1102525
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
Добавить материал и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
V ЮБИЛЕЙНЫЙ МЕЖДУНАРОДНЫЙ КОНКУРС
ИнфоурокМатематикаКонспекты«Десятичные дроби. Действия над десятичными дробями» (урок-обобщение)

«Десятичные дроби. Действия над десятичными дробями» (урок-обобщение)

библиотека
материалов

ДЕСЯТИЧНЫЕ ДРОБИ. ДЕЙСТВИЯ НАД ДЕСЯТИЧНЫМИ ДРОБЯМИ

(урок-обобщение)

Тумышева Замира Тансыкбаевна, учитель математики, школа-гимназия №2

г. Хромтау Актюбинской области Республика Казахстан


Данная разработка урока предназначена как урок-обобщение по главе «Действия над десятичными дробями». Её можно использовать как в 5 классах, так и в 6 классах. Урок проводится в игровой форме.

Десятичные дроби. Действия над десятичными дробями. (урок-обобщение)

Цель:

  1. Отработка умений и навыков сложения, вычитания, умножения и деления десятичных дробей на натуральные числа и на десятичную дробь

  2. Создание условий для развития навыков самостоятельной работы, самоконтроля и самооценки, развития интеллектуальных качеств: внимания, воображения, памяти, умения анализировать и обобщать

  3. Привить познавательный интерес к предмету и выработать уверенность в своих силах

ПЛАН УРОКА:

1. Организационная часть.

2. Обзор правил выполнения арифметических действий с десятичными дробями.

3. Тема и цель нашего урока .

4. Игра «К заветному флажку!»

5. Игра «Числовая мельница».

6. Лирическое отступление.

7. Проверочная работа.

8. Игра «Шифровка» (работа в парах)

9. Подведение итогов.

10. Домашнее задание.


1. Организационная часть. Здравствуйте. Присаживайтесь.

2. Обзор правил выполнения арифметических действий с десятичными дробями.

Правило сложения и вычитания десятичных дробей:

1) уравнять количество знаков после запятой в этих дробях;

2) записать друг под другом так, чтобы запятая была под запятой;

3) не замечая запятой, выполнить действие (сложение или вычитание), и поставить в результате запятую под запятыми.

3,455 + 0,45 = 3,905 3,5 + 4 = 7,5 15 – 7,88 = 7,12 4,57 - 3,2 = 1,37

+ 3,455 +3,5 _15,00 _ 4,57

0,450 4,0 7,88 3,20

3,905 7,5 7,12 1,37

При сложении и вычитании натуральные числа записывают как десятичную дробь с десятичными знаками, равными нулю

Правило умножения десятичных дробей:

1) не обращая внимания на запятую, умножить числа;

2) в полученном произведении отделить запятой столько цифр справа налево, сколько их отделено запятой в десятичных дробях.

При умножении десятичной дроби на разрядные единицы (10, 100, 1000 и т.п.) запятая переносится вправо на столько чисел, сколько нулей в разрядной единице

4

17,25 · 4 = 69

х1 7,2 5

4

6 9,0 0


15,256 · 100 = 1525,6

,5 · 0,52 = 2,35

х 0,5 2

4,5

+ 2 7 0

2 0 8__

2,3 5 0


При умножении натуральные числа записывают как натуральные числа.

Правило деления десятичных дробей на натуральное число:

1) разделить целую часть делимого, поставить в частном запятую;

2) продолжить деление.

При делении к остатку сносим только по одному числу из делимого.

Если в процессе деления десятичной дроби останется остаток, то приписав к нему нужное число нулей, продолжим деление до тех пор, пока в остатке не получится нуль.

П

15,256 : 100 = 0,15256


0,25 : 1000 = 0,00025


ри делении десятичной дроби на разрядные единицы (10, 100, 1000 и т.п.) запятая переносится влево на столько чисел, сколько нулей в разрядной единице.

18,4 : 8 = 2,3

_18,4 І_8_

16 2,3

_ 2 4

2 4

0

22,2 : 25 = 0,88

_22,2 І_25_

0 0,888

_22 2

20 0

_2 20

2 00

_200

200

0

3,56 : 4 = 0,89

_3,56 І_4_

0 0,89

_3 5

3 2

_36

36

0














При делении натуральные числа записывают как натуральные числа.

Правило деления десятичных дробей на десятичную дробь:

1) перенесём запятую в делителе вправо так, чтобы получилось натуральное число;

2) запятую в делимом перенесём вправо настолько чисел, насколько перенесли в делителе;

3) производим деление десятичной дроби на натуральное число.

3,76 : 0,4 = 9, 4

_3,7,6 І_0,4,_

3 6 9, 4

_ 1 6

1 6

0

Игра «К заветному флажку!»

Правила игры: Из каждой команды к доске вызываются по одному ученику, которые производят устный счет с нижней ступеньки. Решивший один пример отмечает ответ в таблице. Дальше его сменяет другой член команды. Происходит движение вверх - к заветному флажку. Учащиеся на местах устно проверяют результаты своих игроков. При неправильном ответе к доске выходит другой член команды, чтобы продолжить решение заданий. Вызывают для работы у доски учеников капитаны команд. Выигрывает та команда, которая при наименьшем количестве учащихся первой достигнет флажка.

hello_html_4b6153fc.png



Игра «Числовая мельница»

Правила игры: В кружках мельницы записаны числа. На стрелках, соединяющих кружки, указаны действия. Задание состоит в том, чтобы выполнить последовательно действия, продвигаясь по стрелке от центра к внешней окружности. Выполняя последовательно действия по указанному маршруту, вы найдете ответ в одном из кружков внизу. Результат выполнения действий по каждой стрелке записывается в овале рядом.





hello_html_708964c0.png

Лирическое отступление.

Стихотворение Лифшица «Три десятых»

Это кто

Из портфеля

Швыряет в досаде

Ненавистный задачник,

Пенал и тетради

И суёт свой дневник.

Не краснея при этом,

Под дубовый буфет.

Чтоб лежал под буфетом?..

Познакомьтесь, пожалуйста:

Костя Жигалин.

Жертва вечных придирок, —

Он снова провален.

И шипит,

На растрёпанный

Глядя задачник:

Просто мне не везёт!

- Просто я неудачник!

В чём причина

Обиды его и досады?

Что ответ не сошёлся

Лишь на три десятых.

Это сущий пустяк!

И к нему, безусловно,

Придирается

Строгая

Марья Петровна.

Три десятых...

Скажи про такую ошибку —

И, пожалуй, на лицах

Увидишь улыбку.

Три десятых...

И всё же об этой ошибке

Я прошу вас

Послушать меня

Без улыбки.

Если б, строя ваш дом.

Тот, в котором живёте.

Архитектор

Немножко

Ошибся

В расчёте, —

Что б случилось.

Ты, знаешь ли, Костя Жигалин?

Этот дом

Превратился бы

В груду развалин!

Ты вступаешь на мост.

Он надёжен и прочен.

А не будь инженер

В чертежах своих точен, —

Ты бы, Костя,

Свалившись

в холодную реку,

Не сказал бы спасибо

Тому человеку!

Вот турбина.

В ней вал

Токарями расточен.

Если б токарь

В работе

Не очень был точен, —

Совершилось бы, Костя,

Большое несчастье:

Разнесло бы турбину

На мелкие части!

Три десятых —

И стены

Возводятся

Косо!

Три десятых —

И рухнут

Вагоны

С откоса!

Ошибись

Только на три десятых

Аптека, —

Станет ядом лекарство,

Убьёт человека!

Мы громили и гнали

Фашистскую банду.

Твой отец подавал

Батарее команду.

Ошибись он прилетом

Хоть на три десятых, —

Не настигли б снаряды

Фашистов проклятых.

Ты подумай об этом,

Мой друг, хладнокровно

И скажи.

Не права ль была

Марья Петровна?

Если честно

Подумаешь, Костя, об этом.

То недолго лежать

Дневнику под буфетом!


Проверочная работа по теме «Десятичные дроби» (математика -5)

На экране последовательно появятся 9 слайдов. Учащиеся в тетрадях записывают номер варианта и ответы на вопрос. Например, Вариант 2

1. С; 2. А; и т.п.


ВОПРОС 1

Вариант 1

При умножении десятичной дроби на 100, нужно в этой дроби перенести запятую:

А. влево на 2 цифры; В. вправо на 2 цифры; С. не менять место запятой.

