Инфоурок / Математика / Конспекты / Математический конкурс для учащихся 7 класса «Звездный час»
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии в Российской Федерации).

Учителям 1-11 классов и воспитателям рекомендуем принять участие в Международном конкурсе «Я люблю природу», приуроченном к году экологии. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

СЕГОДНЯ (15 ДЕКАБРЯ) ПОСЛЕДНИЙ ДЕНЬ ПРИЁМА ЗАЯВОК!

Конкурс "Я люблю природу"

Математический конкурс для учащихся 7 класса «Звездный час»

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

ВНЕКЛАССНОЕ

МЕРОПРИЯТИЕ

ДЛЯ УЧАЩИХСЯ 8 КЛАССА









ЗВЁЗДНЫЙ ЧАС









УЧИТЕЛЬ МАТЕМАТИКИ

МАКСИМОВИЧ Н.В.





ПРАВИЛА ИГРЫ


В игре принимают участие учащиеся со своими родителями. Площадку, где проводят мероприятие, делим 5 горизонтальными линиями. Участники выстраиваются на старте, родители располагаются за ними на расстоянии.

Каждому участнику, а их 7, раздаются сигнальные карточки, на которых написаны цифры от 1 до 6 с двух сторон: c их помощью жюри будет получать информацию о выбранных ответах. Проходят обычно несколько туров и финал, где участникам предлагают разные вопросы и задания. После каждого тура один участник выбывает из игры, получая при этом приз. В результате в финал выходят двое, и там определяется победитель. К игре заранее я вместе с помощниками готовлю звёздочки: их вручаю каждому ученику, правильно ответившему на вопрос или выполнившему задание, что даёт право сделать шаг на следующую линию. Кто придёт на финальную линию, выходит в следующий тур, но по-прежнему отвечает на вопросы, набирает себе звёздочки. Кто остался на последней линии – выбывает из игры. Если после тура на передней – финальной линии осталось несколько человек, считаем звёздочки и выбывает тот, Родители имеют право отвечать на вопрос, если игроки в затруднительном состоянии. Если они отвечают правильно, то добавляют звёздочку своему участнику; если же они не ответили на 3 вопроса, то из игры выбывают.

На обдумывание ответа дается 10 секунд.

По количеству предлагаемых во всех турах “Звёздного часа” вопросов мы устанавливаем максимальное число N звёздочек, которые участник вместе с родителями может набрать в ходе игры. Оно равно числу п вопросов, умноженных на 2, т.е. N=п*2. Кто набирает такое количество звёздочек, то получает супер приз.

Для того, чтобы стать участником игры, претенденты проходят конкурс; они должны написать стихотворение о математике, математических законах. Победители конкурса и принимают участие в игре.

Оформление игры.

Перед участниками находится демонстрационный стол и классная передвижная доска, на которой будет располагаться иллюстративный материал: карточки, портреты и т.д.

Первый тур

На доску вывешиваются портреты учёных-математиков с подписанными внизу фамилиями и с прикреплёнными рядом номерами 1; 2; 3; 4.

  1. Ф.Виет ( 1540-1603гг).

  2. Евклид ( III в. До н.э.)

  3. Пифагор( VI в. До н.э.)

  4. Р.Декарт ( 1596 – 1650гг)

  5. Н.И.Лобачевский ( 1792 – 1856гг)

Вопросы участникам игры.

  1. Древнегреческий учёный, сформировавший основной подход к построению геометрии и изложивший основные положения – аксиомы в знаменитом сочинении “Начала”.

  2. Известный французский математик ХVIв. Считается основоположником введения в алгебру буквенной символики.

  3. Выдающийся математик ХХв., родившийся в г. Тамбове, с 14 лет самостоятельно изучавший высшую математику по энциклопедии и в 19 лет сделавший крупное открытие - построил всюду расходящийся ряд.

  4. С именем этого великого французского математика ХVII в. Связано использование прямоугольной системы координат на плоскости.

  5. Древнегреческий учёный, доказавший одну из важнейших теорем геометрии, известную задолго до него. В настоящее время известны более 100 способов её доказательства.

Второй тур.

Для этого тура нужно приготовить карточки с буквами алфавита.

Ведущий достаёт 10 карточек и записывает буквы на доске.

Вариант №1.

Из этих букв участники должны составить слова: имена существительные в единственном числе именительном падеже, которые обозначают математические термины, понятия. Каждую букву можно использовать только один раз.

Вариант № 2.

Участники игры должны подобрать слова – математические термины, которые начинаются на каждую выпавшую букву.

Кто придумает больше слов, тот получает приз.

На выполнение задания даётся 1 минута.


Третий тур.

Вариант №1.

На стол выставляются измерительные приборы, а за ними располагают на подставках карточки, на которых написаны названия приборов и номер.


  1. Циркуль.

  2. Линейка.

  3. Прямоугольный треугольник.

  4. Транспортир.

Вопросы участникам игры.

  1. Чертёжные инструменты, необходимые для построения угла, равного данному.

  2. Чертёжные инструменты, необходимые для построения касательной к данной окружности и проходящей через данную точку.

  3. Чертёжный инструмент, о котором идёт речь

Танцевальное вращение

Совершеннейшей ноги

И круги, круги, круги…

Вызывают восхищенье

4.Чертёжные инструменты, необходимые, для нахождения площади изображённого сектора.

5. Чертёжные инструменты, необходимые для построения фигуры, определяемой двумя точками

Вариант№2.

На столе ставятся те же инструменты, рядом с ними карточки с порядковыми номерами.

Карточки с названиями инструментов отсутствуют. После оглашения вопроса нужно поднять карточку с ответом, а затем дать ответ устно, т.е. произнести вслух название инструмента.

Четвертый тур

Логическая цепочка.

Выставляются на демонстрационный стол карточки, где рядом с цифрами названы слова (или символы, или единицы измерения); которые должны образовать логическую цепочку. Но что-то в ней не так. Участники игры через 10 сек должны показать, какие изменения нужно произвести в порядке расположения карточек, чтобы цепочка получилась.

  1. 1)Отрезок; 2)Круг; 3)Шар; 4)Квадрат.

  2. 1) Миля; 2)Аршин; 3)Фут; 4)Фунт.

  3. 1)1м2; 2) 1ар; 3)1км2; 4) 1га.

  4. 1) Четырёхугольник, 2) Прямоугольник,

3) Параллелограмм, 4) Квадрат.


ФИНАЛ

На середину стола, за которым сидят 2 финалиста, выставляют карточку, на которой с 2-х сторон написано многобуквенное слово (математический термин, например, ПОСЛЕДОВАТЕЛЬНОСТЬ).

За одну 3 минуты они должны придумать как можно больше слов. Слова начинает читать тот, у кого меньше звёздочек.

В конце финала награждают победителей.

Победитель игры предоставляют слово, наступил его звездный час.

Краткое описание документа:

В игре принимают участие учащиеся со своими родителями.  Участники выстраиваются на старте, родители располагаются за ними на расстоянии.  Каждому участнику, а их 7, раздаются сигнальные карточки, на которых написаны цифры от 1 до 6. Проходят несколько туров и финал, где участникам предлагают разные вопросы и задания. После каждого тура один участник выбывает из игры, получая при этом приз. В результате в финал выходят двое, и там определяется победитель. Кто остался на последней линии – выбывает из игры.  Родители имеют право отвечать на вопрос, если игроки в затруднительном состоянии. Если они отвечают правильно, то добавляют звёздочку своему участнику; если же они не ответили на 3 вопроса, то из игры выбывают.  На обдумывание ответа дается 10 секунд. 

Общая информация

Номер материала: 127525061658

Похожие материалы