Найдено 56 материалов по теме
Предпросмотр материала:
Тема: «ЛОГИЧЕСКИЕ ФУНКЦИИ».
Учитель информатики школы-гимназии № 6 им. Абая Кунанбаева города Степногорска Республики Казахстан Косова Елена Викторовна.
kuharevaelena@mail.ru
Цель: Научить учащихся строить логические функции по таблицам истинности.
Отработать умение составлять таблицы истинности по логическим функциям.
Выяснить качество усвоения теоретического материала и проверить знания по теме
«Логические схемы».
Требования к знаниям и умениям:
Учащиеся должны знать:
- этапы составления таблиц истинности;
- этапы составления логических функций по таблицам истинности;
- основные базовые элементы логических схем;
- правила составления логических схем.
Учащиеся должны уметь:
- составлять таблицы истинности;
- составлять логические функции по таблицам истинности;
- составлять логические схемы по логическим функциям;
- составлять логические функции по логическим схемам.
Программно-дидактическое обеспечение: ПК, электронный тест, раздаточный
дидактический материал.
Ход урока:
1. Постановка целей урока.(2 минуты)
1) Таблица истинности сложного логического выражения. Как её правильно составить и использовать?
2) Каким образом алгебра логики связана с компьютером?
3) Знаете ли вы что такое ДНФ, чем она отличается от СДНФ?
2 Проверка домашнего задания
Решение задач проверяется у доски. В это время группа учащихся выполняет электронный тест за компьютерами. Обсудив решение домашнего задания, они меняются местами: то есть кто-то отвечает на вопросы теста, а кто-то пишет самостоятельную работу по логическим схемам.
Решение задания № 1:
Для формулы А&(Bv(B&C)) построить таблицу истинности.
Алгоритм построения Т.И.
7. Провести заполнение таблицы истинности по столбцам, выполняя логические
операции в соответствии с законами логики.
|
A |
B |
C |
B |
C |
B&C |
Bv(B&C) |
A&(Bv(B&C)) |
|
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
|
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
|
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
|
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
|
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
|
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
|
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
|
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
Можно составлять таблицу истинности по другому!
Решение задания № 2:
Для формулы (х1& x2 ) v (¬х1 v x2) построить таблицу истинности, используя иной способ заполнения:
Под формулой (х1& x2 ) v (¬х1 v x2) подпишем столбцы возможных значений под каждой из переменных (х1 и х2); последовательно (по приоритету операций) выпишем столбцы значений операций.
( x1 & x2 ) v ( ¬ х1 v x2 )
0 0 0 1 1 0 1 0
0 0 1 1 1 0 1 1
1 0 0 0 0 1 0 0
1 1 1 1 0 1 1 1
Можно писать &x1x2 вместо x1&x2, тогда вместо (x1&x2) v (¬x1 v x2) можно записать
&x1x2 v ¬x1x2
Выполнение электронного теста:
а) 1
б) исходному высказыванию
в) 0
а) логическое равенство
б) импликация
в) эквиваленция
а) алгебра логики
б) логическая арифметика
в) логическая математика
4. Сколько простых логических операций существует?
а) 3
б) 4
в) 5
а) высказывание
б) понятие
в) логическая переменная
соединенных между собой с помощью логических операций, называется…
а) логическая функция
б) логическая переменная
в) составное высказывание
а)Буль
б) Лейбниц
в) Аристотель
а) шифратор
б) сумматор
в) триггер
а) дизъюнкция
б) конъюнкция
в) логическое сложение
10 Дистрибутивный закон логики называется…
а) ассоциативный
б) сочетательный
в) распределительный
позволяющие отличать его от других?
а) высказывание
б) понятие
в) логическая переменная
называется?
а) минтерм
б) терм
в) логическая функция
а) де Морган
б) Лейбниц
в) Буль
14.Какой закон утверждает, что противоречивые высказывания не могут быть
истинными одновременно?
а) закон непротиворечия
б) закон идемпотентности
в) закон исключённого третьего
2.Самостоятельная по теме «Логические схемы».
Вспомним правило построения логических схем:
1) Определите число логических переменных.
2) Определите количество базовых логических операций и их порядок.
4) Изобразить для каждой логической операции соответствующий ей вентиль.
5) Соединить вентили в порядке выполнения логических операций.
Задание на карточках.
Вариант № 1.
1. Нарисуйте логическую схему для следующего логического выражения. Составьте
таблицу истинности.
F = А v
![]()
2. По логической схеме составьте формулу:
НЕ &![]()
![]()
Вх1 Вых1
НЕ или
![]()
![]()
![]()
Вх2 Вых2
Вариант № 2.
таблицу истинности.
F = А &
.
или НЕ
Вх1
![]()
![]()

![]()
НЕ НЕ или
![]()
![]()
![]()
Вх2 Вых
Вх3
Вариант № 3.
F = Х v
.
2. По логической схеме составьте формулу:
НЕили НЕ & или
![]()
![]()
![]()
Вх1 Вых1
Вх2
Вх3 Вых2
Вариант № 4.
1. Нарисуйте логическую схему для следующего логического выражения. Составьте таблицу истинности.
F= (Х v Z) & (X v![]()
2. По логической схеме составьте формулу:
![]()
![]()
![]()
![]()
![]()
X ¬Y
![]()
Z
Вариант № 5.
1.Нарисуйте логическую схему для следующего логического выражения. Составьте таблицу истинности.
F =
.
3. По логической схеме составьте формулу:
![]()
![]()
![]()
![]()
![]()
¬X Z
![]()
![]()
X Z
Вариант № 6
1. Нарисуйте логическую схему для следующего логического выражения.
F =
.
Вх1
![]() |
не
![]()
Вх2 вых
1
4. Объяснение нового материала.
Вы хорошо знаете, что в отличие от обычной алгебры, изучающей математические функции, алгебра логики изучает логические функции.
Функция — это закон соответствия между переменными, а логическая функция — это закон соответствия между логическими переменными. Логическая переменная — это такая переменная, которая принимает два значения 0 («ложь», 1 («истина»).
Логические функции характеризуются (задаются) таблицами истинности.
Таблица истинности — это таблица, устанавливающая соответствие между возможными наборами значений логических переменных и значениями функций.
Из математики известно, что любую логическую функцию можно записать с помощью трех операций: логического сложения, логического умножения и отрицания.
Одна и та же логическая функция может быть записана
различным образом. Например, функция
может быть записана
следующими эквивалентными выражениями:

Эквивалентность выражений легко проверяется составлением таблиц истинности этих двух выражений. Для исключения неравнозначности записи логические функции представляют в унифицированных формах. Такими формами являются: дизъюнктивная и конъюнктивная. В них используются элементарные дизъюнкции и конъюнкции.
Элементарной называется конъюнкция, в которую входят только переменные и их отрицания, например,
.
Элементарной называется дизъюнкция, представляющая собой логическую сумму переменных и их отрицаний.
Например:
.
В элементарные конъюнкции (дизъюнкции) не могут входить одинаковые переменные, а также переменные с их отрицаниями. Такие дизъюнкции (конъюнкции) должны преобразовываться.
Понятия элементарной дизъюнкции и конъюнкции позволяют достаточно просто определить дизъюнктивную и конъюнктивную формы записи логических функций.
Дизъюнктивная нормальная форма (ДНФ) — это форма, в которой логическая функция представляется в виде дизъюнкции элементарных конъюнкций, например:
.
Конъюнктивной нормальной формой (КНФ) называется такая форма, в которой функция представляется в виде конъюнкции элементарных дизъюнкций. Например:
.
Использование нормальных форм не устраняет полностью неоднозначности записи логических функций.
Совершенные формы записи логических функций СДНФ СКНФ.
Среди нормальных форм выделяются такие, в которых функции записываются единственным образом. Их называют совершенными. Применяются совершенная дизъюнктивная и совершенная конъюнктивная нормальные формы (СДНФ и СКНФ). Формы СДНФ и СКНФ имеют две отличительные особенности:
1) все элементарные конъюнкции и дизъюнкций имеют одинаковый ранг, равный количеству переменных в конъюнкции (дизъюнкции);
2) в элементарные конъюнкции (дизъюнкции) входят все те переменные или их отрицания, от которых зависит функция.
Функция
записана в СДНФ.
Функции в СДНФ и СКНФ обычно записываются по таблицам истинности с использованием определенных правил.
При построении ЭВМ используются компоненты, работа которых описывается функциями, представленными в дизъюнктивных формах. Поэтому будем рассматривать в дальнейшем только ДНФ и СДНФ.
Правило записи СДНФ функции по таблице истинности.
1) Для каждой строки таблицы истинности с единым значением функции надо построить минтерм. (минтермом называется терм, произведение, в котором каждая переменная встречается только 1 раз - либо с отрицанием, либо без него).
2) Переменные имеющие нулевое значение в строке, включить в минтерм с отрицанием, а переменные со значением 1 - без отрицания.
3) Необходимо объединить все минтермы операцией дизъюнкция, что даст стандартную сумму произведений для заданной таблицы истинности.
Например, логическая функция задана таблицей истинности, представленной в таблице. Для наборов 4, 6, 7, 8 записываем конъюнкции через пробел:
.
В пробелы ставим знак дизъюнкции и получаем функцию в СДНФ, т. е.
.
Для задания функции не обязательно всегда составлять
таблицу истинности. Можно указать, что функция
равна
единице, например, на наборах 4, 6, 7, 8 (011, 101,110, 111).
Аналогично строиться таблица по СКНФ, но в начале рассматриваются нулевые значения функции, по ним строятся элементарные дизъюнкции (нулям соответствуют переменные, единицам отрицания переменных), а затем они объединяются знаками конъюнкций.
Можно решать и обратную задачу: построение таблицы истинности по СДНФ или СКНФ.
1. По таблице истинности построить СДНФ и СКНФ.
|
а) |
|
|
|
|
б) |
|
|
|
|
|
|
0 |
0 |
0 |
1 |
|
0 |
0 |
0 |
0 |
|
|
0 |
0 |
1 |
0 |
|
0 |
0 |
1 |
1 |
|
|
0 |
1 |
0 |
0 |
|
0 |
1 |
0 |
0 |
|
|
0 |
1 |
1 |
1 |
|
0 |
1 |
1 |
0 |
|
|
1 |
0 |
0 |
0 |
|
1 |
0 |
0 |
1 |
|
|
1 |
0 |
1 |
0 |
|
1 |
0 |
1 |
0 |
|
|
1 |
1 |
0 |
1 |
|
1 |
1 |
0 |
1 |
|
|
1 |
1 |
1 |
0 |
|
1 |
1 |
1 |
0 |
Решение:
Для всех наборов переменных, на которых функция принимает единичные значения» записать конъюнкции, инвертируя те переменные, которым соответствуют нулевые значения. Затем конъюнкции соединить знаками дизъюнкции.
Ответы.
1.а)
1.б) ![]()
Дома:
1 вариант
Построить таблицу истинности по СДНФ (проверьте правильность составления таблиц подстановкой значений в логическую функцию):
а)
; б)
.
2 вариант
Построить таблицу истинности по СКНФ
(проверьте правильность составления таблиц подстановкой значений в логическую
функцию):
а)
; б)
.
Итоги урока: Образование – украшение для счастливых,
убежище для несчастных. Для образования
нужны три вещи: природные способности,
упражнения и время.
Демокрит
Сегодня на уроке мы нашли время для выполнения упражнений и демонстрации всех ваших способностей и знаний по данной теме. Спасибо за работу.
Профессия: Системный аналитик
В каталоге 6 544 курса по разным направлениям
Учебник: «Информатика. Углубленный уровень (в 2-ух частях) », Поляков К.Ю., Еремин Е.А.
Тема: § 8. Алфавитный подход к измерению количества информации