Вариант 2

При умножении десятичной дроби на 10, нужно в этой дроби перенести запятую:

А. вправо на 1 цифру; В. влево на 1 цифру; С. не менять место запятой.

ВОПРОС 2

Вариант 1

Сумма 6,27+6,27+6,27+6,27+6,27 в виде произведения записывается так:

А. 6,27 · 5; В. 6,27 · 6,27; С. 6,27 · 4.

Вариант 2

Сумма 9,43+9,43+9,43+9,43 в виде произведения записывается так:

А. 9,43 · 9,43; В. 6 · 9,43; С. 9,43 · 4.

ВОПРОС 3

Вариант 1

В произведении 72,43· 18 после запятой будет:

А. 1 цифра; В. 3 цифры; С. 2 цифры.

Вариант 2

В произведении 12,453· 35 после запятой будет:

А. 2 цифры; В. 0 цифр; С. 3 цифры.

ВОПРОС 4

Вариант 1

В частном 76,4 : 2 после запятой будет:

А. 2 цифры; В. 0 цифр; С. 1 цифра.

Вариант 2

В частном 95,4 : 6 после запятой будет:

А. 1 цифра; В. 3 цифры; С. 2 цифры.

ВОПРОС 5

Вариант 1

Найти значение выражения 34,5 : х + 0,65· у, при х=10 у=100:

А. 35,15; В. 68,45; С. 9,95.

Вариант 2

Найти значение выражения 4,9 · х +525:у, при х=100 у=1000:

А. 4905,25; В. 529,9; С. 490,525.

ВОПРОС 6

Вариант 1

Площадь прямоугольника со сторонами 0,25 и 12 см равна

А. 3; В. 0,3; С. 30.

Вариант 2

Площадь прямоугольника со сторонами 0,5 и 36 см равна

А. 1,8; В. 18; С. 0,18.

ВОПРОС 7

Вариант 1

Из школы одновременно в противоположные стороны вышли два ученика. Скорость первого ученика 3,6 км\ч, скорость второго – 2,56 км\ч. Через 3 часа расстояние между ними будет равно:

А. 6,84 км; В. 18,48 км; С. 3,12 км

Вариант 2

Из школы одновременно в противоположные стороны выехали два велосипедиста. Скорость первого 11,6 км\ч, скорость второго – 13,06 км\ч. Через 4 часа расстояние между ними будет равно:

А. 5,84 км; В. 100,8 км; С. 98,64 км


Вариант 1

В

А

С

С

В

А

В

Вариант 2

А

С

С

А

С

В

С


Проверьте свои ответы. Поставьте «+» за правильный ответ и «-» за неправильный ответ.


Игра «Шифровка»

Правила игры: На каждую парту раздаётся по карточке с заданием, имеющим код-букву. Выполнив действия и получив результат, записываете код-букву вашей карточки под числом, соответствующим вашему ответу.

В результате получим предложение:

39

47

2

39

4

6,8

67

2

1

84

420

21,6

С

Н

А

С

Т

У

П

А

Ю

Щ

И

М





67

21

2

51

46

47

420

306

65,8

21,6

П

Р

А

З

Д

Н

И

К

О

М





Подведение итогов урока.

Объявляются оценки за проверочную работу.

Домашнее задание №1301, 1308, 1309

СПАСИБО за внимание!!!


Курс профессиональной переподготовки
Учитель математики
Лабиринт
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Краткое описание документа:
Данная разработка урока предназначена как урок-обобщение по главе «Действия над десятичными дробями». Её можно использовать как в 5 классах, так и в 6 классах. Урок проводится в игровой форме. Учащиеся в ходе урока вспоминают теоретическую и практическую часть учебного материала по данной главе.Для повторения пройденного материала используется презентация, а также несколько примеров выполнения действий над десятичными дробями. Во время урока ни один из учащихся не останется незадействованным, так как некоторые игры предполагают командную, парную работу.
Общая информация
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону N273-ФЗ «Об образовании в Российской Федерации» педагогическая деятельность требует от педагога наличия системы специальных знаний в области обучения и воспитания детей с ОВЗ. Поэтому для всех педагогов является актуальным повышение квалификации по этому направлению!

Дистанционный курс «Обучающиеся с ОВЗ: Особенности организации учебной деятельности в соответствии с ФГОС» от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (72 часа).

Подать заявку на курс

Вам будут интересны эти курсы:

Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.