91089
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаПрезентацииПрезентация по математике «Числовые последовательности. Пределы»

Презентация по математике «Числовые последовательности. Пределы»

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Числовые последовательности Определение 1. Способы задания числовой последова...
Аналитический способ задания числовой последовательности
Рекуррентный способ задания числовой последовательности 1.АРИФМЕТИЧЕСКАЯ ПРОГ...
СВОЙСТВА ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Ограниченность Монотонность
ДАНА ПОСЛЕДОВАТЕЛЬНОСТЬ Сколько положительных членов имеет эта последовательн...
64,8 36
2)Последовательность называется ограниченной снизу, если для любого выполняет...
4) Последовательность называется убывающей, если каждый её член, кроме первог...
Число b называется пределом последовательности , если в любой заранее выбранн...
Предел числовой последовательности Теорема: Предел функции на бесконечность...
Р ПРЕДЕЛ ФУНКЦИИ В ТОЧКЕ Определение. Функцию называют непрерывной в точке х...

Описание презентации по отдельным слайдам:

1 слайд Числовые последовательности Определение 1. Способы задания числовой последова
Описание слайда:

Числовые последовательности Определение 1. Способы задания числовой последовательности: Словесный (последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19,23, … Аналитический ; Рекуррентный .

2 слайд Аналитический способ задания числовой последовательности
Описание слайда:

Аналитический способ задания числовой последовательности

3 слайд Рекуррентный способ задания числовой последовательности 1.АРИФМЕТИЧЕСКАЯ ПРОГ
Описание слайда:

Рекуррентный способ задания числовой последовательности 1.АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ 2.ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ

4 слайд СВОЙСТВА ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Ограниченность Монотонность
Описание слайда:

СВОЙСТВА ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Ограниченность Монотонность

5 слайд ДАНА ПОСЛЕДОВАТЕЛЬНОСТЬ Сколько положительных членов имеет эта последовательн
Описание слайда:

ДАНА ПОСЛЕДОВАТЕЛЬНОСТЬ Сколько положительных членов имеет эта последовательность? Есть ли в последовательности наименьший член? Найдите наибольший член последовательности.

6 слайд 64,8 36
Описание слайда:

64,8 36

7 слайд 2)Последовательность называется ограниченной снизу, если для любого выполняет
Описание слайда:

2)Последовательность называется ограниченной снизу, если для любого выполняется 1)ПОСЛЕДОВАТЕЛЬНОСТЬ НАЗЫВАЕТСЯ ОГРАНИЧЕННОЙ СВЕРХУ, ЕСЛИ ДЛЯ ЛЮБОГО ВЫПОЛНЯЕТСЯ - 1; - 4; - 9; - 16; - 25 … … 1; 4; 9; 16; 25 … …

8 слайд 4) Последовательность называется убывающей, если каждый её член, кроме первог
Описание слайда:

4) Последовательность называется убывающей, если каждый её член, кроме первого, меньше предыдущего 3) Последовательность называется возрастающей, если каждый её член, кроме первого, больше предыдущего Монотонные последовательности Пример: 1; 4; 9; 16; … …- возрастающая - убывающая

9 слайд Число b называется пределом последовательности , если в любой заранее выбранн
Описание слайда:

Число b называется пределом последовательности , если в любой заранее выбранной окрестности точки b содержаться все члены последовательности, начиная с некоторого номера.

10 слайд Предел числовой последовательности Теорема: Предел функции на бесконечность
Описание слайда:

Предел числовой последовательности Теорема: Предел функции на бесконечность Правила вычисления пределов функций

11 слайд Р ПРЕДЕЛ ФУНКЦИИ В ТОЧКЕ Определение. Функцию называют непрерывной в точке х
Описание слайда:

Р ПРЕДЕЛ ФУНКЦИИ В ТОЧКЕ Определение. Функцию называют непрерывной в точке х = а, если выполняется соотношение: А М Р (х,у) у

Краткое описание документа:

В презентации представлены числовые последовательности, примеры числовых последовательностей. Способы их задания, т.е. аналетический, словесный и графический. свойства числовых последовательностей ,ограниченность сверху и ограниченность снизу. Монотонность, т.е. возрастание и убывание числовых последовательностей. Определение предела числовой последовательности, в дальнейшем функции. Основое понятие предела, когда переменная стремиться в бесконечность и понятие предела функции в точке, теоремы о пределах числовых последовательностей, теоремы о пределах функций заданных на множестве действительных чисел. основные замечательные пределы, графическая интерпретация.

Общая информация

Номер материала: 40709032725

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Для того чтобы задавать вопросы нужно авторизироватся.
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.