является простым числом Мерсенна (M43112609). Его нашли 23 августа 2008 года на математическом факультете университета UCLA в рамках проекта по распределённому поиску простых чисел Мерсенна GIMPS.

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты: теста Люка — Лемера. Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF назначила денежные призы соответственно в 150 000 и 250 000 долларов США.

Вывод:

Таким образом, простые числа отказываются подчиниться какой либо закономерности, они встречаются неравномерно, и мы не можем найти закономерность обнаружения простых чисел.

2.2. Решето Эратосфена

Составлением таблиц простых чисел занимались математики ещё в глубокой древности. Первая попытка такого рода приписывается александрийскому математику и географу Эратосфену Киренскому, жившему примерно в 276 – 194 г. до н.э.

Способ Эратосфена состоит в том, что из ряда натуральных чисел постепенно вычёркиваются все составные числа.

Опишу подробно алгоритм Эратосфена. Пусть нам надо найти все простые числа в диапазоне от 1 до N. Выпишем подряд все числа от 2 до N. Зачеркнём в этом списке каждое второе число из следующих за числом 2. Таким образом, мы отсеем все числа кратные числу 2. Число 2 является первым простым числом. Следующее не зачёркнутое число в списке после числа 2 – число 3. Это второе простое число. Повторим процедуру отсеивания, только теперь будем зачёркивать каждое третье число из следующих за числом 3. Так отсеем все числа кратные 3. Процедуру отсеивания следует повторять до тех пор, пока не доберёмся до простого числа, которое больше квадратного корня из N. Все числа, оставшиеся не зачёркнутыми в списке, будут простыми.

Приведу иллюстрацию описанного метода для N = 100.

Сначала покажу, как будет выглядеть список чисел после отсеивания чисел кратных 2:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100



Теперь покажу, как выглядит список после вычёркивания всех чисел кратных 3:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100











Теперь закрасим числа, кратные 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100



Осталось вычеркнуть числа кратные 7

1hello_html_m1aaa1271.gif

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100



В этом примере процедура отсеивания (зачёркивания) завершилась на простом числе 7, то есть последний раз мы зачёркивали в этом списке каждое седьмое число, следующее за числом 7. Числа кратные 11 мы уже не будем зачёркивать (отсеивать), так как это число больше квадратного корня из 50.

Окончательно получим простые числа. Они оказались в таблице незакрашенными, кроме 1.

Во времена Эратосфена писали на восковых дощечках, а вместо того, чтобы числа зачёркивать, дощечку в нужном месте прокалывали. Отсюда и произошло название способа – "решето Эратосфена”: составные числа как бы "просеивались” в проколотые дырки, а простые числа оставались в "решете”. Поэтому такой способ составления таблицы простых чисел получил название «решета Эратосфена».

Определенный интерес представляет статья Буняковского «Об одном видоизменении способа, известного под названием Эратосфенова решета» (1882г.). В отличие от Эратосфена Буняковский выделяет из последовательности испытуемых чисел простые числа, рассматривая отдельно числа, оканчивающиеся на 1, на 3, на 7, на 9, и используя при этом решения вспомогательных неопределенных уравнений первой степени (довольно простого вида). Я не разбиралась с этим приемом. Предоставляю данный метод читателям для самостоятельного изучения. В помощь даю ссылку на форум "Портал Естественных Наук” в списке литературы.

В настоящее время составлены таблицы простых чисел, простирающиеся до миллионов.



ПРАКТИЧЕСКАЯ ЧАСТЬ

Еще раз о поиске простых чисел

Выпишу числа по 10 в строке и в ней закрашу простые числа.


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Обращаю особое внимание на то, что не существует простых чисел, оканчивающихся на 4, 6, 8, 0, и что среди простых чисел, оканчивающихся на 2, имеется только одно число — это само 2, и из оканчивающихся на 5 — одно число, т. е. 5. Следовательно, кроме 2 и 5, все остальные простые числа оканчиваются на   1, 3, 7, 9. Но нельзя считать, что числа, оканчивающиеся на 1, 3, 7, 9, обязательно будут простыми, например числа 21, 33, 27, 39 и многие другие — составные.


1hello_html_m7dd38e6d.gifhello_html_20cb2bd6.gif

2hello_html_76b08434.gif

3

4hello_html_m3e812a1d.gif

5

6hello_html_m5318e09d.gif

7

8hello_html_2e2fe701.gif

9

1hello_html_m68d13d85.gif0

11

12

13

14

1hello_html_m3d3d9ffe.gifhello_html_m16314913.gif5

16

17

18

19

20

2hello_html_6d8d0a19.gif1

2hello_html_65bcec7e.gif2

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

5hello_html_mf4653a8.gif1

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

8hello_html_6710ffef.gif1

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

1hello_html_m38fb58a7.gif11

1hello_html_m62fa0774.gif12

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

1hello_html_172a256.gif44

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

1hello_html_263bb35b.gif61

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

1hello_html_41e0aa15.gif78

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200



Вывод: через составные числа можно провести диагональные прямые.

Но при таком зачеркивании некоторые числа, которые делятся на 7 и на 13 остались незачеркнутыми!


Так как остались незачеркнутыми числа, кратные 7, то запишу числа по 6 в строке. Закрашу все простые числа


1

2

3

4hello_html_363f8724.gif

5

6hello_html_m549ad1e3.gif

7hello_html_7468217e.gif

8hello_html_36a54de2.gif

9hello_html_4b9a423d.gif

10

11

12

13

1hello_html_dd53272.gif4

15

16

17

18

19

20

21

22

23

24

2hello_html_mdbb6867.gif5

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4hello_html_44d6f2ae.gif9

50

51

52

53

54

5hello_html_3fadb589.gif5

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

8hello_html_6e77eade.gif5

86

87

88

89

90

9hello_html_m6d957ce0.gif1

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120


Вывод:

Простые числа оказались только в двух столбиках. Числа, делящиеся на 2 и 3 находятся во втором, четвертом и шестом столбиках. Числа, делящиеся на 5, 7, 11 находятся по диагоналям.


Используя вывод, можно вывести правило отсеивания простых чисел.

        • Вычеркнем 1, которая не является ни простым, ни составным числом.

  • Вычеркнем все числа, кратные 2 (за исключением самой 2), проведя вертикальные черты во втором, четвертом и шестом столбцах.

  • Вычеркнем все числа, кратные 3, (за исключением самой 3), проведя вертикальную черту в третьем столбце. Следующее за 3 не вычеркнутое число равно 5.

  • Чтобы вычеркнуть все числа, кратные 5, проведем диагонали, идущие вниз и влево.

  • Чтобы вычеркнуть все числа, кратные 7, проведем диагонали, идущие с наклоном вправо и вниз.

  • Числа 8,9 и 10 – составные, их кратные уже были вычеркнуты раньше.

  • Следующее простое число 11, 11∙11=121. Если бы таблица была больше, то пришлось бы исключать кратные 11, проводя диагонали с более крутым наклоном. И так далее…


Все не зачёркнутые числа в таблице, кроме числа 1, являются простыми (они выделены синим цветом).

Заключение

В своей работе мне удалось усовершенствовать способ отсеивания простых чисел, называемый «решето Эратосфена»

Мне хотелось бы, чтобы сведения, почерпнутые из моей работы, побудили читателя к самостоятельным размышлениям, чтобы в процессе чтения у него появлялись новые, оригинальные идеи.

Практическая значимость

Моя работа не претендует на научность и не представляет полные и исчерпывающие факты по теме. Но, тем не менее, способ нахождения простых чисел, предложенный мною в работе, доступен учащимся для понимания и может быть использован на уроках математики вместе с решетом Эратосфена.



Список литературы:

    1. Виленкин

    2. Глейзер Г.И. – История математики в школе: IV – VI кл. Пособие для учителей. – М.: Просвещение, 1981.

    3. Депман И. – Рассказы о математике. – М. – Л., Детгиз 1954.

    4. Карпеченко Е. Тайны чисел. Математика /Приложение к газете "Первое сентября" - №13 - 2007.

    5. Крылов А.Н. Числа и меры. Математика/ Приложение к газете "Первое сентября" - №7 - 1994

    6. Пичугин Л.Ф. За страницами учебника алгебры: Книга для учащихся 7-9 кл. средней школы. – М.: Просвещение, 1990.

Ресурсы Интернета:

  1. http://wikipedia.org

  2. Портал Естественных наук http://e-science.ru/forum/index.php?s=80eab7d3816a082e5ee44635ec2548968showtopic=125068st=80

  3. http://www.natalimak1.narod.ru/prost.htm



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

Составлением таблиц простых чисел занимались математики ещё в глубокой древности. Первая попытка такого рода приписывается александрийскому математику и географу Эратосфену Киренскому. В настоящее время составлены таблицы простых чисел, простирающиеся до миллионов.Из курса математики 6 класса мы знаем способ нахождения простых чисел «Решето Эратосфена» В работе представлен способ нахождения простых чисел, который несколько отличается от данного способа. Способ, предложенный в работе доступен учащимся для понимания и может быть использован вместе с решетом Эратосфена.  
Автор
Дата добавления 19.05.2014
Раздел Математика
Подраздел Другие методич. материалы
Просмотров801
Номер материала 108854051920
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх