Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Информатика / Конспекты / Урок Логические функции
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Информатика

Урок Логические функции

библиотека
материалов

Тема: «ЛОГИЧЕСКИЕ ФУНКЦИИ».

Учитель информатики школы-гимназии № 6 им. Абая Кунанбаева города Степногорска Республики Казахстан Косова Елена Викторовна.

kuharevaelena@mail.ru


Цель: Научить учащихся строить логические функции по таблицам истинности.

Отработать умение составлять таблицы истинности по логическим функциям.

Выяснить качество усвоения теоретического материала и проверить знания по теме

«Логические схемы».

Требования к знаниям и умениям:

Учащиеся должны знать:

  • этапы составления таблиц истинности;

  • этапы составления логических функций по таблицам истинности;

  • основные базовые элементы логических схем;

  • правила составления логических схем.

Учащиеся должны уметь:

  • составлять таблицы истинности;

  • составлять логические функции по таблицам истинности;

  • составлять логические схемы по логическим функциям;

  • составлять логические функции по логическим схемам.

Программно-дидактическое обеспечение: ПК, электронный тест, раздаточный

дидактический материал.

Ход урока:

1. Постановка целей урока.(2 минуты)

  1. Проверка домашнего задания. Выполнение электронного теста.(12 минут)

  2. Самостоятельная по теме «Логические схемы».(12 минут)

  3. Объяснение нового материала.(10 минут)

  4. Закрепление нового материала.(5 минут)

  5. Домашнее задание.(2 минуты)

  6. Итоги урока. (2 минуты)


  1. Постановка целей урока.

    1. Таблица истинности сложного логического выражения. Как её правильно составить и использовать?

    2. Каким образом алгебра логики связана с компьютером?

    3. Знаете ли вы что такое ДНФ, чем она отличается от СДНФ?

2 Проверка домашнего задания

Решение задач проверяется у доски. В это время группа учащихся выполняет электронный тест за компьютерами. Обсудив решение домашнего задания, они меняются местами: то есть кто-то отвечает на вопросы теста, а кто-то пишет самостоятельную работу по логическим схемам.

Решение задания № 1:

Для формулы А&(Bv(B&C)) построить таблицу истинности.

Алгоритм построения Т.И.

  1. Подсчитать количество переменных n в формуле;

  2. Определить число строк в таблице m=2n;

  3. Подсчитать количество логических операций в формуле

  4. Установить последовательность выполнения логических операций с учетом скобок и приоритетов;

  5. Определить количество столбцов в таблице: число переменных + число операций;

  6. выписать наборы входных переменных с учетом того, что они представляют собой натуральный ряд n разрядных двоичный чисел от 0 до 2n -1;

  7. Провести заполнение таблицы истинности по столбцам, выполняя логические

операции в соответствии с законами логики.


A

B

C

B

C

B&C

Bv(B&C)

A&(Bv(B&C))

0

0

0

1

1

1

1

0

0

0

1

1

0

0

0

0

0

1

0

0

1

0

1

0

0

1

1

0

0

0

1

0

1

0

0

1

1

1

1

1

1

0

1

1

0

0

0

0

1

1

0

0

1

0

1

1

1

1

1

0

0

0

1

1


Можно составлять таблицу истинности по другому!

Решение задания № 2:

Для формулы 1& x2 ) v (¬х1 v x2) построить таблицу истинности, используя иной способ заполнения:


Под формулой (х1& x2 ) v (¬х1 v x2) подпишем столбцы возможных значений под каждой из переменных (х1 и х2); последовательно (по приоритету операций) выпишем столбцы значений операций.


( x1 & x2 ) v ( ¬ х1v x2 )

0 0 0 1 1 0 1 0

0 0 1 1 1 0 1 1

1 0 0 0 0 1 0 0

1 1 1 1 0 1 1 1


Можно писать &x1x2 вместо x1&x2, тогда вместо (x1&x2) vx1v x2) можно записать

&x1x2v ¬x1x2

Выполнение электронного теста:

  1. Чему равно двойное отрицание простого высказывания?

а) 1

б) исходному высказыванию

в) 0

  1. Соединение двух высказываний с помощью логического оборота «Если…, то…» называется?

а) логическое равенство

б) импликация

в) эквиваленция

  1. Наука об общих операциях, аналогичных сложению и умножению, которые выполняются не только над числами, но и над высказываниями называется?

а) алгебра логики

б) логическая арифметика

в) логическая математика

4. Сколько простых логических операций существует?

а) 3

б) 4

в) 5

  1. Повествовательное предложение, в котором что-либо утверждается или отрицается, называется…

а) высказывание

б) понятие

в) логическая переменная

  1. Составное высказывание, которое содержит несколько простых мыслей,

соединенных между собой с помощью логических операций, называется…

а) логическая функция

б) логическая переменная

в) составное высказывание

  1. Кто был основателем алгебры логики?

а)Буль

б) Лейбниц

в) Аристотель

  1. Как называется устройство, способное хранить 1 бит информации?

а) шифратор

б) сумматор

в) триггер

  1. Объединение двух высказываний с помощью союза и называется?

а) дизъюнкция

б) конъюнкция

в) логическое сложение

10 Дистрибутивный закон логики называется…

а) ассоциативный

б) сочетательный

в) распределительный

  1. Форма мышления, которая выделяет существенные признаки предмета,

позволяющие отличать его от других?

а) высказывание

б) понятие

в) логическая переменная

  1. Произведение, в котором каждая переменная встречается только один раз,

называется?

а) минтерм

б) терм

в) логическая функция

  1. Назови учёного, который основал двоичную систему счисления?

а) де Морган

б) Лейбниц

в) Буль

14.Какой закон утверждает, что противоречивые высказывания не могут быть

истинными одновременно?

а) закон непротиворечия

б) закон идемпотентности

в) закон исключённого третьего


2.Самостоятельная по теме «Логические схемы».


Вспомним правило построения логических схем:

1) Определите число логических переменных.

    1. Определите количество базовых логических операций и их порядок.

    1. Изобразить для каждой логической операции соответствующий ей вентиль.

    2. Соединить вентили в порядке выполнения логических операций.


Задание на карточках.




Вариант № 1.

  1. Нарисуйте логическую схему для следующего логического выражения. Составьте

таблицу истинности.

F = А v hello_html_m2d51f4.gif

  1. По логической схеме составьте формулу:


В

НЕ

hello_html_m2bddf96.gifhello_html_mb60b119.gif

&

hello_html_m2bddf96.gifх1 Вых1

hello_html_438e1b6b.gifhello_html_m311f0002.gif

или

hello_html_5951fc3b.gifhello_html_438e1b6b.gifhello_html_m2bddf96.gif

НЕ

hello_html_mb60b119.gif


hello_html_m2bddf96.gifВх2 Вых2


Вариант № 2.

  1. Нарисуйте логическую схему для следующего логического выражения. Составьте

таблицу истинности.

F = А & hello_html_m38755d02.gif.

  1. По логической схеме составьте формулу:

В

НЕ

или

х1

hello_html_m2bddf96.gifhello_html_m5ee0d1.gifhello_html_mb60b119.gif

И

hello_html_1cbd7991.gifhello_html_1cbd7991.gifhello_html_m2bddf96.gif

hello_html_m311f0002.gifhello_html_438e1b6b.gif

Вhello_html_m441d7c7e.gif

или

hello_html_m2823cef2.gif

НЕ

hello_html_m2bddf96.gifhello_html_m2bddf96.gifhello_html_m5ee0d1.gifhello_html_mb60b119.gif

НЕ

hello_html_m2bddf96.gifх2 Вых



Вх3


Вариант № 3.


  1. Нарисуйте логическую схему для следующего логического выражения. Составьте таблицу истинности.

F = Х v hello_html_m1da69fa2.gif.

  1. По логической схеме составьте формулу:

В

или

hello_html_mb60b119.gifhello_html_m2bddf96.gif

&

hello_html_m2bddf96.gif

НЕ

hello_html_1cbd7991.gifhello_html_m311f0002.gifhello_html_438e1b6b.gif

НЕили

hello_html_mb60b119.gifх1 Вых1



Вх2

Вhello_html_mb60b119.gifх3 Вых2

hello_html_282b66e0.gifhello_html_m7eaa7d36.gif


Вариант № 4.

  1. Нарисуйте логическую схему для следующего логического выражения. Составьте таблицу истинности.

F= (Х v Z) & (X vhello_html_63138505.gif

  1. По логической схеме составьте формулу:


hello_html_m408e67fc.gifhello_html_m61d8314e.gifhello_html_m8de550a.gifhello_html_5daa6e72.gifhello_html_m262ea49d.gifhello_html_m262ea49d.gifX ¬Y



hello_html_m2e03db1c.gifhello_html_5351c983.gifZ

Вариант № 5.


1.Нарисуйте логическую схему для следующего логического выражения. Составьте таблицу истинности.

F = hello_html_3bd0883.gif.

  1. По логической схеме составьте формулу:

hello_html_m53a5d0eb.gif

hello_html_m144fe10a.gifhello_html_m4999677e.gifhello_html_m262ea49d.gifhello_html_m262ea49d.gifhello_html_m53a5d0eb.gifhello_html_415c6a3f.gif¬X Z




hello_html_m144fe10a.gifhello_html_415c6a3f.gifhello_html_m144fe10a.gifX Z


Вариант № 6

  1. Нарисуйте логическую схему для следующего логического выражения.

F =hello_html_m6c1be6a5.gif.

  1. По логической схеме составьте формулу:

Вх1

hello_html_m2823cef2.gif

или

hello_html_m2823cef2.gifhello_html_m2823cef2.gifhello_html_m5ee0d1.gif

Вhello_html_438e1b6b.gif

не

hello_html_mb60b119.gif

hello_html_m4d70646f.gif

х2 вых 1

hello_html_mb60b119.gifhello_html_m59492c59.gifhello_html_1cbd7991.gif


  1. Объяснение нового материала.

Вы хорошо знаете, что в отличие от обычной алгебры, изучающей мате­матические функции, алгебра логики изучает логиче­ские функции.

Функция — это закон соответствия между переменными, а ло­гическая функция это закон соответствия между логическими переменными. Логическая переменнаяэто такая переменная, которая принимает два значения 0 («ложь», 1 («истина»).

Логические функции характеризуются (задаются) таблицами истинности.

Таблица истинности это таблица, устанавливающая соответствие между возможными наборами значений логических переменных и значениями функций.

Из математики известно, что любую логическую функцию можно записать с помощью трех операций: логического сложения, логического умножения и отрицания.

Одна и та же логическая функция может быть запи­сана различным образом. Например, функция hello_html_m1b7810d0.gif может быть записана следующими эквивалентными выражениями:

hello_html_3495e8f5.gif

Эквивалентность выражений легко проверяется составлением таблиц истинности этих двух выражений. Для исключения неравнозначности записи логические функции представляют в унифицированных формах. Такими формами являются: дизъюнктивная и конъюнктивная. В них используются элементарные дизъюнкции и конъюнк­ции.

Элементарной называется конъюнкция, в которую входят только переменные и их отрицания, например,

hello_html_16c8bc17.gif.

Элементарной называется дизъюнкция, предста­вляющая собой логическую сумму переменных и их отрицаний.

Например:

hello_html_m6835c510.gif.

В элементарные конъюнкции (дизъюнкции) не могут входить одинаковые переменные, а также пере­менные с их отрицаниями. Такие дизъюнкции (конъ­юнкции) должны преобразовываться.

Понятия элементарной дизъ­юнкции и конъюнкции позволяют достаточно просто определить дизъюнктивную и конъюнктивную формы записи логических функций.

Дизъюнктивная нормальная форма (ДНФ) — это форма, в которой логическая функция представляется в виде дизъюнкции элементарных конъюнкций, на­пример:

hello_html_41095b21.gif.

Конъюнктивной нормальной формой (КНФ) называ­ется такая форма, в которой функция представляется в виде конъюнкции элементарных дизъюнкций. Напри­мер:

hello_html_m6f6faaec.gif.

Использование нормальных форм не устраняет полностью неоднозначности записи логических функ­ций.

Совершенные формы записи логических функций СДНФ СКНФ.

Среди нормальных форм выделяются такие, в ко­торых функции записываются единственным образом. Их называют совершенными. Применяются совершен­ная дизъюнктивная и совершенная конъюнктивная нор­мальные формы (СДНФ и СКНФ). Формы СДНФ и СКНФ имеют две отличительные особенности:

1) все элементарные конъюнкции и дизъюнкций имеют одинаковый ранг, равный количеству переменных в конъюнкции (дизъюнкции);

2) в элементарные конъюнкции (дизъюнкции) вхо­дят все те переменные или их отрицания, от которых зависит функция.

Функция hello_html_63328637.gif записана в СДНФ.

Функции в СДНФ и СКНФ обычно записываются по таблицам истинности с использованием определен­ных правил.

При построении ЭВМ используются компоненты, работа которых описывается функциями, представленными в дизъюнктивных формах. Поэтому будем рассматривать в дальнейшем только ДНФ и СДНФ.


Правило записи СДНФ функции по таблице истин­ности.

1) Для каждой строки таблицы истинности с единым значением функции надо построить минтерм. (минтермом называется терм, произведение, в котором каждая переменная встречается только 1 раз - либо с отрицанием, либо без него).

2) Переменные имеющие нулевое значение в строке, включить в минтерм с отрицанием, а переменные со значением 1 - без отрицания.

3) Необходимо объединить все минтермы операцией дизъюнкция, что даст стандартную сумму произведений для заданной таблицы истинности.


Например, логическая функция задана таблицей истинности, представленной в таблице. Для набо­ров 4, 6, 7, 8 записываем конъюнкции через пробел:

hello_html_m3e8465f1.gif.

В

hello_html_60d2f2b9.gif

hello_html_m5f6d6328.gif

hello_html_m5a7af14d.gif

hello_html_7744f5f4.gif

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

0

0

0

1

0

1

1

1

1

0

1

1

1

1

1



пробелы ставим знак дизъюнкции и получаем функцию в СДНФ, т. е.

hello_html_m69af9db0.gif.

Для задания функции не обязательно всегда со­ставлять таблицу истинности. Можно указать, что функция hello_html_7744f5f4.gif равна единице, например, на наборах 4, 6, 7, 8 (011, 101,110, 111).

Аналогично строиться таблица по СКНФ, но в начале рассматриваются нулевые значения функции, по ним строятся элементарные дизъюнкции (нулям соответствуют переменные, единицам отрицания переменных), а затем они объединяются знаками конъюнкций.

Можно решать и обратную задачу: построение таблицы истинности по СДНФ или СКНФ.

Закрепление.

  1. По таблице истинности построить СДНФ и СКНФ.

а)

hello_html_60d2f2b9.gif

hello_html_m5f6d6328.gif

hello_html_m5a7af14d.gif

hello_html_7744f5f4.gif

б)

hello_html_60d2f2b9.gif

hello_html_m5f6d6328.gif

hello_html_m5a7af14d.gif

hello_html_7744f5f4.gif


0

0

0

1


0

0

0

0


0

0

1

0


0

0

1

1


0

1

0

0


0

1

0

0


0

1

1

1


0

1

1

0


1

0

0

0


1

0

0

1


1

0

1

0


1

0

1

0


1

1

0

1


1

1

0

1


1

1

1

0


1

1

1

0


Решение:

Для всех наборов переменных, на которых функ­ция принимает единичные значения» записать конъ­юнкции, инвертируя те переменные, которым соот­ветствуют нулевые значения. Затем конъюнкции со­единить знаками дизъюнкции.

Ответы.
1
.а)hello_html_mf836c68.gif

1.б) hello_html_2d95ec7a.gif

Дома:

1 вариант

Построить таблицу истинности по СДНФ (проверьте правильность составления таблиц подстановкой значений в логическую функцию):


а) hello_html_m31484ba7.gif; б) hello_html_2ac22f76.gif.


2 вариант

Построить таблицу истинности по СКНФ (проверьте правильность составления таблиц подстановкой значений в логическую функцию):
а) hello_html_m438133e0.gif; б) hello_html_440365ba.gif.


Итоги урока: Образование – украшение для счастливых,

убежище для несчастных. Для образования

нужны три вещи: природные способности,

упражнения и время.

Демокрит

Сегодня на уроке мы нашли время для выполнения упражнений и демонстрации всех ваших способностей и знаний по данной теме. Спасибо за работу.



7


Краткое описание документа:

С помощью данного урока можно научить учащихся строить логические функции по таблицам истинности, а также        отработать умение составлять таблицы истинности по логическим функциям.В разработке содержится алгоритм составления таблицы истинности для данной логической функции, рассказывается о другом способе заполнения таблицы истинности, идет повторение работы с логическими схемами. Составлена самостоятельная работа по теме «Логические схемы» на шесть вариантов. Повторение теоретического материала проводится с помощью теста
Автор
Дата добавления 01.04.2014
Раздел Информатика
Подраздел Конспекты
Просмотров811
Номер материала 54384040149
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх