Инфоурок / Математика / Рабочие программы / Элективный курс для 9 класса «Комбинаторика»
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Я люблю природу», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 15 ДЕКАБРЯ!

Конкурс "Я люблю природу"

Элективный курс для 9 класса «Комбинаторика»

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Министерство образования и молодежной политики Чувашской Республики

БОУ ДПО (ПК) С «Чувашский республиканский институт образования»

Минобразования Чувашии


Кафедра математики и информационных технологий
















Элективный курс


Комбинаторика



9 класс











Выполнила: учитель математики

МБОУ «СОШ №42» г. Чебоксары

Белова Елена Ивановна





Чебоксары, 2013 г.

Пояснительная записка

Цели: развитие комбинаторного стиля мышления, умение применять полученные знания в области комбинаторики при решении различных задач, ситуаций.

Задачи :

  • рассмотреть одно из важных правил комбинаторики – правило умножения;

  • показать три вида соединений и задачи, связанные с ними (задачи о числе размещений, о числе перестановок, о числе сочетаний);

  • изучить формулы Ньютона;

  • уметь решать задачи, раскрывающие содержание основных формул.

Отличительные особенности программы (концепция, заложенная в основу курса, особенности контингента и т. п.)

Большую роль играют задачи, формирующие комбинаторный стиль мышления. Наиболее характерной чертой такого мышления является целенаправленный перебор определенным образом ограниченного круга возможностей при поиске решения задачи.

В ряде исследований психологов и методистов показано, что элементы комбинаторики вполне можно ввести в начальное обучение; это не требует никаких дополнительных знаний, кроме хороших навыков счета. Не говоря уже об учениках старших классов с выработанным математическим подходом. Необходимость данного курса продиктована совершенной действительностью, т.к. произошли изменения в программах и учебных планах преподавания математики в школе.


Ожидаемые результаты:

После прохождения элективного курса ученики должны проявить следующие умения и навыки:

  • понимать смысл введенных понятий;

  • знать определения и формулы;

  • уметь решать задачи о числе размещений, о числе перестановок, о числе сочетаний и задачи, связанные с биноминальной формулой Ньютона;

  • уметь различать и научиться пользоваться нужной формулой.

Критерии и нормы оценки знаний обучающихся:

В школе принята 4-бальная шкала отметок: «5» - отлично; «4» - хорошо; «3» - удовлетворительно; «2» - неудовлетворительно.


Оценка устных ответов учащихся

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотрен­ном программой и учебником, изложил материал грамотным языком в определенной логиче­ской последовательности, точно используя математическую термино­логию и символику;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теоретические положения конк­ретными примерами, применять их в новой ситуации при выполне­нии практического задания;

  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при от­работке умений и навыков;

  • отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по за­мечанию учителя.

Ответ оценивается отметкой «4», если

  • он удовлетворяет в основ­ном требованиям    на оценку «5», но при этом имеет один из недо­статков:

  • в изложении допущены небольшие пробелы, не исказившие ма­тематическое содержание ответа;

  • допущены один – два недочета при освещении основного содержа­ния ответа, исправленные по замечанию учителя;

  • допущены ошибка или более двух недочетов при освещении вто­ростепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

Отметка «3» ставится в следующих случаях:

  • неполно или непоследовательно раскрыто содержание материа­ла, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного ма­териала (определенные «Требованиями к математической подготов­ке учащихся»);

  • имелись затруднения или допущены ошибки в определении поня­тий, использо-вании математической терминологии, чертежах, вы­кладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обя­зательного уровня сложности по данной теме;

  • при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Оценка письменных работ учащихся

Отметка «5» ставится, если:

  • работа выполнена полностью;

  • в логических  рассуждениях и обосновании решения нет пробе­лов и ошибок;

  • в решении нет математических ошибок (возможна одна неточ­ность, описка, не являющаяся следствием незнания или непо­нимания учебного материала).

Отметка «4» ставится, если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущена одна ошибка или два-три недочета в выкладках, ри­сунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущены более одной ошибки или более двух-трех недоче­тов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что учащийся не владеет

обязательными умениями по данной теме в полной мере.


Сроки реализации программы : 1 учебный год-17 ч(0,5 ч в неделю)

Формы, методы, технологии обучения, способы и средства проверки и оценки результатов:

  • решения задач,

  • индивидуальная работа и собеседование с отдельными учениками, работа в парах,

  • вариативный подход к формулировкам одного и того же вопроса,

  • составление таблиц,

  • дидактические игры,

  • семинарские занятия,

  • работа со справочной литературой,

  • контрольная работа с последующим анализом ошибок.



Содержание учебного материала

Тема № 1: Множества, элементы множеств.

Вспомнить с учащимися встречавшиеся ранее примеры множеств, элементов множеств, подмножеств. К прежним примерам из алгебры добавить примеры конечных множеств: цифр, букв, красок, множество учеников класса и т.п.


Тема №2: Факториал.

Предложить ученикам формулу факториала: Pn= 1·2·3·...·(n-1)·n=n!, рассмотреть доказательство формулы. Решить задачи с использованием факториала.


Тема №3: Число размещений.

Ввести понятие упорядоченного множества, рассмотреть различные размещения. Предложить учащимся придумать по аналогии и обосновать формулу для Anm+1. Получить формулу для числа размещений из n по m элементов.

Anm = n (n-1) (n-2) ... (n-m+1).

Вывести из этой формулы как следствие следующую формулу:

n!

Anm = –––––––, где 0≤ mn. Здесь вводим 0! = 1.

(nm)!




Тема № 4: Число перестановок.

Рассмотреть задачу о числе размещений по k различным местам k из k разных предметов. Объяснить такую задачу как задачу о числе перестановок. Количество таких способов обозначить через Pk = k!


Тема № 5: Число сочетаний.

Ввести понятие сочетания из n по m элементов Cnm, где 0≤ mn. Рассмотреть формулы

Anm n!

Cnm = ––––, и Cnm = –––––––––,

Pmm!(nm)!

предложить ученикам проверить ее для частных случаев. Затем доказать с учениками эти формулы.


Тема № 6: Свойства числа сочетаний.

Рассмотреть некоторые свойства числа сочетаний, обосновать их:

1) Cnm= Cnnm(правило симметрии);

2) Cnm + Cnm+1 = Cn+1 m+1 (правило Паскаля).

Показать ученикам треугольник Паскаля:

n

Cnm

0






1






1





1


1





2




1


2


1




3



1


3


3


1



4


1


4


6


4


1


5

1


5


10


10


5


1

Тема № 7: Контрольная работа по изученным темам с последующим анализом ошибок.


Тема № 8: Формула Ньютона.

Изучить бином Ньютона или формулу Ньютона:

(x+a)n = Cn0 xn a0 + Cn1 xn-1 a1 + + Cnn x0 an ,

где n ε N для любых x и a.







Национально-региональный компонент


Одним из таких дидактических средств может служить система прикладных задач с региональным содержанием. Использование в обучении математике системы прикладных задач с региональным содержанием способствует усилению практической направленности школьного курса математики. Обучение производится с включением краеведческой информации из разных предметных областей (истории, географии, искусства) в программу изучения математики. Закрепление выражается в творческом переосмыслении полученной краеведческой информации, в умении конкретизировать и анализировать исторические и современные тенденции развития Чувашской Республики.

Образование в рамках регионального компонента осуществляется через:

-развитие интеллектуальных умений (понимать, анализировать, синтезировать, применять, обобщать, оценивать);

- рефлексию (осуществлять самонаблюдение, самоанализ, самооценку);

-формирование знаний об истории, культуре, реалиях и традициях своего народа;

-ценностного отношения к себе, другим и миру;

-активной жизненной позиции.

Национально-региональный компонент характеризуют следующие особенности в использовании прикладных задач:

-природно-географические (измерение и вычисление площадей, климат в изучении отрицательных и положительных числах, полезные ископаемые в задачах);

-социально-географические (плотность населения, традиционные занятия, удаленность от других регионов, средства сообщения в текстовых задачах );

-социально-демографические (национальный состав, миграционные процессы, половозрастная структура, характер воспроизводства населения, типы семьи и др в построении диаграмм, в элементах комбинаторики, статистики и теории вероятностей);

-социально-экономические (типы и характер воспроизводства, профессиональная структура, уровень жизни населения, перспективы экономического развития и др. в построении диаграмм);

-экономические отрасли региона (сельскохозяйственные, строительные, химико-технологические и др.), промышленные и сельскохозяйственные производства(в текстовых задачах и в диаграммах, в элементах комбинаторики, статистики и теории вероятностей)




Календарно - тематический план на текущий учебный год

№ п/п

Дата

Тема

Планируемые результаты (знания , умения и навыки)

Тип и форма

урока

Вид

контроля, измерители


ТСО, ЦОР

Примечание

1

2


Инструктаж по технике безопасности

Множества, элементы множеств

Уметь создавать множества

Самостоятельно решать задачи со множествами

Беседа,

Решение задач, самостоятельная работа


http://school-collection.edu.ru/


3

4


Факториал

Знать и уметь выводить формулу факториала

Уметь решать задачи с факториалам

Исследовательская работа в группах


http://school-collection.edu.ru//


5

6



Число размещений

К.р.№1 «Факториал»

Уметь решать задачи о числе размещений

Уметь применять формулу

Лекция,

Практическая работа


http://alexlarin.net/ege/88x31-fipi.gif


7

8


Число перестановок

Уметь решать задачи о числе перестановок

Знать формулу для решения данных задач

Дидактическая игра


http://alexlarin.net/ege/88x31-fipi.gif


9

10


Число сочетаний

Уметь решать задачи о числе сочетаний

Уметь пользоваться формулой для решения таких задач

Лекция,

Работа в парах


http://mathgia.ru


11

12


Свойства числа сочетаний

Знать свойства числа сочетаний

Уметь составлять таблицу с треугольником Паскаля

Составление таблиц


Генератор заданий по математике


13



К.р. №2 «Формулы комбинаторики»

Уметь применять различные формулы,

Уметь решать задачи

Различать виды задач,

Уметь применять формулы к ним


http://mathgia.ru


14

15

16


Формула Ньютона

Знать формулу Ньютона и ее применение

Уметь пользоваться формулой Ньютона

Лекция

Групповая практическая работа


http://school-collection.edu.ru/


17


Задачи комбинаторики

Усвоить элементы комбинаторики

Показать умение в решении задач комбинаторики

Семинарское занятие


http://mathgia.ru




Занятия

Занятие №1,2

Сформулированы и решены следующие задачи.

Задача №1. Сколько различных двузначных чисел можно записать при помощи цифр 2 и 5 так, чтобы в записи числа каждая из этих цифр содержалась только один раз?

Ответ: 25 и 52.

Задача №2. Дано трехэлементное множество В = {2;3;6}. Используя цифры 2, 3, 6 составить все трехзначные числа, в запись каждого из которых каждая из данных цифр входит только один раз; найти их число.

Ответ: P3 = 3·P2 = 6.

Задача №3. Аналогично найти, если М = {2; 7; 5; 3}.

Ответ: P4 = 4·P3 = 24.

На этих примерах был намечен путь к доказательству рекуррентной формулы:

А = {а1; а2;…; аn}, Pn = n·Pn-1.


Занятие 3,4.

Рассмотреть доказательство формулы Pn = n·Pn-1.

P1 = 1; P2 = 2·P1 ; P3 = 3·P2 ;…; Pn-1 = (n-1) ·Pn-2 ; Pn = n·Pn-1 .

Перемножив почленно левые и правые части, приведя соответствующие сокращения, мы получили Pn = 1·2·3·…(n-1)·n= n!;

Предложить для работы в группах задачи.

Задача 1. Упростить выражение

7!·4! 8! 9!

B = –––– · ( –––– – –––– ). Ответ: B=2/3.

10! 3!·5! 2!·7!


Задача 2. Упростить выражение

5! (m+1)!

D = ––––––– · –––– – ––, m>=1, m ε N. Ответ: D=20.

m(m+1) (m-1)!·3!




Занятие №5,6.

После повторения смысла записи В А и введения понятия упорядоченного множества поставить и решить следующую задачу.

Множество К={1;2;3;4;5}. С помощью этих цифр составить (без повторения цифр в числе): а) однозначные числа; б)2-значные; в)3-значные; г)4-значные; д)5-значные. Найти число таких решений. Ввести формулы для числа размещений и предложить для практической работы задачи.

Задача 1. Сколько всего семизначных телефонных номеров, в каждом из которых ни одна цифра не повторяется?

Ответ. A107 = 604800.

Задача 2. Сколько существует 2-значных чисел, в которых цифра десятков и цифра единиц различные и нечетные?

Ответ. A52 = 20.

Задача3.

Упростить выражение:

An6+An5

M = ––––––––, n≥6, n ε N.

An4

Ответ: M = (n-4)2


Занятие №7,8.

Для закрепления темы о числе перестановок после лекции провести дидактическую игру в виде математической эстафеты по решению задач.

Задача 1. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд?

Ответ: 5040.

Задача 2. Сколькими способами можно разложить восемь различных писем по восьми различным конвертам, если в каждый конверт кладется только одно письмо?

Ответ: 40320.

Задача3.сколькими способами можно рассадить на скамейке пять человек?

Ответ: 120.

Задача 4. сколькими способами можно составить список из семи учеников?

Ответ: 5040.




Занятие №9,10.

Предложена следующая задача. Имеются десять различных точек, принадлежащих данной плоскости α, причем никакие три из них не лежат на одной прямой. Сколько прямых можно провести через эти точки, если каждая из прямых проходит через две различные точки?

Работая в парах, ученики сами должны прийти к ответу 10(10-1)/2, получить формулу Cnm. Для закрепления темы задачи.

Задача 1. составить все подмножества множества М = {а; б; в; г} и вычислить их число.

  1. пустое множество: C40 =1

  2. одноэлементные: C41 = 4

  3. двухэлементные: C42 = 4!/(2!*2!) = 6

  4. трехэлементные: C43 = 4!/(3!*1!) = 4

Задача 2. Двенадцать человек играют в городки. Сколькими способами они могут набрать команду из четырех человек на соревновании?

Ответ: C124 = 12!/(8!*4!) = 495.


Задача 3. В выпуклом семиугольнике проведены всевозможные диагонали, при этом никакие три из них не пересекаются в одной точке. Сколько точек пересечения указанных диагоналей? Ответ: 35

Задача 4.У Нины есть семь разных книг по математике, а у Славы – девять разных книг по философии. Сколькими способами они могут обменяться друг с другом по пять книг? Ответ. 2646.


Занятие №11,12.

Для иллюстрации над доской повесить плакат с треугольником Паскаля. Предложить ученикам самим составить таблицы. Обосновать свойства:

1) Cnm= Cnnm;

2) Cnm + Cnm+1 = Cn+1 m+1 .

3) формулу 2n = Cn0 + Cn1 + Cn2 +…+ Cnnдать без доказательства. Желающие могут разобраться самостоятельно.




Занятие №13.

Контрольная работа.

Задача 1. Сколько всего четырехзначных чисел, у которых все цифры нечетные?

Ответ. 54

Задача 2. Вычислить:

а) 1

[–– + –––––] (m+1)!. Ответ: m+2.

m! (m+1)!


б) A53A52P5

–––––––– + ––– . Ответ: 80.

P2P2


Задача 3. Сколько всего делителей у числа 105? Ответ.8

Задача 4. Из семи гвоздик и пяти тюльпанов надо составить букет, состоящий из трех гвоздик и двух тюльпанов. Сколькими способами можно это сделать?

Ответ: 350.

Провести анализ контрольной работы.


Занятие№14,15,.

Задача 1 написать разложение по формуле бинома Ньютона и упростить:

1. (a-4)4; 2. (а + 2в)5 ; 3. (а – √2 )6 ; 4. (а – 2/в)5 .

Задача 2. Найти два средних члена разложения (а3 + ав)21 .

Задача 3. Найти в разложении (х3 + 1/х3)18 член, не содержащий x.

Задача 4. Сколькими способами можно составить колонку из десяти автобусов и трех легковых автомобилей, считая, что все автобусы и все автомобили одинаковых марок?


Занятие №16,17.

Семинарское занятие. Ученики приносят свои задачи с решениями, объясняют, выступают перед другими учениками.


Перечень контрольных работ.

К.р.№1 «Факториал»

К.р. №2 «Формулы комбинаторики»



Учебно-методическое и информационное обеспечение курса.


Вавилов В.В., Мельников И.И и др. Задачи по математике. Алгебра. – М.: Наука, 1987. – 432 с.

Цыпкин А.Г., Пинский А.И. Справочник по методам решения задач по математике для средней школы. – М.: Наука, 1989. – 576 с.

Рывкин А.А., Рывкин А.З., Хренов Л.С. Справочник по математике. – М.: Высшая школа, 1987. – 480 с.

http://statgrad.mioo.ru/

http://obrnadzor.gov.ru/ru/

http://alexlarin.net/ege/88x31-fipi.gif

http://www.mathege.ru/

Список дополнительной литературы


М.В. Владимирова «Элементы статистики и вероятность», М., «Просвещение» 2004;


Использование здоровьесберегающих технологий на уроках:

Систематическое проветривание кабинетов

Соблюдение температурного режима

Проведение физкультминуток, дыхательных упражнений, упражнений для глаз, упражнений для позвоночника.

Чередование видов деятельности на уроках

Эмоционально благоприятная атмосфера на уроке

Дифференцированный подход к учащимся


Краткое описание документа:

"Цель-развитие комбинаторного стиля мышления, умение применять полученные знания в области комбинаторики при решении различных задач, ситуаций.

"Большую роль играют задачи, формирующие комбинаторный стиль мышления. Наиболее характерной чертой такого мышления является целенаправленный перебор определенным образом ограниченного круга возможностей при поиске решения задачи. В ряде исследований психологов и методистов показано, что элементы комбинаторики вполне можно ввести в начальное обучение; это не требует никаких дополнительных знаний, кроме хороших навыков счета. Не говоря уже об учениках старших классов с выработанным математическим подходом.

"Пояснительная записка

"Задачи:

  • "рассмотреть одно из важных правил комбинаторики – правило умножения;
  • показать три вида соединений и задачи, связанные с ними (задачи о числе размещений, о числе перестановок, о числе сочетаний);
  • изучить формулы Ньютона;
  • уметь решать задачи, раскрывающие содержание основных формул.

Отличительные особенности программы (концепция, заложенная в основу курса, особенности контингента и т. п.) Не говоря уже об учениках старших классов с выработанным математическим подходом. Необходимость данного курса продиктована совершенной действительностью, т.к. произошли изменения в программах и учебных планах преподавания математики в школе.

Ожидаемые результаты:

После прохождения элективного курса ученики должны проявить следующие умения и навыки:

  • понимать смысл введенных понятий;
  • знать определения и формулы;
  • уметь решать задачи о числе размещений, о числе перестановок, о числе сочетаний и задачи, связанные с биноминальной формулой Ньютона;
  • уметь различать и научиться пользоваться нужной формулой.

Критерии и нормы оценки знаний обучающихся: в школе принята 4-бальная шкала отметок: «5» - отлично; «4» - хорошо; «3» - удовлетворительно; «2» - неудовлетворительно.

Сроки реализации программы: 1 учебный год-17 ч(0,5 ч в неделю).

Формы, методы, технологии обучения, способы и средства проверки и оценки результатов:

  • решения задач,
  • индивидуальная работа и собеседование с отдельными учениками, работа в парах,
  • вариативный подход к формулировкам одного и того же вопроса,
  • составление таблиц,
  • дидактические игры,
  • семинарские занятия,
  • работа со справочной литературой,
  • контрольная работа с последующим анализом ошибок.

Содержание учебного материала

Тема № 1: Множества, элементы множеств.

Вспомнить с учащимися встречавшиеся ранее примеры множеств, элементов множеств, подмножеств. К прежним примерам из алгебры добавить примеры конечных множеств: цифр, букв, красок, множество учеников класса и т.п.

Тема №2: Факториал.

Предложить ученикам формулу факториала: Pn= 1•2•3•...•(n-1)•n=n!, рассмотреть доказательство формулы. Решить задачи с использованием факториала.

Тема №3: Число размещений.

Ввести понятие упорядоченного множества, рассмотреть различные размещения. Предложить учащимся придумать по аналогии и обосновать формулу для Anm+1. Получить формулу для числа размещений из n по m элементов.

Общая информация

Номер материала: 20091111145

Похожие материалы