Инфоурок / Математика / Конспекты / «Скалярное произведение векторов»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Педагогическая деятельность в соответствии с новым ФГОС требует от учителя наличия системы специальных знаний в области анатомии, физиологии, специальной психологии, дефектологии и социальной работы.

Только сейчас Вы можете пройти дистанционное обучение прямо на сайте "Инфоурок" со скидкой 40% по курсу повышения квалификации "Организация работы с обучающимися с ограниченными возможностями здоровья (ОВЗ)" (72 часа). По окончании курса Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Автор курса: Логинова Наталья Геннадьевна, кандидат педагогических наук, учитель высшей категории. Начало обучения новой группы: 27 сентября.

Подать заявку на этот курс    Смотреть список всех 216 курсов со скидкой 40%

«Скалярное произведение векторов»

библиотека
материалов

Урок-лекция по решению ключевых задач по теме «Скалярное произведение векторов» в 9 классе.

Тема урока: Скалярное произведение векторов.

Тип урока: Урок-лекция по решению ключевых задач.

Метод проблемного изложения.

Учебная задача: Выделить совместно с учениками три вида ключевых задач:

  • На нахождение длины отрезка;

  • На нахождение величины угла;

  • На доказательство перпендикулярности прямых и отрезков,

выделить обобщенные методы решения задач.

Диагностируемые цели:

По окончанию урока ученик знает:

  • как выражать длину вектора через его скалярный квадрат;

  • как выразить величину угла между ненулевыми векторами через их скалярное произведение;

  • ученик знает о существовании трёх видов метрических задач(на нахождение длины отрезка; на нахождение величины угла; на доказательство перпендикулярности прямых и отрезков) и обобщенные методы их решения.

Ученик умеет:

  • переводить геометрические термины на язык векторов и наоборот (осуществлять переход от соотношений между фигурами к соотношениям между векторами и наоборот);

  • выполнять операции над векторами (сложение, вычитание, умножение на число, скалярное произведение);

  • представить векторы в виде суммы или разности векторов.

Средство обучения: таблица – канва.


Урок – лекция.

  1. Мотивационно – ориентировочная часть.

В начале урока ученикам раздаётся таблица – канва (таблица 1).

- Найдите угол между векторами a и b.

- Отметим произвольную точку на плоскости и откладываем от неё лучи, параллельные двум векторам.

- Чему равен угол между векторами a и b?

- Угол между ними равен нулю.

- Чему равен угол между векторами a и c?

- Угол между ними равен 180 градусам.

- В каком случае угол между векторами равен 90 градусам?

- Угол между векторами равен 90 градусам, если векторы перпендикулярны.

- Что называется скалярным произведением векторов?

- Скалярным произведение двух ненулевых векторов, называется произведение их длин на косинус угла между ними, если хотя бы один из векторов нулевой, то скалярное произведение векторов равно нулю.

-hello_html_3b8a6ff7.gifhello_html_3b8a6ff7.gifhello_html_3b8a6ff7.gifhello_html_3b8a6ff7.gifhello_html_3b8a6ff7.gifhello_html_3b8a6ff7.gif Запишите определение в символьной форме.

1hello_html_3b8a6ff7.gif) a · b =| a | ·| b | · cos( a ^ b )

2) a =0 или b=0, то a · b.

- Если векторы перпендикулярны, то чему равно их скалярное произведение?

- Скалярное произведение равно нулю.

- Чему равно скалярное произведение векторов, если угол между ними равен нулю?

- Скалярное произведение равно произведению их длин, т.е.

а ·b = | a | ·| b |, a ^ b = 0.

- Чему равен скалярный квадрат вектора а ?

- Скалярный квадрат вектора а равен квадрату его длины.

- Известны координаты векторов. Сформулируйте теорему о скалярном произведении в координатах.

- Скалярное произведение векторов а{x1;y1} и b{x2;y2} выражается формулой a ·b=x1 ·x2+y1 ·y2.

- Если векторы перпендикулярны, то чему равно их скалярное произведение в координатах?

- Ненулевые векторы а{x1;y1} и b{x2;y2} перпендикулярны тогда и только тогда, когда x1 ·x2+y1 ·y2=0.

-hello_html_1cbd7991.gifhello_html_m2bddf96.gif Как найти косинус угла между ненулевыми векторами?

- cos(a^b)= (x1 ·x2+y1 ·y2)/√x1²+y1²·√x2²+y2² .

- Давайте вспомним свойства скалярного произведения.

- 1. a² ≥ 0, причем а² > 0 при а ≠ 0.

2. a · b=b · a (переместительный закон).

3. (a+b) ·c=a·c+b·c (распределительный закон).

4. (k·a) ·b=k·(a·b) (сочетательный закон).

Тем самым заполнили таблицу-канву (таблица 2).

- После изучения новой темы мы решали задачи по данной теме. На прошлом уроке мы решали задачи на усвоение определений и формул. На сегодняшнем уроке мы рассмотрим ключевые задачи по данной теме. Какими задачами мы закончили изучение темы «Векторы» в 8 классе?

- Аффинные задачи.

- Какие виды аффинных задач вы знаете?

- 1.Доказательство параллельности прямых и отрезков;

2.Доказательство деления отрезка в данном отношении;

3.Доказательство принадлежности трех точек одной прямой.

- С помощью каких действий над векторами, мы решаем аффинные задачи?

- Сложение, вычитание и умножение на число.

- Выделяют ещё одну группу задач, решаемых векторным методом - это метрические задачи. Какое новое действие вы изучили над векторами?

- Скалярное произведение векторов.

- Давайте вернемся к таблице - канва и посмотрим, какие виды метрических задач мы можем с вами выделить.

Ученики могут сказать, что можно найти длину вектора, величину угла и доказать перпендикулярность векторов.

Кhello_html_m329b6f31.gifhello_html_1983716b.gifлассификация задач, решаемых векторным методом.


Аффинные:

- доказательство параллельности прямых и отрезков;

- доказательство деления отрезка в данном отношении;

- доказательство принадлежности трёх точек одной прямой.

Метрические:

- нахождение длины отрезка;

- вычисление величины угла;

- доказательство перпендикулярности прямых и отрезков.

- По-видимому, существуют три типа метрических задач. Целью нашего урока является выделить три ключевые задачи:

  • нахождение длины угла;

  • вычисление величины угла;

  • доказательство перпендикулярности прямых и отрезков,

и выделение обобщенных методов решения задач.

  1. Содержательная часть.

- Рассмотрим первый тип метрических задач на нахождение длины отрезка.

Ученики читают формулировку задачи, которая выписана на доске: Вычислить длину медианы CD треугольника ABC, если AC=1, BC=2, угол C равен 120 градусам.

- Выделим условия задачи и сделаем рисунок.

hello_html_3e1c16b5.gif

- Давайте введем в рассмотрение основные векторы. Какие векторы нам лучше всего рассмотреть при решении данной задачи?

- Выбираем векторы CA и CB.

- Почему?

- Так как известны их длины и угол между ними.

- Какими являются векторы CA и CB?

- Сонаправленными и неколлинеарными.

- Почему берём неколлинеарные векторы?

- Так как можно через них выразить другие векторы.

- Длину какого вектора нам надо найти?

- Длину CD.

- Как можно его выразить через другие векторы?

- Основываясь на известный факт, что если точка D является серединой отрезка AB, а точка C – произвольной точкой плоскости, значит вектор CD=1/2(CA+CB).

- Как можно найти длину вектора CD?

- Мы знаем, что скалярный квадрат вектора равен квадрату его длины. Надо найти скалярный квадрат CD.

СD² =1/4(CA+CB)² =1/4(CA²+2CA·CB+CB²)

- Подставим в это равенство числовые данные и заметим, что CA·CB – это скалярное произведение векторов.

|CD|²=1/4(1²+2·1·2·cos120+2²)=1/4(1+4·cos(90+30)+4)=1/4-sin30+1=1/4-1/2+1=3/4

-Для нахождения длины, вычислим квадратный корень из скалярного квадрата.

|CD|=√|CD|²=√3/4=√3/2

Запись на доске:

1 СA, CB – неколлинеарные векторы, СA≠0, CB≠0

2 CD=1/2(CA+CB)

3 СD² =1/4(CA+CB)² =1/4(CA²+2CA·CB+CB²)

|D|²=1/4(1²+2·1·2·cos120+2²)=1/4(1+4·cos(90+30)+4)=1/4-sin30+1=1/4-1/2+1=3/4

4 |CD|=√|CD|²=√3/4=√3/2

- Давайте выделим этапы решения задачи.

Учитель совместно с учениками выделяет этапы решения данной задачи ( слева на доске напротив каждого действия появляются цифры)

- Давайте выделим общие этапы решения задач на нахождение длины отрезка.

  1. Выбрать два неколлинеарных вектора, у которых известны длины и величина угла между ними;

  2. Разложить по ним вектор, длина которого вычисляется;

  3. Найти скалярный квадрат этого вектора, используя формулу а =|а|

  4. Вычислить квадратный корень из скалярного квадрата.

- Итак, мы выделили обобщенный прием, который применяется к решению задач на нахождение длины отрезка. Теперь рассмотрим второй тип метрических задач на вычисление величины угла.

Формулировка задачи выписана на доске:

Найдите угол, лежащий против основания равнобедренного треугольника, если медианы, проведенные к боковым сторонам, взаимно перпендикулярны.

Формулировку читает ученик.

- Выделим условия задачи и сделаем рисунок.

hello_html_m61004d42.gif

- Рассмотрим треугольник ABC, он равнобедренный, AA1 и BB1 медианы, проведенные к боковым сторонам. Для решения данной задачи введем векторы. Пусть вектор CA1 равен вектору a, а вектор CB равен b.

- Что следует из того, что AA1 и CB1 медианы?

- CA1=CB1=a

- Выразим векторы, содержащие медианы через известные неколлинеарные векторы.

- AA1=CA1-CA

- Чему равно CA1?

- СA1=a

- Чему равно CA?

- Так как BB1 медиана, то СA=2b.

- Следовательно, чему равно AA1?

- AA1=a-2b.

- Аналогично выразите вектор BB1.

Дети смогут это сделать сами. BB1=CB1-CB=b-2a.

- Найдите произведение векторов AA1 и BB1.

- AA1·BB1=(a-2b)·(b-2a)=5a·b-2a·a-2b·b. (1)

- Что известно из условия задачи о AA1 и BB1?

- AA1 перпендикулярно BB1, а значит AA1 перпендикулярно BB1.

- Чему равно скалярное произведение таких векторов?

- AABB1=0

- Вернёмся к равенству (1). В этом равенстве мы видим, что a·b – это скалярное произведение. Вычислим его.

- a·b=|a|·|bcosC, а т.к. |a|=|b|=a, тогда a·b=a²·cosC.

- Теперь рассмотрим скалярное произведение a·a и b·b.

- a·a=a², b·b=a².

- Какой тогда вид примет равенство (1)?

- С одной стороны произведение векторов AABB1=0, а с другой – 5a²·cosC-4a².Приравняем их: 5a²·cosC-4a²=0.

- Что требуется найти в задаче?

- Угол, лежащий против основания, т.е. угол С.

- Найдите его?

- 5a²·cosC=4a²

cosC=4a²/5a²=4/5 → C=36 52

Запись на доске:

1 CA1, CB1 – неколлинеарные векторы, CA1≠0,CB1≠0.

СA1=a, CB1=b

AA1,BB1 – неколлинеарные векторы.

2 AA1=CA1-CA=a-2b

BB1=CB1-CB=b-2a

AA1·BB1=5a·b-2a·a-2b·b

AA1·BB1=0; a·b=|a|·|b|cosC, |a|=|b|=a

a·b=a²·cosC

a·a=a²

b·b=a²

3 5a²·cosC-4a²=0

5a²·cosC=4a²

cosC=4a²/5a²=4/5

C=36 52

- Давайте выделим этапы решения задачи.

Учитель совместно с учениками выделяет этапы решения данной задачи ( слева на доске напротив каждого действия появляются цифры)

- Как и в предыдущей задаче выделим общие этапы решения задач.

  1. Выбрать векторы, задающие искомый угол, разложить их по базисным векторам;

  2. Выбрать два неколлинеарных вектора, у которых известны отношение длин и величина угла между ними;

  3. Вычислить угол, используя определение скалярного произведения.

cos( a^b )=a·b/(|a|·|b|)

- Мы выделили обобщенный прием, который применяется при решении задач на нахождение величины угла. Теперь рассмотрим последний тип метрических задач на доказательство перпендикулярности прямых и отрезков.

Формулировка задачи выписана на доске:

Докажите, что диагонали ромба взаимно перпендикулярны.

Формулировку читает ученик.


hello_html_m3cf03fef.gif

- По аналогии с предыдущими задачами введём векторы.

- AC, BD, BA, BC.

- Из какого условия следует перпендикулярность векторов?

- Из то, что скалярное произведение равно нулю.

- С чего мы начинаем доказательство?

- Нам необходимо выразить данные векторы через известные неколлинеарные векторы.

BD=BA+BC

AC=BC-BA

- Найдем скалярное произведение данных векторов.

- BD·AC=(BA+BC)·(BC-BA)=BC²-BA²

Так как |BC|=|BA|, то получим BD·AC=0.

- Мы доказали, что скалярное произведение векторов равно нулю. Какой вывод отсюда можно сделать?

- Векторы BD и AC перпендикулярны.

Записи на доске:

1 BA, BC – неколлинеарные векторы, BA≠0,BC≠0.

2 BD=BA+BC

Ahello_html_m533d48fe.gifC=BC-BA

3hello_html_610886fc.gif BD·AC=BC²-BA²

|hello_html_m8de550a.gifhello_html_3b8a6ff7.gifBD|=|BA| BD·AC=0 BD┴AC BD┴AC.

- Давайте выделим этапы решения задачи.

Учитель совместно с учениками выделяет этапы решения данной задачи ( слева на доске напротив каждого действия появляются цифры)

- Выделим общий метод решения задач на доказательство перпендикулярности прямых и отрезков.

  1. Выбрать два неколлинеарных вектора, у которых известны отношение длины;

  2. Разложить по ним векторы, длина которых вычисляется;

  3. Найти скалярное произведение векторов и убедиться, что оно равно нулю.

- Этот метод является общим методом решения задач на доказательство перпендикулярности прямых и отрезков.

  1. Рефлексивно – оценочная часть.

- Итак, на сегодняшнем уроке мы рассмотрели метрические задачи. В них можно выделить три типа задач:

  • на нахождение длины отрезка;

  • на нахождение величины угла;

  • на доказательство перпендикулярности прямых и отрезков.

- Данные задачи являются ключевыми. Мы выдели обобщенные способы решения данных задач, которые будут использоваться при решении других задач.

- Запишите домашнее задание:

  1. Докажите, что параллелограмм является ромбом, если его диагонали взаимно перпендикулярны.

  2. Вычислите длину медианы треугольника ABC, проведенной из вершины С, если BC=a, CA=b и угол С равен γ.



Краткое описание документа:

В материале представлен урок, который можно использовать в курсе геометрии 9 класса. Данный урок имеет тип лекция. Что помогает в относительно короткий промежуток времени захватить наибольшее количество информации по данной теме, а так же способы решения основных видов задач, которых существует три вида, подробнее изложено в данном материале.
Эта разработка позволит не только сэкономить драгоценное время учителя на подготовку к уроку, но и даст ученикам обширные знания по скалярному произведению векторов.

Общая информация

Номер материала: 171721090713

Похожие материалы