Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Физика / Другие методич. материалы / Материалы к докладам учащихся к уроку "Свет - наша жизнь"

Материалы к докладам учащихся к уроку "Свет - наша жизнь"

  • Физика

Поделитесь материалом с коллегами:

Материалы к докладам учащихся по теме: «Свет – наша жизнь».

  1. «Что такое свет? Возможна ли жизнь на Земле без света?»

Когда-то в древности люди считали , что наша способность видеть обусловлена некими лучами , исходящими из глаз и как-бы «ощупывающими» поверхность предметов. Каким бы смешным сегодня не казалось подобное представление, задумайтесь – а вы знаете, что такое свет? Откуда он берется? Как мы воспринимаем его, и почему разные предметы имеют разный свет?

Включите лампочку и поднесите к ней руку. Вы ощутите исходящее от лампочки тепло. Соответственно. свет-это излучение. Всякое излучение переносит энергию, однако далеко не всякое излучение мы можем воспринимать зрительно. Свет – это видимое излучение

Свойства света:

Опытным путем установлено , что свет имеет электромагнитную природу, а значит свет – это видимое электромагнитное излучение

Свет может проходить сквозь прозрачные тела и вещества. Поэтому свет солнца проникает к нам через атмосферу, хотя при этом свет преломляется. А встречаясь с непрозрачными предметами , свет отражается от них, и мы можем воспринимать этот отраженный свет глазом, и таким образом видим.

Часть света при этом впитывается предметами, и они нагреваются. Темные предметы нагреваются сильнее светлых, соответственно, большая часть света впитывается ими, а отражается меньшая. Поэтому эти предметы выглядят для нас темными. Больше всего света впитывают черного цвета. Именно поэтому летом в жару не стоит одевать черные вещи, потому что можно получить тепловой удар, а рекомендуется одевать светлые вещи и головные уборы .

Что случится, если солнце исчезнет:

Нас сейчас не заботит то, как именно это произойдет. Просто предположим, что мы нашли способ быстро перемотать вперед жизненный цикл Солнца и довели до того момента, где оно стало холодным, инертным шаром. Какие будут последствия для нас на Земле?

Давайте рассмотрим некоторые из них:

-Снижение риска солнечных вспышек.

-Лучшее качество спутниковой связи.

-Лучшая астрономия.

-Исчезновение временных зон.

-Безопасность детей.

Но не стоит забывать и о плохих последствиях:

-Не будет растений.

-Исчезнет тепло.

Подводя итог: несмотря на многие преимущества во многих сферах жизни, жизнь на земле без этих 2 факторов невозможна, а значит жизнь невозможна без Солнца.

  1. «Источники света. Виды электростанций»

Источники света делятся на естественные и искусственные. К естественным источникам относятся: Солнце, планеты, звезды. К искусственным относятся: огонь, электроэнергетика. Так же источники света бывают самостоятельные и отражающие. Самостоятельные в свою очередь делятся на тепловые (освещение, молния) и люминисцирующие (экран телевизора, лампы дневного света, гнилушки, светлячки, морские рыбы и микроорганизмы).

Мы сегодня поговорим об искусственных источниках света – электроэнергетике.

Свет или электричество вырабатывают на электрических станций, они бывают разных видов. Самые распространенные, которые вырабатывают основную часть энергии, которую потребляют в нашей стране и за рубежом, это – атомные электростанции, тепло-электро централи и гидроэлектростанции.

АЭС.

Россия обладает технологией ядерной электроэнергетики полного цикла от добычи урановых руд до выработки электроэнергии. На сегодняшний день в нашей стране эксплуатируется 10 атомных электростанций (АЭС) – в общей сложности 33 энергоблока установленной мощностью 23,2 ГВт, которые вырабатывают около 17% всего производимого электричества. В стадии строительства – еще 5 АЭС. 

Широкое развитие атомная энергетика получила в европейской части России (30%) и на Северо-Западе (37% от общего объема выработки электроэнергии). 

В 2011 году атомными электростанциями выработано рекордное за всю историю отрасли количество электроэнергии — 172,5 млрд кВт*ч, что составило около 1,5% прироста по сравнению с 2010 годом. В декабре 2007 года в соответствии с Указом Президента РФ была образована Государственная корпорация по атомной энергии «Росатом», которая управляет всеми ядерными активами Российской Федерации, включая как гражданскую часть атомной отрасли, так и ядерный оружейный комплекс. На нее также возложены задачи по выполнению международных обязательств России в области мирного использования атомной энергии и режима нераспространения ядерных материалов. 

Оператор российских АЭС – ОАО «Концерн «Росэнергоатом» – является второй в Европе энергетической компанией по объему атомной генерации. АЭС России вносят заметный вклад в борьбу с глобальным потеплением. Благодаря их работе ежегодно предотвращается выброс в атмосферу 210 млн тонн углекислого газа. Приоритетом эксплуатации АЭС является безопасность. С 2004 года на российских АЭС не зафиксировано ни одного серьезного нарушения безопасности, классифицируемых по международной шкале ИНЕС выше нулевого (минимального) уровня. Важной задачей в сфере эксплуатации российских АЭС является повышение коэффициента использования установленной мощности (КИУМ) уже работающих станций. Планируется, что в результате выполнения программы повышения КИУМ ОАО «Концерн «Росэнергоатом», рассчитанной до 2015 года, будет получен эффект, равноценный вводу в эксплуатацию четырех новых атомных энергоблоков (эквивалент 4,5 ГВт установленной мощности). 

ТЭЦ.

Лидирующее положение теплоэнергетики является исторически сложившейся и экономически оправданной закономерностью развития российской энергетики. 
Тепловые электростанции (ТЭС), действующие на территории России, можно классифицировать по следующим признакам: 

  •  по источникам используемой энергии – органическое топливо, геотермальная энергия, солнечная энергия;

  • по виду выдаваемой энергии – конденсационные, теплофикационные;

  • по использованию установленной электрической мощности и участию ТЭС в покрытии графика электрической нагрузки – базовые (не менее 5000 ч использования установленной электрической мощности в году), полупиковые или маневренные (соответственно 3000 и 4000 ч в году), пиковые (менее 1500-2000 ч в году).

В свою очередь, тепловые электростанции, работающие на органическом топливе, различаются по технологическому признаку: 

  • паротурбинные (с паросиловыми установками на всех видах органического топлива: угле, мазуте, газе, торфе, сланцах, дровах и древесных отходах, продуктах энергетической переработки топлива и т.д.);

  • дизельные;

  • газотурбинные;

  • парогазовые.

Наибольшее развитие и распространение в России получили тепловые электростанции общего пользования, работающие на органическом топливе (газ, уголь), преимущественно паротурбинные. 
Самой большой ТЭС на территории России является крупнейшая на Евразийском континенте Сургутская ГРЭС-2 (5600 МВт), работающая на природном газе (ГРЭС - аббревиатура, сохранившаяся с советских времен, означает государственную районную электростанцию). 

Из электростанций, работающих на угле, наибольшая установленная мощность у Рефтинской ГРЭС (3800 МВт). К крупнейшим российским ТЭС относятся также Сургутская ГРЭС-1 и Костромская ГРЭС, мощностью свыше 3 тыс. МВт каждая. 
В процессе реформы отрасли крупнейшие тепловые электростанции России были объединены в оптовые генерирующие компании (ОГК) и территориальные генерирующие компании (ТГК). 

В настоящий момент основной задачей развития тепловой генерации является обеспечение технического перевооружения и реконструкции действующих электростанций, а также ввод новых генерирующих мощностей с использованием передовых технологий в производстве электроэнергии. 
ГЭС.

Гидроэнергетика предоставляет системные услуги (частоту, мощность) и является ключевым элементом обеспечения системной надежности Единой Энергосистемы страны, располагая более 90% резерва регулировочной мощности. Из всех существующих типов электростанций именно ГЭС являются наиболее маневренными и способны при необходимости быстро существенно увеличить объемы выработки, покрывая пиковые нагрузки. 

У России большой гидроэнергетический потенциал, что подразумевает значительные возможности развития отечественной гидроэнергетики. На территории Российской Федерации сосредоточено около 9% мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия занимает второе место в мире, опережая США, Бразилию, Канаду. На сегодняшний день общий теоретический гидроэнергопотенциал России определен в 2900 млрд кВт-ч годовой выработки электроэнергии или 170 тыс. кВт*ч на 1 кв. км территории. Однако сейчас освоено лишь 20% этого потенциала. Одним из препятствий развития гидроэнергетики является удаленность основной части потенциала, сконцентрированной в центральной и восточной Сибири и на Дальнем Востоке, от основных потребителей электроэнергии. 

Выработка электроэнергии российскими ГЭС обеспечивает ежегодную экономию 50 млн тонн условного топлива, потенциал экономии составляет 250 млн тонн; позволяет снижать выбросы СО2 в атмосферу на величину до 60 млн тонн в год, что обеспечивает России практически неограниченный потенциал прироста мощностей энергетики в условиях жестких требований по ограничению выбросов парниковых газов. Кроме своего прямого назначения – производства электроэнергии с использованием возобновляемых ресурсов – гидроэнергетика дополнительно решает ряд важнейших для общества и государства задач: создание систем питьевого и промышленного водоснабжения, развитие судоходства, создание ирригационных систем в интересах сельского хозяйства, рыборазведение, регулирование стока рек, позволяющее осуществлять борьбу с паводками и наводнениями, обеспечивая безопасность населения. 


3.«Влияние работы современных электростанций на экологию».

Энергетика является важнейшей отраслью, без которой в современных условиях не представляется деятельность людей. Постоянное развитие электроэнергетики приводит к росту количества электростанций, которые оказывают непосредственное воздействие на окружающую среду.

Нет оснований полагать, что в скором будущем значительно изменятся темпы потребления электроэнергии. Поэтому очень важно найти ответы на ряд сопутствующих вопросов:

  1. Какое влияние оказывают самые распространенные виды нынешней энергетики и будет ли изменяться в дальнейшем соотношение этих видов в суммарном энергетическом балансе

  2. Возможно ли сократить негативное влияние современных метод выработки и потребления энергии

  3. Какие максимальные возможности производства энергии их альтернативных источников, которые являются абсолютно экологически чистыми и неисчерпаемыми.

РЕЗУЛЬТАТ ДЕЙСТВИЯ тэц

Каждый отдельный тип электростанции оказывает различное воздействие. По большей части, негативная энергетика вырабатывается от работы тепловых электрических станций. В ходе их функционирования атмосфера загрязняется небольшими элементами золы, поскольку преимущественная часть ТЭС применяет в качестве топлива измельченный уголь.

В целях борьбы с выбросами вредных частиц организовано массовое производство фильтров с КПД 95-99%. Однако это не помогает в полной мере решить проблему, поскольку на многих тепловых станциях, функционирующих на угле, фильтры пребывают в плохом состоянии, в результате чего их КПД сокращается до 80%.

ВОЗДЕЙСТВИЕ ГЭС НА ПРИРОДУ

Гидроэлектростанции также воздействуют на окружающую среду, хотя еще несколько десятков лет назад считалось, что ГЭС не способны оказывать негативное влияние. С течением времени стало понятно, что в ходе возведения и последующей эксплуатации ГЭС наносится значительный вред.

Возведение любой гидроэлектростанции подразумевает создание искусственного водохранилища, существенную часть которого при этом занимает мелководье. Вода на мелководье сильно нагревается от солнца и в сочетании с наличием биогенных веществ создает условия для роста водорослей и прочих эвтрофикационных процессов. По этой причине возникает необходимость осуществления очистки воды, в ходе которой очень часто образовывается большая зона подтопления. Таким образом происходит переработка территории берегов и их постепенное обрушение, и подтопления способствуют заболачиванию территорий, расположенных в непосредственной близости к водохранилищам ГЭС.

ВЛИЯНИЕ АЭС

Атомные электростанции осуществляют большое количество выбросов теплоты в водные источники, что значительно увеличивает динамику теплового загрязненияводоемов. Сложившаяся проблема при этом является разносторонней и весьма тяжелой.

На сегодняшний день ключевым источником вредной радиации служит горючее. Для обеспечения безопасности жизнедеятельности необходимо достаточно надежно изолировать горючее.

Для решения данной задачи в первую очередь топливо распределяется по специальным брикетам, благодаря материалу изготовления которых задерживается значительная доля продуктов деления радиоактивных веществ.

Кроме того, брикеты располагаются в тепловыделяющих отделениях, произведенных из сплава циркония. В случае утечки радиоактивных веществ они поступают в охлаждающий реактор, способный претерпевать большое давление. В качестве дополнительной меры обеспечения безопасности для жизнедеятельности людей, атомные электростанции располагаются на определенном расстоянии от жилых массивов.

ВОЗМОЖНЫЕ ВАРИАНТЫ РЕШЕНИЯ ПРОБЛЕМ ЭНЕРГЕТИКИ

Несомненно, в ближайшей перспективе энергетическая область будет планомерно развиваться и преобладающей останется тепловая электроэнергетика. Существует большая вероятность повышения доли угля и прочих разновидностей топлива в производстве энергии.


4. «Альтернативные виды источников энергии. Энергосберегающие технологии».

Альтернативные виды энергии

ВСТУПЛЕНИЕ

На пороге ХХI века человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. HomoSapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов - угля, нефти и газа, научился использовать энергию рек, освоил “мирный атом”, но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии.

По оценкам специалистов, мировые ресурсы угля составляют 15, а по неофициальным данным 30 триллионов тонн, нефти - 300 миллиардов тонн, газа - 220 триллионов кубометров. Разведанные запасы угля составляют 1685 миллиардов тонн, нефти - 137 миллиардов тонн, газа - 142 триллионов кубометров. Почему же наблюдается тенденция к освоению альтернативных видов энергии, при таких, казалось бы, внушительных цифрах, при том, что в последние годы в шельфовых зонах морей открыты огромные запасы нефти и газа?

Есть несколько ответов на этот вопрос. Во-первых, непрерывный рост промышленности, как основного потребителя энергетической отрасли. Существует точка зрения, что при нынешней ситуации запасов угля хватит примерно на 270 лет, нефти на 35-40 лет, газа на 50 лет. Во-вторых, необходимость значительных финансовых затрат на разведку новых месторождений, так как часто эти работы связаны с организацией глубокого бурения (в частности, в морских условиях) и другими сложными и наукоемкими технологиями. И, в третьих, экологические проблемы, связанные с добычей энергетических ресурсов. Склады нефтепродуктов и окружающие их территории подчас напоминают “города мертвых”, а кадры кинохроники о плавающих в нефтяной пленке морских птицах и животных тревожат не только Greenpeace.

Не менее важной причиной необходимости освоения альтернативных источников энергии является проблема глобального потепления. Суть ее заключается в том, что двуокись углерода (СО2), высвобождаемая при сжигании угля, нефти и бензина в процессе получения тепла, электроэнергии и  обеспечения работы транспортных средств, поглощает тепловое излучение поверхности нашей планеты, нагретой Солнцем и создает так называемый парниковый эффект.

В настоящее время выдвигаются множество различных идей и предложений по использованию всевозможных возобновляемых видов энергии. Разработка некоторых проектов еще только начинается. Так, существуют предложения по использованию энергии разложения атомных частиц, искусственных смерчей и даже энергии молнии. Проводятся эксперименты по использованию “биоэнергетики”, например, энергии парного молока для обогрева коровников.

Но существуют и “традиционные” виды альтернативной энергии. Это энергия Солнца и ветра, энергия морских волн, приливов и отливов. Есть проекты преобразования в электроэнергию газа, выделяющегося на мусорных свалках, а также из навоза на звероводческих фермах. Основным видом “бесплатной” неиссякаемой энергии по справедливости считается Солнце. В Солнце сосредоточено 99, 886% всей массы солнечной системы. Солнце ежесекундно излучает энергию в тысячи миллиардов раз большую, чем при ядерном взрыве 1 кг U235 .

СОЛНЦЕ

Солнце - неисчерпаемый источник энергии - ежесекундно дает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет - самая близкая к Солнцу часть нашей планеты - по праву считает солнечную энергию своим богатством. На сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров.

Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы (см. рис.№1) и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании “Боинг”. Созданный там солнечный элемент преобразует в электроэнергию 37 процентов попавшего на него солнечного света.

Это достижение стало возможным, с одной стороны, благодаря использованию двухслойной конструкции. Верхний слой - из арсенида галлия. Он поглощает излучение видимой части спектра. Нижний слой - из антимонида галлия и предназначен улавливать инфракрасное излучение, которое обычно теряется. С другой стороны, высокая эффективность достигается благодаря специальному покрытию, преломляющему свет и фокусирующему его на активные области солнечной ячейки.

В Японии ученые работают над совершенствованием фотогальванических элементов на кремниевой основе. Если толщину солнечного элемента существующего стандарта уменьшить в 100 раз, то такие тонкопленочные элементы потребуют гораздо меньше сырья, что обеспечит их высокую эффективность и экономичность. Кроме того, их малый вес и исключительная прозрачность  позволят легко устанавливать их на фасадах зданий и даже на окнах, для обеспечения электроэнергией жилых домов. Однако поскольку интенсивность солнечного света не всегда и не везде  одинакова, то даже при установке множества солнечных батарей, зданию потребуется дополнительный источник электричества. Одним из возможных решений этого вопроса является использование  солнечных элементов в комплексе с двухсторонним топливным элементом. В дневное время, когда работают солнечные элементы, избыточную электроэнергию можно пропускать через водородный топливный элемент (см. гл. ВОДОРОД) и таким образом получать водород из воды. Ночью же топливный элемент сможет использовать этот водород для производства электроэнергии.

Компактная передвижная электростанция сконструирована германским инженером ХербертомБойерманом. При собственном весе 500 кг она имеет мощность 4 КВт, иначе говоря, способна полностью обеспечить электротоком достаточной мощности загородное жилье. Это довольно хитроумный агрегат, где энергию вырабатывают сразу два устройства - ветрогенератор нового типа и комплект солнечных панелей. Первый оснащен тремя полусферами, которые (в отличие от обычного ветрового колеса) вращаются при малейшем движении воздуха, второй - автоматикой, аккуратно ориентирующей солярные элементы на светило. Добытая энергия накапливается в аккумуляторном блоке, а тот стабильно снабжает током потребителей.

Глядя вперед, в те времена, когда штат Калифорния будет нуждаться в удобных станциях для подзарядки электробатарей, “Южно-калифорнийская компания Эдисон” планирует начать испытание специальной автостанции для машин, работающих на солнечной энергии, которая в конечном счете должна стать обычной заправочной станцией со множеством парковочных мест и различными магазинами. Солнечные панели на крыше станции, расположенной в городе Даймонд-Баре, обеспечат энергию для зарядки электромобилей в течение всего рабочего дня даже зимой. А излишек, получаемый от этих панелей, будет использоваться для нужд самой автостанции. Уже в 1981г. через пролив Ла-Манш совершил перелёт первый в мире самолёт двигателем, работающим от солнечных батарей. Чтобы совершить перелёт на расстояние 262 км, ему потребовалось 5,5 часа (см. рис. №2). А по прогнозам учёных конца прошлого века, ожидалось, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах. В частности, в Крыму с его “солнцеобильностью”.

ВЕТЕР

На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может “работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер - это очень рассеянный энергоресурс. Природа не создала “месторождения” ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда “размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо, что делает его менее “надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность “ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок (патент РФ № 1783144) порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с!

Ветровые двигатели не загрязняют окружающую среду, но они очень громоздкие и шумные. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры. И тем не менее всего одна электростанция, работающая на ископаемом топливе, может заменить по количеству полученной энергии тысячи ветряных турбин (см. рис. №3;8).

МОРЕ

В последнее время в некоторых странах снова обратили внимание на те проекты, которые были отвергнуты ранее как малоперспективные. Так, в частности, в 1982 г. британское правительство отменило государственное финансирование тех электростанций, которые используют энергию моря: часть таких исследований прекратилась, часть продолжалась при явно недостаточных ассигнованиях от Европейской комиссии и некоторых промышленных фирм и компаний. Причиной отказа в государственной поддержке называлась недостаточная эффективность способов получения “морского” электричества по сравнению с другими его источниками, в частности - атомными.

В мае 1988 г. в этой технической политике произошел переворот. Министерство торговли и промышленности Великобритании прислушалось к мнению своего главного советника по энергетике Т. Торпа, который сообщил, что три из шести имеющихся в стране экспериментальных установок усовершенствованы и ныне стоимость 1 КВт/ч на них составляет менее 6 пенсов, а это ниже минимального уровня конкурентоспособности на открытом рынке. Цена “морской” электроэнергии с 1987 г. снизилась вдесятеро.

Волны. Наиболее совершенен проект “Кивающая утка” (см. рис. №4), предложенный конструктором С. Солтером. Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 КВт\ч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это - 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 КВт\ч).

Следует заметить, что использование источников альтернативных, возобновляемых видов энергии может достаточно эффективно снизить процент выбросов в атмосферу вредных веществ, то есть в какой-то степени решить одну из важных экологических проблем. Энергия моря может с полным основанием быть причисленной к таким источникам.

Приливы. Первая большая электростанция, работающая на энергии приливов, была построена в 1968г. в устье реки Ранс (Франция). Электростанция работает следующим образом. Когда начинается отлив, заслонки в дамбе закрывают, поддерживая высокий уровень воды за плотиной. При разнице уровней в 3 м. заслонки открывают, и вода устремляется в море, вращая лопатки 24-х больших турбин, а вместе с ними и роторы электрогенераторов. Когда опять начинается прилив, вода через открытые заслонки проходит за плотину, и цикл повторяется.

ЗЕМЛЯ

Тепло от горячих горных пород в земной коре тоже может генерировать электричество. Через пробуренные в горной породе скважины вниз накачивается холодная вода, а в вверх поднимается образованный из воды пар, который вращает турбину. Такой вид энергии называется геотермальной энергией. Она используется, например, в Новой Зеландии и Исландии.

ОТХОДЫ

Одним из наиболее необычных видов использования отходов человеческой деятельности является получение электроэнергии из мусора. Проблема городских свалок стала одной из наиболее актуальных проблем современных мегаполисов. Но, оказывается, их можно еще использовать для производства электроэнергии. Во всяком случае именно так поступили в США, в штате Пенсильвания. Когда построенная для сжигания мусора и одновременной выработки электроэнергии для 15000 домов печь стала получать недостаточно топлива, было решено восполнить его мусором с уже закрытых свалок. Вырабатываемая из мусора энергия приносит округу около $ 4000 прибыли еженедельно. Но главное- объем закрытых свалок сократился на 78%.

НАВОЗ

Казалось бы, что может быть неприятнее навоза? Много проблем связано с загрязнением водоемов отходами звероводческих хозяйств. Большие количества органического вещества, попадающие в водоемы, способствуют их загрязнению.

Известно, что теплоцентрали - активные загрязнители окружающей среды, свинофермы и коровники - тоже. Однако из этих двух зол можно составить нечто хорошее. Именно это произошло в английском городе Пиделхинтоне, где разработана технология переработки навоза свиней в электроэнергию. Отходы идут по трубопроводу на электростанцию, где в специальном реакторе подвергаются биологической переработке. Образующийся газ используется для получения электроэнергии, а переработанные бактериями отходы - для удобрения. Перерабатывая 70 тонн навоза ежедневно, можно получить 40 КВт/ч.

ЭКОЛОГИЧЕСКИЕ  ДЕРЕВНИ

Кроме замены традиционных источников энергии альтернативными, существуют проекты по созданию экологически чистых и сбалансированных городов и деревень будущего. Основой для их создания будут служить применение экономичных материалов, а также оптимальный режим использования энергии, который смогут поддерживать с помощью компьютерных программ.

Хранителем домашнего очага и незримым существом в доме, по старинным поверьям, служит теплый домовой. Техническую помощь ему в скандинавских странах, в первую очередь в Швеции, оказывает теперь программно управляемая бытовая теплоцентраль “Аквае 47 ОД”. Разработанная шведской фирмой “Электростандард”, эта установка довольствуется скромным местом, скажем, площадью кухни.

Тепловые насосы и узел нагрева воды вмонтированы в нее еще на заводе-изготовителе. Принцип экономного вторичного обогрева таков: из использованного воздуха ванной комнаты, кухни и подсобок тепловая энергия возвращается в систему отопления традиционного типа и утилизируется водогрейным котлом. Дополнительные калории от внешних источников газа или жидкого топлива отбираются на эти цели лишь по мере необходимости. Особые клапаны в наружных стенах, снабженные противопылевым фильтром и входящие в комплект установки, обеспечивают подвод чистого воздуха и равномерную безвытяжную смену его в доме. Это достижение компьютерной теплотехники предназначено прежде всего для односемейных домов, например, для загородных коттеджей; оно сокращает наполовину обычный расход энергии.

В испанском поселке Сант-Джосеп на острове Ивиса сооружается первая в мире экологическая деревня будущего, где поселятся четыреста человек. В проекте участвуют специалисты из всех стран Европы. Чтобы оптимально использовать солнечный свет, “умные” дома сами станут регулировать внутреннюю температуру. Это позволяет как новая технология, так и сами материалы - каркас из алюминия и поликарбоната с огромными застекленными поверхностями, где циркулирует прозрачная жидкость. Получится своеобразный щит, впускающий солнечный свет, но удерживающий тепло. Температура зимой и летом будет одинаковая - 20-22 градуса. Избыток энергии поступит в термический теплонакопитель. Электроэнергию там станут вырабатывать также ветряные мельницы и солнечные батареи, избыток ее опять же сберегут огромные аккумуляторы. Биоочистная установка превратит органические отходы - мусор и сточные воды, в метан, преобразуемый затем в электричество. Структура здания гарантирует сохранность свыше 85 процентов энергии. На гигантской биоферме будут выращивать скот, рыбу, а так же овощи, фрукты и злаки.

Возможно, такие проекты пока невозможно реализовать в значительных масштабах. До серийного производства “умных” экологически чистых домов еще далеко, но уже сейчас реализация некоторых проектов (постройка мини-ГЭС, солнечных, ветровых, мусорных электростанции) вполне реальна.

ЗАКЛЮЧЕНИЕ

В обозримом будущем природное топливо по-прежнему будет важным источником энергии. Однако природные ресурсы ограничены, и в конце концов человечество будет вынуждено перейти на использование энергии ветра и Солнца, о чем с незапамятных времен мечтают защитники окружающей среды.

Теоретически, каждое предприятие, здание, жилой дом и автомобиль может иметь свой собственный экологически чистый, возобновляемый источник энергии, что позволит человечеству обходиться без нефтяных скважин, угольных шахт, электростанций, линий электропередачи и избавиться, таким образом, от всех негативных последствий их использования. Однако на данный момент перед человечеством  стоит более неотложная задача: остановить перегревание планеты и сделать это как можно быстрее. Благодаря автомобилям с топливными элементами, более совершенным ветровым турбинам и солнечным элементам, и другим описанным в данном реферате проектам, внедрение которых уже становится реальностью, угроза глобального потепления кажется теперь не столь устрашающей, какой она представлялась еще несколько лет назад.





Автор
Дата добавления 24.10.2016
Раздел Физика
Подраздел Другие методич. материалы
Просмотров67
Номер материала ДБ-287053
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх