Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Физика / Другие методич. материалы / «ТЕПЛОВЫЕ МЕТОДЫ УВЕЛИЧЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ»
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Физика

«ТЕПЛОВЫЕ МЕТОДЫ УВЕЛИЧЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ»

библиотека
материалов

Министерство образования и науки РТ

ГАОУ СПО “Альметьевский политехнический техникум”











ДОКЛАД НА ТЕМУ:

«ТЕПЛОВЫЕ МЕТОДЫ УВЕЛИЧЕНИЯ

НЕФТЕОТДАЧИ ПЛАСТОВ»















Выполнил: Халиков Р.Р.

группа ЭКС-121 кб

Проверила: Зиннатуллина Э.И.







2014 г.

СОДЕРЖАНИЕ


Введение……………………………………………………………………..3
1.  Цели применения методов увеличения нефтеотдачи (МУН)…………3


2.  Классификация методов увеличения нефтеотдачи…………………….4


3. Тепловые МУН.…………………………………………………………...7




4. Методы увеличения дебита скважин. …………………………………..9
Заключение……………………………………………………………….…10

Список используемой литературы………………………………………...11



































ВВЕДЕНИЕ


Под нефтеотдачей продуктивного пласта в нефтепромысловой практике понимается степень использования природных запасов нефти. Ввиду того, что естественные запасы нефти в недрах земли небезграничны, а открытие новых нефтяных месторождений требует затраты огромных средств и времени; достижение высокой нефтеотдачи пластов уже открытых месторождений имеет исключительно важное значение для страны.

Нефтеотдача пластов, или степень извлечения подземных запасов нефти, в значительной мере влияет на объем капитальных вложений в поисковое и разведочное бурение, а также на планирование прироста промышленных, перспективных и прогнозных запасов. Кроме того, знание фактической величины нефтеотдачи имеет большое значение для оценки остаточных запасов, эффективности применяемых систем разработки, перспектив и масштабов внедрения новых методов разработки на длительно разрабатываемых залежах.

Нефтеотдача пластов зависит от геологических условий залегания нефти в недрах, неоднородности пластов, физических свойств коллекторов и содержащихся в них жидкостей, системы разработки и методой воздействия на пласт, а также от предела экономической рентабельности эксплуатации скважин. Добыча нефти должна расти не только за счет ввода в эксплуатацию новых месторождений, но и за счет увеличения нефтеотдачи разрабатываемых месторождений. Количество остаточной нефти по ряду месторождений определяется десятками и сотнями миллионов тонн. Небольшое увеличение нефтеотдачи пластов равноценно открытию нескольких крупных месторождений. Экономические выводы, связанные с получением дополнительной добычи нефти и использованием промысловых сооружений, будут огромны. Таким образом, перспектива увеличения нефтеотдачи, т.е. решение проблемы максимального извлечения нефти из недр, является одной из крупных народнохозяйственных задач.


  1. ЦЕЛИ ПРИМЕНЕНИЯ МЕТОДОВ УВЕЛИЧЕНИЯ НЕФТЕОТДАЧИ.


В целях повышения экономической эффективности разработки месторождений, снижения прямых капитальных вложений и максимально возможного использования реинвестиций весь срок разработки месторождения принято делить на три основных этапа.

На первом этапе для добычи нефти максимально возможно используется естественная энергия пласта (упругая энергия, энергия растворенного газа, энергия законтурных вод, газовой шапки, потенциальная энергия гравитационных сил).

На втором этапе реализуются методы поддержания пластового давления путем закачки воды или газа. Эти методы принято называть вторичными.

На третьем этапе для повышения эффективности разработки месторождений применяются методы увеличения нефтеотдачи (МУН).

Поэтому актуальными являются задачи применения новых технологий нефтедобычи, позволяющих значительно увеличить нефтеотдачу уже разрабатываемых пластов, на которых традиционными методами извлечь значительные остаточные запасы нефти уже невозможно.

Известные методы увеличения нефтеотдачи пластов в основном характеризуются направленным эффектом и воздействуют максимум на одну-две причины, влияющие на состояние остаточных запасов.

2. КЛАССИФИКАЦИЯ МЕТОДОВ УВЕЛИЧЕНИЯ НЕФТЕОТДАЧИ.


I. Тепловые методы:

  • паротепловое воздействие на пласт;

  • внутрипластовое горение;

  • вытеснение нефти горячей водой;

  • пароциклические обработки скважин.

II.  Газовые методы:

  • закачка воздуха в пласт;

  • воздействие на пласт углеводородным газом (в том числе ШФЛУ);

  • воздействие на пласт двуокисью углерода;

  • воздействие на пласт азотом, дымовыми газами и др.

III.  Химические методы:

  • вытеснение нефти водными растворами ПАВ (включая пенные системы);

  • вытеснение нефти растворами полимеров;

  • вытеснение нефти щелочными растворами;

  • вытеснение нефти кислотами;

  • вытеснение нефти композициями химических реагентов (в том числе мицеллярные растворы и др.);

  • микробиологическое воздействие.

IV.  Гидродинамические методы:

  • интегрированные технологии;

  • вовлечение в разработку недренируемых запасов;

  • барьерное заводнение на газонефтяных залежах;

  • нестационарное (циклическое) заводнение;

  • форсированный отбор жидкости;

  • ступенчато-термальное заводнение.

V.  Группа комбинированных методов.

С точки зрения воздействия на пластовую систему в большинстве случаев реализуется именно комбинированный принцип воздействия, при котором сочетаются гидродинамический и тепловой методы, гидродинамический и физико-химический методы, тепловой и физико-химический методы и так далее.

VI.  Методы увеличения дебита скважин.

Отдельно следует сказать о так называемых физических методах увеличения дебита скважин.  Объединять их с методами увеличения нефтеотдачи  не совсем правильно из-за того, что использование методов увеличения нефтеотдачи характеризуется увеличенным потенциалом вытесняющего агента, а в физических методах потенциал вытесняющего нефть агента реализуется за счет использования естественной энергии пласта. Кроме того, физические методы чаще всего не повышают конечную нефтеотдачу пласта, а лишь приводят к временному увеличению добычи, то есть повышению текущей нефтеотдачи пласта.

К наиболее часто применяемым физическим методам относятся:
гидроразрыв пласта;

  • горизонтальные скважины;

  • электромагнитное воздействие;

  • волновое воздействие на пласт;

  • другие аналогичные методы.


3. ТЕПЛОВЫЕ МУН.


Тепловые МУН – это методы интенсификации притока нефти и повышения продуктивности эксплуатационных скважин, основанные на искусственном увеличении температуры в их стволе и призабойной зоне. Применяются тепловые МУН в основном при добыче высоковязких парафинистых и смолистых нефтей . Прогрев приводит к разжижению нефти, расплавлению парафина и смолистых веществ, осевших в процессе эксплуатации скважин на стенках, подъемных трубах и в призабойной зоне. 

Паротепловое воздействие на пласт. Вытеснение нефти паром – метод увеличения нефтеотдачи пластов, наиболее распространенный при вытеснении высоковязких нефтей. В этом процессе пар нагнетают с поверхности в пласты с низкой температурой и высокой вязкостью нефти через специальные паронагнетательные скважины, расположенные внутри контура нефтеносности. Пар, обладающий большой теплоемкостью, вносит в пласт значительное количество тепловой энергии, которая расходуется на нагрев пласта и снижение относительной проницаемости, вязкости и расширение всех насыщающих пласт агентов – нефти, воды, газа. В пласте образуются следующие три зоны, различающиеся по температуре, степени  и характеру насыщения:

1) Зона пара вокруг нагнетательной скважины с температурой, изменяющейся от температуры пара до температуры начала конденсации (400–200°С), в которой происходят экстракция из нефти легких фракций (дистилляция нефти) и перенос (вытеснение) их паром по пласту, то есть совместная фильтрация пара и легких фракций нефти. 
2) Зона горячего конденсата, в которой температура изменяется от температуры начала конденсации (200°С) до пластовой, а горячий конденсат (вода) в неизотермических условиях вытесняет легкие фракции и нефть. 
3) Зона с начальной пластовой температурой, не охваченная тепловым воздействием, в которой происходит вытеснение нефти пластовой водой.

При нагреве пласта происходит дистилляция нефти, снижение вязкости и объемное расширение всех пластовых агентов, изменение фазовых проницаемостей, смачиваемости горной породы и подвижности нефти, воды и др.

Внутрипластовое горение. Метод извлечения нефти с помощью внутрипластового горения основан на способности углеводородов (нефти) в пласте вступать с кислородом воздуха в окислительную реакцию, сопровождающуюся выделением большого количества теплоты. Он отличается от горения на поверхности. Генерирование теплоты непосредственно в пласте – основное преимущество данного метода.

Процесс горения нефти в пласте начинается вблизи забоя нагнетательной скважины, обычно нагревом и нагнетанием воздуха. Теплоту, которую необходимо подводить в пласт для начала горения, получают при помощи забойного электронагревателя, газовой горелки или окислительных реакций.

После создания очага горения у забоя скважин непрерывное нагнетание воздуха в пласт и отвод от очага (фронта) продуктов горения (N2, CO2, и др.) обеспечивают поддержание процесса внутрипластового горения и перемещение по пласту фронта вытеснения нефти.

В качестве топлива для горения расходуется часть нефти, оставшаяся в пласте после вытеснения ее газами горения, водяным паром, водой и испарившимися фракциями нефти впереди фронта горения. В результате сгорают наиболее тяжелые фракции нефти.

В случае обычного (сухого) внутрипластового горения, осуществленного нагнетанием в пласт только воздуха, вследствие его низкой теплоемкости по сравнению с породой пласта происходит отставание фронта нагревания породы от перемещающегося фронта горения. В результате этого основная доля генерируемой в пласте теплоты (до 80% и более) остается позади фронта горения, практически не используется и в значительной мере рассеивается в окружающие породы. Эта теплота оказывает некоторое положительное влияние на процесс последующего вытеснения нефти водой из неохваченных горением смежных частей пласта. Очевидно, однако, что использование основной массы теплоты в области впереди фронта горения, то есть приближение генерируемой в пласте теплоты к фронту вытеснения нефти, существенно повышает эффективность процесса.

Перемещение теплоты из области перед фронтом горения в область за фронтом горения возможно за счет улучшения теплопереноса в пласте добавлением к нагнетаемому воздуху агента с более высокой теплоемкостью – например, воды. В последние годы в мировой практике все большее применение получает метод влажного горения.


http://gendocs.ru/docs/5/4533/conv_1/file1_html_m3dbf6298.png


Рис.1- Схема распределения температуры в пласте при нагнетании в него водяного пара. Зоны: 1 – перегретого пара: 2 – насыщенного пара; 3 – горячего конденсата: 4 – остывшего конденсата.

Нагрев пласта вначале происходит за счет теплоты прогрева. При этом температура нагнетаемого перегретого пара вблизи нагнетательной скважины снижается (в зоне 1) до температуры насыщенного пара (т.е. до точки кипения воды при пластовом). На прогрев пласта (в зоне 2) расходуется скрытая теплота парообразования и далее пар конденсируется. В этой зоне температура пароводяной смеси и пласта будут приблизительно постоянны и равны температуре насыщенного пара (зависящей от давления), пока используется вся скрытая теплота парообразования. Основным фактором увеличения нефтеотдачи здесь является испарение (дистилляция) легких фракций остаточной нефти, образованной после вытеснения горячей водой. Размеры ее при практически приемлемых объемах закачки небольшие. В зоне 3 пласт нагревается за счет теплоты горячей воды (конденсата) до тех пор, пока температура ее не упадет до начальной температуры пласта. В зоне 4 температура пласта снижается до начальной.

Процесс влажного внутрипластового горения заключается в том, что в пласт вместе с воздухом закачивается в определенных количествах вода, которая, соприкасаясь с нагретой движущимся фронтом горения породой, испаряется. Увлекаемый потоком газа пар переносит теплоту в область впереди фронта горения, где вследствие этого развиваются обширные зоны прогрева, выраженные в основном зонами насыщенного пара и сконденсированной горячей воды.

Механизм процессов, происходящих в пласте, довольно сложный и сопровождается теми же явлениями, что и вытеснение нефти паром, но дополнительно происходит противоточная капиллярная фильтрация, перераспределение в микронеоднородной среде нефти и воды (конденсата) во время выдержки без отбора жидкости из скважин. При нагнетании пара в пласт он, естественно, внедряется в наиболее проницаемые слои и крупные поры пласта. Во время выдержки в прогретой зоне пласта происходит активное перераспределение насыщенности за счет капиллярных сил: горячий конденсат вытесняет, замещает маловязкую нефть из мелких пор и слабопроницаемых линз (слоев) в крупные поры и высокопроницаемые слои, то есть меняется с ней местами.


4. МЕТОДЫ УВЕЛИЧЕНИЯ ДЕБИТА СКВАЖИН.


Гидравлический разрыв пласта. При гидравлическом разрыве пласта (ГРП) происходит создание трещин в горных породах, прилегающих к скважине, за счет давления на забое скважины в результате закачки в породы вязкой жидкости. При ГРП в скважину закачивается вязкая жидкость с таким расходом, который обеспечивает создание на забое скважины давления, достаточного для образования трещин.

Трещины, образующиеся при ГРП, имеют вертикальную и горизонтальную ориентацию. Протяженность трещин достигает нескольких десятков метров, ширина – от нескольких миллиметров до сантиметров. После образования трещин в скважину закачивают смесь вязкой жидкости с твердыми частичками – для предотвращения смыкания трещин под действием горного давления. ГРП проводится в низкопроницаемых пластах, где отдельные зоны и пропластки не вовлекаются в активную разработку, что снижает нефтеотдачу объекта в целом. При проведении ГРП создаваемые трещины, пересекая слабодренируемые зоны и пропластки, обеспечивают их выработку, нефть фильтруется из пласта в трещину гидроразрыва и по трещине к скважине, тем самым увеличивая нефтеотдачу.

Горизонтальные скважины. Технология повышения нефтеотдачи пластов методом строительства горизонтальных скважин зарекомендовала себя в связи с увеличением количества нерентабельных скважин с малодебитной или обводненной продукцией и бездействующих аварийных скважин по мере перехода к более поздним стадиям разработки месторождений, когда обводнение продукции или падение пластовых давлений на многих разрабатываемых участках (особенно в литологически неоднородных зонах нефтеносных пластов с трудноизвлекаемыми запасами) опережает выработку запасов при существующей плотности сетки скважин. Увеличение нефтеотдачи происходит за счет обеспечения большей площади контакта продуктивного пласта со стволом скважины.

Электромагнитное воздействие. Метод основан на использовании внутренних источников тепла, возникающих при воздействии на пласт высокочастотного электромагнитного поля. Зона воздействия определяется способом создания (в одной скважине или между несколькими), напряжения и частоты электромагнитного поля, а также электрическими свойствами пласта. Помимо тепловых эффектов электромагнитное воздействие приводит к деэмульсации нефти, снижению температуры начала кристаллизации парафина и появлению дополнительных градиентов давления за счет силового воздействия электромагнитного поля на пластовую жидкость.
Волновое воздействие на пласт. Известно множество способов волнового и термоволнового (вибрационного, ударного, импульсного, термоакустического) воздействия на нефтяной пласт или на его призабойную зону.

Основная цель технологии – ввести в разработку низкопроницаемые изолированные зоны продуктивного пласта, слабо реагирующие на воздействие системы ППД, путем воздействия на них упругими волнами, затухающими в высокопроницаемых участках пласта, но распространяющимися на значительное расстояние и с достаточной интенсивностью, чтобы возбуждать низкопроницаемые участки пласта.

Применением таких методов можно достичь заметной интенсификации фильтрационных процессов в пластах и повышения их нефтеотдачи в широком диапазоне амплитудно-частотной характеристики режимов воздействия.

При этом положительный эффект волнового воздействия обнаруживается как в непосредственно обрабатываемой скважине, так и в отдельных случаях, при соответствующих режимах обработки проявляется в скважинах, отстоящих от источника импульсов давления на сотни и более метров.То есть при волновой обработке пластов принципиально можно реализовать механизмы как локального, так и дальнего площадного воздействия.

Все вышеперечисленные методы характеризуются различной потенциальной возможностью увеличения нефтеотдачи пластов.


ЗАКЛЮЧЕНИЕ.


Согласно обобщенным данным при применении современных методов увеличения нефтеотдачи, КИН составляет 30–70%, в то время как при первичных способах разработки (с использованием потенциала пластовой энергии) – в среднем не выше 20–25%, а при вторичных способах (заводнении и закачке газа для поддержания пластовой энергии) – 25–35%. МУН позволяют нарастить мировые извлекаемые запасы нефти в 1,4 раза, то есть до 65 млрд. тонн. Среднее значение указанного коэффициента к 2020 году благодаря им увеличится с 35% до 50% с перспективой дальнейшего роста. Если в 1986 году добыча нефти за счет МУН составляла в мире около 77 млн. тонн, то в настоящее время она увеличилась до 110 млн. тонн. Всего, по данным Oil and Gas Journal, к 2011 году в мире, за исключением стран СНГ, реализовывался 301 проект по внедрению МУН. Отметим также, что, по оценкам специалистов, использование современных методов увеличения нефтеотдачи приводит к существенному увеличению КИН. А повышение КИН, например,  лишь на 1% в целом по России позволит добывать дополнительно до 30 млн. тонн в год.

Таким образом мировой опыт свидетельствует, что востребованность современных МУН растет, их потенциал в увеличении извлекаемых запасов внушителен. Этому способствует и то обстоятельство, что себестоимость добычи нефти с применением современных МУН по мере их освоения и совершенствования непрерывно снижается и становится вполне сопоставимой с себестоимостью добычи нефти традиционными промышленно освоенными методами.






СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:


  1. Айткулов А.У. Основы подземной гидромеханики и разработки нефтяных месторождений. Под. Редакцией Т.К. Ахмеджанова, Алматы, 2003.

  2. Андреев В.В., Уразаков К.Р. Справочник по добыче нефти. М: ООО «Недра Бизнесцентр», 2000 г.

  3. Баренблатт Г.И.. Ентов В.М., Рыжик В.М. Движение жидкостей и газов в природных пластах. – М.: Недра, 1984. 298 с

  4. Гиматудинов Ш.К. Справочное руководство по проектированию разработки и эксплуатаций нефтяных месторождений. М: Недра, 1983г.

  5. Желтов Ю.П. Разработка нефтяных месторождений. Учебник для вузов. – М.: ОАО Издательство «Недра». 1986г.

  6. Мищенко И.Т. Скважинная добыча нефти. Учебное пособие для вузов. –М.:ФГУП Изд-во «Нефть и газ» РГУ нефти и газа им. И.М.Губкина, 2003.– 816с.

  7. Разработка и эксплуатация нефтяных, газовых и газоконденсатных месторождений. – М.: Недра.1988. под ред. Гиматудинова Ш.К.

  8. http://www.petros.ru/rus/news/?action=show&id=276#3.1

  9. http://www.eemkzn.ru/nefteotdacha/



11


Краткое описание документа:

Данный методический материал предназначен студентам политехнических техникумов, колледжей и т.п.Он включает в себя введение, 4 раздела, заключение и список используемой литературы.Под нефтеотдачей продуктивного пласта в нефтепромысловой практике понимается степень использования природных запасов нефти. Ввиду того, что естественные запасы нефти в недрах земли небезграничны, а открытие новых нефтяных месторождений требует затраты огромных средств и времени; достижение высокой нефтеотдачи пластов уже открытых месторождений имеет исключительно важное значение для страны. 
Автор
Дата добавления 27.05.2014
Раздел Физика
Подраздел Другие методич. материалы
Просмотров2275
Номер материала 114452052733
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх