Инфоурок / Математика / Презентации / Подготовка к ЕГЭ. Решение задач по теории вероятности
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Педагогическая деятельность в соответствии с новым ФГОС требует от учителя наличия системы специальных знаний в области анатомии, физиологии, специальной психологии, дефектологии и социальной работы.

Только сейчас Вы можете пройти дистанционное обучение прямо на сайте "Инфоурок" со скидкой 40% по курсу повышения квалификации "Организация работы с обучающимися с ограниченными возможностями здоровья (ОВЗ)" (72 часа). По окончании курса Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Автор курса: Логинова Наталья Геннадьевна, кандидат педагогических наук, учитель высшей категории. Начало обучения новой группы: 27 сентября.

Подать заявку на этот курс    Смотреть список всех 216 курсов со скидкой 40%

Подготовка к ЕГЭ. Решение задач по теории вероятности

библиотека
материалов
Решение задач по теории вероятности
Материал был взят из "ЕГЭ 2012. Математика. Задача В10. Рабочая тетрадь" авт...
1
2
3
4
5 Из рай­он­но­го цен­тра в де­рев­ню еже­днев­но ходит ав­то­бус. Ве­ро­ят­н...
Ве­ро­ят­ность того, что новый элек­три­че­ский чай­ник про­слу­жит боль­ше г...
7 Ре­ше­ние.Рас­смот­рим со­бы­тия A = «уча­щий­ся решит 11 задач» и В = «уча...
8 Ответ:0,81
9 Ответ:0,24
10 Ответ:0,98
11 Ответ:0,33
Две фаб­ри­ки вы­пус­ка­ют оди­на­ко­вые стек­ла для ав­то­мо­биль­ных фар. П...
Аг­ро­фир­ма за­ку­па­ет ку­ри­ные яйца в двух до­маш­них хо­зяй­ствах. 40% я...
На фаб­ри­ке ке­ра­ми­че­ской по­су­ды 10% про­из­ведённых та­ре­лок имеют де...
Всем па­ци­ен­там с по­до­зре­ни­ем на ге­па­тит де­ла­ют ана­лиз крови. Есл...
 Ответ: 0,6.
В кар­ма­не у Пети было 4 мо­не­ты по рублю и 2 мо­не­ты по два рубля. Петя,...
21 1

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.


Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.


Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Описание презентации по отдельным слайдам:

№ слайда 1 Решение задач по теории вероятности
Описание слайда:

Решение задач по теории вероятности

№ слайда 2 Материал был взят из "ЕГЭ 2012. Математика. Задача В10. Рабочая тетрадь" авт
Описание слайда:

Материал был взят из "ЕГЭ 2012. Математика. Задача В10. Рабочая тетрадь" авторы: И.Р.Высоцкий, И.В.Ященко.

№ слайда 3
Описание слайда:

№ слайда 4
Описание слайда:

№ слайда 5 1
Описание слайда:

1

№ слайда 6 2
Описание слайда:

2

№ слайда 7 3
Описание слайда:

3

№ слайда 8 4
Описание слайда:

4

№ слайда 9 5 Из рай­он­но­го цен­тра в де­рев­ню еже­днев­но ходит ав­то­бус. Ве­ро­ят­н
Описание слайда:

5 Из рай­он­но­го цен­тра в де­рев­ню еже­днев­но ходит ав­то­бус. Ве­ро­ят­ность того, что в по­не­дель­ник в ав­то­бу­се ока­жет­ся мень­ше 20 пас­са­жи­ров, равна 0,94. Ве­ро­я­тность того, что ока­жет­ся мень­ше 15 пас­са­жи­ров, равна 0,56. Най­ди­те ве­ро­ят­ность того, что число пас­са­жи­ров будет от 15 до 19. Ре­ше­ние.Рас­смот­рим со­бы­тия A = «в ав­то­бу­се мень­ше 15 пас­са­жи­ров» и В = «в ав­то­бу­се от 15 до 19 пас­са­жи­ров». Их сумма — со­бы­тие A + B = «в ав­то­бу­се мень­ше 20 пас­са­жи­ров». Со­бы­тия A и В не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий:   P(A + B) = P(A) + P(B).     Тогда, ис­поль­зуя дан­ные за­да­чи, по­лу­ча­ем: 0,94 = 0,56 + P(В), от­ку­да P(В) = 0,94 − 0,56 = 0,38.   Ответ: 0,38.

№ слайда 10 Ве­ро­ят­ность того, что новый элек­три­че­ский чай­ник про­слу­жит боль­ше г
Описание слайда:

Ве­ро­ят­ность того, что новый элек­три­че­ский чай­ник про­слу­жит боль­ше года, равна 0,97. Ве­ро­ят­ность того, что он про­слу­жит боль­ше двух лет, равна 0,89. Най­ди­те ве­ро­ят­ность того, что он про­слу­жит мень­ше двух лет, но боль­ше года. 6 Ре­ше­ние. Пусть A = «чай­ник про­слу­жит боль­ше года, но мень­ше двух лет», В = «чай­ник про­слу­жит боль­ше двух лет», тогда A + B = «чай­ник про­слу­жит боль­ше года». Со­бы­тия A и В сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий, умень­шен­ной на ве­ро­ят­ность их про­из­ве­де­ния. Ве­ро­ят­ность про­из­ве­де­ния этих со­бы­тий, со­сто­я­ще­го в том, что чай­ник вый­дет из строя ровно через два года — стро­го в тот же день, час и се­кун­ду — равна нулю. Тогда: P(A + B) = P(A) + P(B) − P(A·B) = P(A) + P(B), от­ку­да, ис­поль­зуя дан­ные из усло­вия, по­лу­ча­ем 0,97 = P(A) + 0,89. Тем самым, для ис­ко­мой ве­ро­ят­но­сти имеем:  P(A) = 0,97 − 0,89 = 0,08.   Ответ: 0,08.

№ слайда 11 7 Ре­ше­ние.Рас­смот­рим со­бы­тия A = «уча­щий­ся решит 11 задач» и В = «уча
Описание слайда:

7 Ре­ше­ние.Рас­смот­рим со­бы­тия A = «уча­щий­ся решит 11 задач» и В = «уча­щий­ся решит боль­ше 11 задач». Их сумма — со­бы­тие A + B = «уча­щий­ся решит боль­ше 10 задач». Со­бы­тия A и В не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий:   P(A + B) = P(A) + P(B).     Тогда, ис­поль­зуя дан­ные за­да­чи, по­лу­ча­ем: 0,74 = P(A) + 0,67, от­ку­да P(A) = 0,74 − 0,67 = 0,07.   Ответ: 0,07.

№ слайда 12 8 Ответ:0,81
Описание слайда:

8 Ответ:0,81

№ слайда 13 9 Ответ:0,24
Описание слайда:

9 Ответ:0,24

№ слайда 14 10 Ответ:0,98
Описание слайда:

10 Ответ:0,98

№ слайда 15 11 Ответ:0,33
Описание слайда:

11 Ответ:0,33

№ слайда 16 Две фаб­ри­ки вы­пус­ка­ют оди­на­ко­вые стек­ла для ав­то­мо­биль­ных фар. П
Описание слайда:

Две фаб­ри­ки вы­пус­ка­ют оди­на­ко­вые стек­ла для ав­то­мо­биль­ных фар. Пер­вая фаб­ри­ка вы­пус­ка­ет 45% этих сте­кол, вто­рая — 55%. Пер­вая фаб­ри­ка вы­пус­ка­ет 3% бра­ко­ван­ных сте­кол, а вто­рая — 1%. Най­ди­те ве­ро­ят­ность того, что слу­чай­но куп­лен­ное в ма­га­зи­не стек­ло ока­жет­ся бра­ко­ван­ным. Ве­ро­ят­ность того, что стек­ло куп­ле­но на пер­вой фаб­ри­ке и оно бра­ко­ван­ное: 0,45 · 0,03 = 0,0135. Ве­ро­ят­ность того, что стек­ло куп­ле­но на вто­рой фаб­ри­ке и оно бра­ко­ван­ное: 0,55 · 0,01 = 0,0055. По­это­му по фор­му­ле пол­ной ве­ро­ят­но­сти ве­ро­ят­ность того, что слу­чай­но куп­лен­ное в ма­га­зи­не стек­ло ока­жет­ся бра­ко­ван­ным равна 0,0135 + 0,0055 = 0,019.  

№ слайда 17 Аг­ро­фир­ма за­ку­па­ет ку­ри­ные яйца в двух до­маш­них хо­зяй­ствах. 40% я
Описание слайда:

Аг­ро­фир­ма за­ку­па­ет ку­ри­ные яйца в двух до­маш­них хо­зяй­ствах. 40% яиц из пер­во­го хо­зяй­ства — яйца выс­шей ка­те­го­рии, а из вто­ро­го хо­зяй­ства — 20% яиц выс­шей ка­те­го­рии. Всего выс­шую ка­те­го­рию по­лу­ча­ет 35% яиц. Най­ди­те ве­ро­ят­ность того, что яйцо, куп­лен­ное у этой аг­ро­фир­мы, ока­жет­ся из пер­во­го хо­зяй­ства. Это ре­ше­ние можно за­пи­сать ко­рот­ко. Пусть  х— ис­ко­мая ве­ро­ят­ность того, что куп­ле­но яйцо, про­из­ве­ден­ное в пер­вом хо­зяй­стве. Тогда  1-х— ве­ро­ят­ность того, что куп­ле­но яйцо, про­из­ве­ден­ное во вто­ром хо­зяй­стве. По фор­му­ле пол­ной ве­ро­ят­но­сти ве­ро­ят­ность того, что будет куп­ле­но яйцо выс­шей ка­те­го­рии, равна 0,35 имеем уравнение:  0,4х+(1-х)0,2=0,35  0,4х+0,2-0,2х=0,35 0,2х=0,15 Х=0,75 Ответ: 0,75.

№ слайда 18 На фаб­ри­ке ке­ра­ми­че­ской по­су­ды 10% про­из­ведённых та­ре­лок имеют де
Описание слайда:

На фаб­ри­ке ке­ра­ми­че­ской по­су­ды 10% про­из­ведённых та­ре­лок имеют де­фект. При кон­тро­ле ка­че­ства про­дук­ции вы­яв­ля­ет­ся 80% де­фект­ных та­ре­лок. Осталь­ные та­рел­ки по­сту­па­ют в про­да­жу. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ная при по­куп­ке та­рел­ка не имеет де­фек­тов. Ре­зуль­тат округ­ли­те до сотых.

№ слайда 19 Всем па­ци­ен­там с по­до­зре­ни­ем на ге­па­тит де­ла­ют ана­лиз крови. Есл
Описание слайда:

Всем па­ци­ен­там с по­до­зре­ни­ем на ге­па­тит де­ла­ют ана­лиз крови. Если ана­лиз вы­яв­ля­ет ге­па­тит, то ре­зуль­тат ана­ли­за на­зы­ва­ет­ся по­ло­жи­тель­ным. У боль­ных ге­па­ти­том па­ци­ен­тов ана­лиз даёт по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,9. Если па­ци­ент не болен ге­па­ти­том, то ана­лиз может дать лож­ный по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,01. Из­вест­но, что 5% па­ци­ен­тов, по­сту­па­ю­щих с по­до­зре­ни­ем на ге­па­тит, дей­стви­тель­но боль­ны ге­па­ти­том. Най­ди­те ве­ро­ят­ность того, что ре­зуль­тат ана­ли­за у па­ци­ен­та, по­сту­пив­ше­го в кли­ни­ку с по­до­зре­ни­ем на ге­па­тит, будет по­ло­жи­тель­ным. Ана­лиз па­ци­ен­та может быть по­ло­жи­тель­ным по двум при­чи­нам: А) па­ци­ент бо­ле­ет ге­па­ти­том, его ана­лиз верен; B) па­ци­ент не бо­ле­ет ге­па­ти­том, его ана­лиз ложен. Это не­сов­мест­ные со­бы­тия, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий. Имеем: Ответ: 0,0545.

№ слайда 20  Ответ: 0,6.
Описание слайда:

Ответ: 0,6.

№ слайда 21 В кар­ма­не у Пети было 4 мо­не­ты по рублю и 2 мо­не­ты по два рубля. Петя,
Описание слайда:

В кар­ма­не у Пети было 4 мо­не­ты по рублю и 2 мо­не­ты по два рубля. Петя, не глядя, пе­ре­ло­жил какие-то 3 мо­не­ты в дру­гой кар­ман. Най­ди­те ве­ро­ят­ность того, что обе двух­рублёвые мо­не­ты лежат в одном кар­ма­не.

Краткое описание документа:

Говоря на бытовом языке, теория вероятности -наука, изучающая события, которые могут произойти, а могут и не произойти. В школьном курсе математики рассматриваются самые простые задачи из теории вероятности, поэтому решить их может каждый - нужно только потренироваться. В данной презентации разобраны виды задач, которые вызывают затруднения у учащихся. Но на самом деле они решаются просто.Данную презентацию можно использовать как на уроках математики при подготовки к  ЕГЭ ,так и на занятиях элективных курсов по данной тематики. Материал был взят из «ЕГЭ 2012. Математика. Задача В10. Рабочая тетрадь» авторы: И.Р.Высоцкий, И.В.Ященко.

Общая информация

Номер материала: 57306040300

Похожие материалы