Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Методическая разработка Математика СПО

Методическая разработка Математика СПО


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика

Поделитесь материалом с коллегами:


Департамент кадровой политики Белгородской области

Областное государственное бюджетное образовательное учреждение

среднего профессионального образования


«Шебекинский техникум строительства,

промышленности и транспорта»



УтверждАЮ

Зам. директора по УР

_________________ Л.В. Срывкина

«___»__________2012 г.






ФОНД

ОЦЕНОЧНЫХ СРЕДСТВ


ПО УЧЕБНОЙ ДИСЦИПЛИНЕ



МАТЕМАТИКА


по специальности 190701 Организация перевозок и управление на транспорте (по видам )


базовая подготовка


Разработал преподаватель ________________ В.Ф. Войтенко


Рассмотрен на заседании

цикловой комиссии ООД, ЕН и МД

«___»__________2012 г.

Протокол №___

Председатель цикловой комиссии ________ Н.Ф.Зайцев

(подпись)






Шебекино 2012

Содержание

Пояснительная записка

3

Паспорт фонда оценочных средств по дисциплине

5

Перечень вопросов тестовых, самостоятельных и практических заданий

7

Тестовый контроль

7

Проверочные работы

22

Практические работы

33

Экзаменационные вопросы

49

Экзаменационные задания

50

Экзаменационные билеты

52

Критерии оценки уровня и качества подготовки студентов

53

Список используемой литературы

53

Приложение

54



  1. Пояснительная записка.


Фонд оценочных средств учебной дисциплины математика разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования (далее – СПО), утвержденного приказом Министерства образования и науки Российской Федерации № 282 от 06.04.2010, зарегистрирован Министерством юстиции рег. № 17241 от 17.05.2010г. 190701 Организация перевозок и управление на транспорте (по видам )

Код и наименование специальности

Максимальная учебная нагрузка (всего)

Самостоятельная работа обучающегося (всего)

Обязательная аудиторная учебная нагрузка (всего)

1 семестр

всего

теор

практические занятия

всего

теор

практические

190701 Организация перевозок и управление на транспорте (по видам )


96

32

64

44

20

64

44

20


Общепрофессиональная дисциплина ОП.02. Математика способствует формированию следующих компетенций:

Техник должен обладать общими компетенциями, включающими в себя способность:

ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

ОК 2. Организовывать собственную деятельность, определять методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

ОК 3. Решать проблемы, оценивать риски и принимать решения в нестандартных ситуациях.

ОК 4. Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития.

ОК 5. Использовать информационно-коммуникационные технологии для совершенствования профессиональной деятельности.

ОК 6. Работать в коллективе и команде, обеспечивать ее сплочение, эффективно общаться с коллегами, руководством, потребителями.

ОК 7. Ставить цели, мотивировать деятельность подчиненных, организовывать и контролировать их работу с принятием на себя ответственности за результат выполнения заданий.

ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

ОК 9. Быть готовым к смене технологий в профессиональной деятельности.

ОК 10. Исполнять воинскую обязанность, в том числе с применением полученных профессиональных знаний (для юношей).

Техник должен обладать профессиональными компетенциями, соответствующими основным видам профессиональной деятельности:

ПК 1.3. Оформлять документы, регламентирующие организацию перевозочного процесса.

ПК 2.1. Осуществлять планирование и организацию перевозочного процесса.

ПК 3.1. Организовывать работу персонала по обработке перевозочных документов и осуществлению расчетов за услуги, предоставляемые транспортными организациями.


Основными формами проведения текущего контроля знаний на занятиях теоретического обучения являются устный опрос, письменное выполнение заданий, решение тестов, выполнение практических работ.



  1. Паспорт

фонда оценочных средств

по дисциплине МАТЕМАТИКА

п/п

Контролируемые разделы (темы) дисциплины*

Результаты обучения

Наименование

оценочного средства


освоенные умения

усвоенные знания

Тема 1.1 Дифференциальное и интегральное исчисление

Вычислять пределы функции в точке и в бесконечности, производную функции и сложной функции, неопределенные и определенные интегралы, решать прикладные задачи

Знание основных методов математического анализа, определение предела функции, формулировка правил дифференцирования, перечисление производных основных элементарных функций, формулировки геометрического и физического смысла производной, перечисление табличных интегралов, методов интегрирования, приложения определенного интеграла к вычислению площадей плоских фигур

Тест , практическая работа №1, №2, №3, №4, проверочная работа №1, №2,№3, собеседование

Тема 1.2. Обыкновенные дифференциальные уравнения

Применять различные методы для решения дифференциальных уравнений первого и второго порядка

Знание определений дифференциальных уравнений первого и второго порядка

Тест, практическая работа №5, №6, №7, проверочная работа 5

Тема 2.1. Множества и отношения. Свойства отношений. Операции над множествами.

Выполнять операции над множествами, находить пересечение и объединение множеств, определять рефлексивные, транзитивные, симметричные отношения

Знание понятий множество и отношение, и их свойств

Тест, собеседование

Тема 2.2. Основные понятия теории графов.

Решать задачи на построение элементарных графов

Знание основных определений теории графов

Собеседование

Тема 3.1. Элементы комбинаторики.

Решать задачи на нахождение числа размещений, перестановок и сочетаний

Знать основные определения комбинаторики

Тест, проверочная работа №6

Тема 3.2. Случайная величина. Вероятность.

Находить вероятность в простейших задачах, используя классическое определение вероятностей

Основные понятия и методы теории вероятностей и математической статистики

Тест, практическая работа №8, проверочная работа №6

Тема 3.3. Математическое ожидание и дисперсия случайной величины.

Находить математическое ожидание, дисперсию, среднее квадратическое отклонение случайной величины по заданному закону её распределения

Определение математического ожидания; определение дисперсии дискретной случайной величины

Проверочная работа №7

Тема 4.1. Численное интегрирование.

Использовать приближенные методы вычисления определенных интегралов

Приближенные методы вычисления определенных интегралов

Практическая работа №9, проверочная работа № 8

Тема 4.2. Численное дифференцирование.

иметь понятие о приближенных методах вычисления производных

Основные численные методы решения прикладных задач

Практическая работа №10, проверочная работа № 8

Итоговая контрольная работа



Контрольная работа

Экзамен



Экзаменационные вопросы,

задачи для подготовки к экзамену.

Экзаменационные билеты





  1. Перечень вопросов тестовых, проверочных и практических заданий

Тестовый контроль.

Инструкция по выполнению теста:

Каждое тестовое задание варианта имеет определенный порядковый номер, из которых - один верный и три неверных ответа.

В каждом варианте теста 20 вопросов.

Критерии оценивания:

«отлично» - 90%-100% правильных ответов,

«хорошо»- 75%-89% правильных ответов,

«удовлетворительно»- 50%-74% правильных ответов,

«неудовлетворительно»- менее 50% правильных ответов.

Время, которое отводится на выполнение теста-20 минут.


Тема: Производная и ее приложения


1. Предел отношения приращения функции в точке х к приращению аргумента, когда последнее стремится к нулю называется…

а) производной функции

б) неопределенным интегралом

в) пределом функции

г) первообразной

2. Если материальная точка движется по закону S(t), то первая производная от пути по времени есть…

а) угловой коэффициент

б) ускорение движения

в) скорость в данный момент времени

г) нет верного ответа

3. Геометрический смысл производной состоит в том, что …

а) она равна пределу функции

б) она равна всегда нулю

в) она равна угловому коэффициенту касательной

г) она равна максимальному значению функции

4. Дифференцирование – это…

а) вычисление предела

б) вычисление приращения функции

в) нахождение производной от данной функции

г) составление уравнения нормали

5. Эта формула выражает hello_html_m5e91f725.gif

А) первый замечательный предел;

Б) первообразную

В) угловой коэффициент касательной

Г) максимальному значению функции

6. Уравнение касательной к данной линии в точке М имеет вид…

а) y-y0=y/(х)(х-х0)

б) y= y/(х)(х-х0)

в) y-y0=х-х0

г) y=y

7. Производная постоянной величины равна…

а) единице

б) самой постоянной

в) не существует

г) нулю

8. При вычислении производной постоянный множитель можно…

а) возводить в квадрат

б) выносить за знак производной

в) не принимать во внимание

г) принять за нуль

9. Ускорение прямолинейного движения равно…

а) скорости от пути по времени

б) первой производной от пути по времени

в) второй производной от пути по времени

г) нулю

10. Функция возрастает на заданном промежутке, если…

а) первая производная положительна

б) вторая производная положительна

в) первая производная отрицательна

г) первая производная равна нулю

11. Найти: hello_html_1266cfea.gif

а) не существует; б) 0; в)hello_html_42567408.gif; г)hello_html_m3d4efe4.gif

12. Найти hello_html_m6bdb7c9b.gif

а) 1; б) 0; в) -1;г)hello_html_m74e6612e.gif

13. 16. Найти hello_html_3ede74c8.gif

а) не существует; б) 0 ;в) hello_html_m74e6612e.gif;г) 5

14. Найти: hello_html_m375113ef.gif

а) е2; б) е ; в) 1 ;г) hello_html_m74e6612e.gif

15. Найдите производную функции y=x3+cosx.

а) y/=3x2sin x б) y/=x3sin x в) y/=3x2 + sin x г) y/=x3ln3 + sin x


16. Найдите производную функции y=2xsin x.

а) y/= x2 – cos x б) y/=x2 – sin x в)y/=2 - cos x г) y/= 1 + cos x


17.. Найдите производную функции y=2x + 1.

а)y/=hello_html_12fc9a42.gif б) y/=hello_html_652225e0.gif в) y/=hello_html_6a37e348.gif г) y/=hello_html_4613f826.gif



18. Найдите производную функции y= -ex + 3x3.


а) y/=ex + 3x б) y/=-xex + 9x2 в) y/=-ex +9x2 г) y/=-ex-1 +9x3.

19. Найдите производную функции y=e2xln(3x – 5)

а) y/=2e2x - hello_html_47be64e8.gif б) y/=2e2x - hello_html_5518cce0.gif в) y/=e2x - hello_html_47be64e8.gif

г) y/=e2x - hello_html_5518cce0.gif

20. Вторая производная hello_html_m219ff3b6.gif(x) функции y(x)=4hello_html_m4d1d4174.gif-2x имеет вид

а)y//=4; б)y”=8 ; в)y//=6 ; г)y//=7

Тема: Интеграл и его применение

21.Функция F называется первообразной для функции f на некотором промежутке, если для всех x из этого промежутка существует производная

F/(х), равная f(х), т.е. F/(х)=f(х) это…

а) формула Ньютона-Лейбница

б) дифференциал функции

в) первообразная для функции f

г) производная в точке

22. Множество первообразных для данной функции f(х) называется…

а) функцией

б) неопределенным интегралом

в) постоянным множителем

г) частной производной

23. Операция нахождения неопределенного интеграла называется…

а) дифференцированием функции

б) преобразованием функции

в) интегрированием функции

г) нет верного ответа

24. Непосредственное интегрирование, метод подстановки, интегрирование по частям это…

а) методы нахождения производной

б) методы интегрирования

в) методы решения задачи Коши

г) все ответы верны

25. Производная от неопределенного интеграла равна…

а) подынтегральной функции

б) постоянной интегрирования

в) переменной интегрирования

г) любой функции

26. Неопределенный интеграл от алгебраической суммы двух или нескольких функций равен…

а) произведению интегралов этих функций

б) разности этих функций

в) алгебраической сумме их интегралов

г) интегралу частного этих функций

27. Определенный интеграл вычисляют по формуле…

а) hello_html_m53d4ecad.gifhello_html_m59008fd0.giff(х)dx=F(a)-F(b)

б) hello_html_m53d4ecad.gifhello_html_m59008fd0.giff(х)dx=F(b)-F(a)

в) hello_html_m53d4ecad.gifhello_html_m59008fd0.giff(х)dx=F(a)+F(b)

г) hello_html_m53d4ecad.gifhello_html_m59008fd0.giff(х)dx=F(a)

28. Определенный интеграл с одинаковыми пределами равен…

а) единице

б) бесконечности

в) нулю

г) указанному пределу

29. При перемене местами верхнего и нижнего пределов интегрирования определенный интеграл…

а) остается прежним

б) меняет знак

в) увеличивается в два раза

г) равен нулю

30. Определенный интеграл используется при вычислении…

а) площадей плоских фигур

б) объемов тел вращения

в) пройденного пути

г) всех перечисленных элементов

31. Формула Ньютона-Лейбница

  1. hello_html_m517c45cc.gif

  2. hello_html_m44826330.gif

  3. hello_html_m7b3046a9.gif

  4. hello_html_m7130b166.gif

32. Вычисление пути, пройденного материальной точкой производится по формуле:

  1. hello_html_5b69f73a.gif

  2. hello_html_44f913b3.gif

  3. hello_html_m6ce7adf7.gif

  4. hello_html_m4e3f2f53.gif

33. Если криволинейная трапеция, ограниченная линией hello_html_6db4f3ef.gif и прямыми y=0, x=a, x=b, вращается вокруг оси х, то объем вращения вычисляется по формуле

  1. hello_html_mda025e1.gif

  2. hello_html_2b90fd22.gif

  3. hello_html_m607d4ab0.gif

  4. hello_html_m7b31002d.gif


34. Если hello_html_mea9544d.gif то площадь криволинейной трапеции, ограниченной этой линией, двумя прямыми x=a и x=b и отрезком оси абсцисс axb, вычисляется по формуле


  1. hello_html_m127d22b.gif

  2. hello_html_m30e398c7.gif

  3. hello_html_681803f4.gif

  4. hello_html_42aa5921.gif

35. Укажите первообразную функции hello_html_5e34ae7a.gif

  1. hello_html_m37755894.gif

  2. hello_html_5594745d.gif

  3. hello_html_ab96915.gif

  4. hello_html_5d054fb.gif

36.Определенный интеграл hello_html_42f5e7e1.gif равен

а) 36; б)17; в)16; г)15

37.Площадь криволинейной трапеции, ограниченной линиями y=4 – x2, y=0 определяется интегралом

а) hello_html_76a3b1b9.gif; б) hello_html_m45dd96bb.gif; в) hello_html_1b205b6d.gif; г) hello_html_5fd084ac.gif

38. В результате подстановки t = 3x + 2 интеграл hello_html_m41a1a2db.gif приводится к виду


а) hello_html_mcd3f0e3.gif; б) hello_html_m2a8247cb.gif; в)hello_html_m3d6c5d84.gif; г) hello_html_5002b3e9.gif

39.Определенный интеграл hello_html_m463808e4.gifравен
а)19; б)18 ; в)35; г) 27

40. Множество всех первообразных функции y=5hello_html_766aebd.gif имеет вид
а) hello_html_159b177.gif ;б)hello_html_m521c4e41.gif ; в) hello_html_371e9825.gif ; г) hello_html_b3faf61.gif


Тема: Обыкновенные дифференциальные уравнения


41. Уравнение, связывающее переменную, искомую функцию, ее производную (или дифференциал аргумента и дифференциал функции) называется

  1. Дифференциальным

  2. Интегральным

  3. Логарифмическим

  4. Показательным

42. Общим решением дифференциального уравнения первого порядка называется функция:

  1. hello_html_me4d85f1.gif

  2. hello_html_9ae5f64.gif

  3. hello_html_7cf51801.gif

  4. hello_html_6c54f15c.gif

43. Частным решением уравнения hello_html_m1be73406.gif называется решение:

  1. hello_html_m6856622e.gif

  2. hello_html_m717098e8.gif

  3. hello_html_m15ebb459.gif

  4. hello_html_13a2053f.gif

44. Если дифференциальное уравнение содержит производную или дифференциал не выше второго порядка, то оно называется:

  1. Дифференциальным уравнением второго порядка

  2. Дифференциальным уравнением первого порядка

  3. Дифференциальным уравнением третьего порядка

  4. Нет верного ответа

45. Общим решением дифференциального уравнения второго порядка называется функция:

  1. hello_html_7554e069.gifот х

  2. hello_html_m55e2d8d9.gifот х

  3. hello_html_m2409a4f6.gifот х

  4. hello_html_206379dd.gifот х


46 . Характеристическое уравнение дифференциального hello_html_m57524fe2.gif имеет вид

а) -5k+6=0

б) k2-5k+6=0

в) k+6=0

г) k2-5k=0

47. Метод решения данного уравнения g(y)dy+f(x)dx=0…

а) метод разделения переменных

б) метод с постоянными коэффициентами;

в) метод параметров;

г) метод составления характеристического уравнения

48. Дифференциальное уравнение hello_html_m558c3b4c.gif в результате разделения переменных сводиться к уравнению

а) hello_html_6c0574f7.gifб) hello_html_697abb73.gif в) hello_html_752fcdc8.gif г) hello_html_7d370e02.gif

49.Общим решением дифференциального уравнения называется …

а) интеграл, содержащий произвольную постоянную С

б) интеграл ,содержащий конкретное значение С

в) значение определенного интеграла

г)интегральная линия дифференциального уравнения

50. Степенью дифференциального уравнения называется

а) показатель степени производной искомой функции, с которым эта производная входит в данное уравнение;

б) наибольшая степень выражения;

в) сумма показателей производных;

г) сумма показателей выражения

51. Частным решением дифференциального уравнения называется …

а) интеграл, содержащий конкретное значение С

б) интеграл, содержащий произвольную постоянную С

в) значение определенного интеграла

г)интегральная линия дифференциального уравнения

52. Для нахождения частного решения дифференциального уравнения, необходимо …

а) знание начальных условий;

б) знание пределов интегрирования

в) знание методов решения дифференциальных уравнений

г)знание методов интегрирования

53. Дифференциальное уравнение вида Y/+P(x)=Q(X) называется …

а) линейным

б) квадратным

в) параметрическим

г) уравнением с одной переменной

54. Уравнение вида Y//+PY/+QY=F(x) называется …

а) линейным уравнением второго порядка с постоянными коэффициентами

б) параметрическим уравнением второго порядка с постоянными коэффициентами

в) однородным уравнением второго порядка

г) биквадратным уравнением

55. Общий вид решения уравнения Y//+PY/+QY=0 при условии к1, к2 – действительные корни характеристического уравнения…

а) y=C1ek1x + C2ek2x

б) y=C1ek1x

в) y= C2ek2x

г) y=C1+C2

56. Дифференциальное уравнение hello_html_a06afe.gif в результате разделения переменных сводиться к уравнению

а) hello_html_m22ccf664.gif

б) hello_html_m53e40207.gif

в) hello_html_a06afe.gif

г) hello_html_2754d5f.gif

57. Характеристическое уравнение дифференциального hello_html_a02910c.gif имеет вид

а) k2-6k+13=0

б) k2-6k=0

в) k2+13=0

г) 6k+13=0

58. Уравнение вида hello_html_1d581026.gifявляется …

а) неоднородным

б) однородным

в) параметрическим

г) уравнением с одной переменной

59. Дифференциальные уравнения второго порядка решаются методом

а) однократного интегрирования

б) двукратным интегрированием

в) однократным дифференцированием

г) двукратным дифференцированием

60. Характеристическое уравнение дифференциального hello_html_m62ffda65.gif имеет вид

а) hello_html_9d46e10.gif

б) hello_html_1f0e8a1d.gif

в) hello_html_m6046e61c.gif

г) hello_html_86fc932.gif


Тема: Отношения и множества

61. Понятие множества является одним из основных:

  1. Неопределяемых понятий математики

  2. Определяемых понятий математики

  3. Устойчивых понятий математики

  4. Нет верного ответа

62. Множество N натуральных чисел:

  1. Конечно

  2. Бесконечно

  3. Ограничено

  4. Симметрично

63. Множество всех букв греческого алфавита:

  1. Бесконечно

  2. Конечно

  3. Пустое множество

  4. Ограничено

64. Если каждый элемент множества А является в то же время элементом множества В, то множество А называется:

  1. Подмножеством Б

  2. Множество Б называется подмножеством множества А

  3. Множество А не является подмножеством множества Б

  4. Множество Б не является подмножеством множества А

65. Пересечением множеств А и В называется множество тех и только тех элементов, которые принадлежат:

  1. Множеству А

  2. Множеству В

  3. Множеству А и множеству В одновременно

  4. Нет верного ответа

66. Объединением множеств А и В называется множество тех и только тех элементов, которые входят:

  1. Хотя бы в одно из множеств А и В

  2. Которые состоит из тех и только тех элементов множества А, не принадлежащих множеству В

  3. Которые состоит из тех и только тех элементов множества В, не принадлежащих множеству А

  4. И в множество А и в множество В


67. Разностью двух множеств А и В называется множество, состоящее из тех и только тех элементов:

  1. Множества А, которые не принадлежат множеству В

  2. Множества В, которые не принадлежат множеству А

  3. Множества элементов которые принадлежат множеству А и В одновременно

  4. Нет верного ответа


68.Выберите утверждение о числовых множествах, которое является истинным…


  1. Множество целых чисел является подмножеством множества действительных чисел.

  2. Множество рациональных чисел является подмножеством множества иррациональных чисел.

  3. Отрезок [1;2] является подмножеством промежутка (1;10].

  4. Интервал (-4,0) является подмножеством отрезка [-3;-1].


69.Укажите пару (x ; y), находящуюся в отношении y=cos x :


  1. (1;1)

  2. (0;1)

  3. (1;0)

  4. (0;-1)


70. Степень вершины А равна…



hello_html_m5a5afcb8.png

  1. 3

  2. 0

  3. 4

  4. 5


71.Даны множества: А={4,7,13}, В={0,2,4,6,8,10,12,14}

Количество элементов множества, являющегося пересечением множеств А и В, равно…


  1. 1

  2. 3

  3. 8

  4. 10


72. Даны два множества А и В


hello_html_7f185fc.png


Область, выделенная серым цветом является:


  1. пересечением множества А и В

  2. дополнением множества В до множества А

  3. объединением множества А и В

  4. разностью множества А и В


73. Какое из заданных отношений обладает свойством симметричности?


  1. Отношение «быть меньше»

  2. Отношение «быть больше»

  3. Отношение «перпендикулярности прямых»

  4. Отношение «быть делителем»


74. Количество ребер, идентичных вершине А, равно


hello_html_m5a5afcb8.png

  1. 0

  2. 5

  3. 4

  4. 3


75. Выберите утверждение о числовых множествах, которое является истинным


  1. Отрезок [1;10] является подмножеством промежутка (1;10]

  2. Множество рациональных чисел является подмножеством множества иррациональных чисел

  3. Множество целых чисел является подмножеством множества действительных чисел

  4. Интервал (-4;0) является подмножеством множества целых чисел


76. Даны два множества А и В


hello_html_m32bb88e6.gif

Область, выделенная серым цветом является


Варианты ответов:

  1. пересечение множества А и В

  2. дополнение множества В до множества А

  3. объединение множества А и В

  4. разность множества А и В

77. Укажите пустые множества среди следующих : множество целых корней уравнения х2-9=0; множество целых корней уравнения х2 +9=0; множество действительных корней уравнения hello_html_1af84b30.gif

а) множество целых корней уравнения х2-9=0

б) множество целых корней уравнения х2 +9=0

в) множество целых корней уравнения х2-9=0; множество целых корней уравнения х2 +9=0;

г) множество целых корней уравнения х2 +9=0; множество действительных корней уравнения hello_html_1af84b30.gif

78. Заданы множества А={2,3,4,5} и D={3,4,5}. Верным для них будет утверждение:

а) Множество А - подмножество множества D

б) Множество D - подмножество множества A

в) Множество А и множество D равны

г) Множество А - множество-степень множества D

79. Если отношение задано неравенством: 3x-4y<0, то данному отношению принадлежит следующая пара чисел.

а) (0;1)

б) (3;1)

в) (2;0)

г) (1;0)

80. Какое из множеств определяет А È В , если

А = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6, 7}

а) {1, 4, 5}

б) {1, 2, 3, 4, 5}

в) {1, 2, 3, 4, 5, 6, 7}

г) {1, 2, 3, 4, 6, 7}


Тема « Элементы комбинаторики, случайная величина, её вероятность и математическое ожидание.

81.Упорядоченное множество, отличающееся только порядком элементов, называется

  1. перестановкой

  2. размещением

  3. сочетанием

  4. разностью



82.Упорядоченное подмножество из n элементов по m элементов, отличающиеся друг от друга либо самими элементами либо порядком их расположения, называется …

  1. сочетанием

  2. размещением

  3. перестановкой

  4. разностью


83. … из n элементов по m называется любое подмножество из m элементов, которые отличаются друг от друга по крайней мере одним элементом.

  1. перестановкой

  2. размещением

  3. сочетанием

  4. разностью


84.Событие, которое обязательно произойдет, называется …

  1. невозможным

  2. достоверным

  3. случайным

  4. достоверным и случайным

85.Событие называется …, если оно не может произойти в результате данного испытания.

  1. случайным

  2. невозможным

  3. достоверным

  4. достоверным и случайным


86.Событие А и hello_html_624b290d.gif называется …, если непоявление одного из них в результате данного испытания влечет появление другого.

  1. совместимым

  2. несовместимым

  3. противоположным

  4. несовместным и противоположным

87.Число перестановок определяется формулой

  1. Pn=n!

  2. hello_html_m7b6b0f4d.gif

  3. hello_html_m7b6b0f4d.gif+ n!

  4. hello_html_m4f21960a.gif

88.Число сочетаний определяется формулой

  1. hello_html_m5b085622.gif

  2. hello_html_m2ee4ea9b.gif

  3. hello_html_m7b6b0f4d.gif

  4. hello_html_m570aa9d3.gif


89.Вероятность достоверного события

  1. больше 1

  2. равна 1

  3. равна 0

  4. меньше 1

90.Вероятность невозможного события равна

  1. больше 1

  2. равна 1

  3. равна 0

  4. меньше 1


91.Отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний называется

  1. классической вероятностью

  2. относительной частотой

  3. физической частотой

  4. геометрической вероятностью


92.Отношение меры области, благоприятствующей появлению события, к мере всей области называется

  1. геометрической вероятностью

  2. классической вероятностью

  3. относительной частотой

  4. физической частотой

93.Вероятность появления события А определяется неравенством

  1. 0<Р(А)<1

  2. 0≤Р(А) ≤1

  3. 0<Р(А) ≤1

  4. нет верного ответа


94.Сумма вероятностей противоположных событий равна

  1. 1

  2. 0

  3. -1

  4. 2


95.Вероятность РА(В) называется

  1. классической вероятностью

  2. геометрической вероятностью

  3. условной вероятностью

  4. относительной частотой

961.Формула hello_html_m474aa436.gif называется

  1. формулой полной вероятности

  2. формулой Бейеса

  3. формулой Бернулли

  4. формулой Ньютона

97.Вычислить Р4

  1. 4

  2. 16

  3. 24

  4. 32

98.Вычислить hello_html_1520ebb6.gif

  1. 8

  2. 12

  3. 6

  4. 16


99. Случайной величиной называется переменная величина, которая в зависимости от исходов испытания принимает то или иное значение:

  1. Не зависящее от случая

  2. Зависящее от случая

  3. Зависящее от переменной

  4. Не зависящее от переменной


100. Случайная величина, принимающая различные значения, которые можно записать в виде конечной или бесконечной последовательности, называется:

  1. Случайной величиной

  2. Дискретной случайной величиной

  3. Постоянной величиной

  4. Переменной величиной




Проверочная работа № 1 по теме « Пределы. Непрерывность функций».

Вариант 1

  1. Вычислить предел функции:

hello_html_2aee090.gif.

  1. Вычислить предел функции:

hello_html_mea1a69a.gif.

  1. Вычислить предел функции:

hello_html_m5a80ca6d.gif.

  1. Вычислить предел функции:

hello_html_676cb361.gif.

Вариант 2

  1. Вычислить предел функции:

hello_html_m28b31e80.gif.

  1. Вычислить предел функции:

hello_html_m526ea798.gif.

  1. Вычислить предел функции:

hello_html_m717bb4c4.gif.

  1. Вычислить предел функции:

hello_html_mc09e5ca.gif.

Вариант 3

  1. Вычислить предел функции:

hello_html_m33283f17.gif.

  1. Вычислить предел функции:

hello_html_1411237.gif.

  1. Вычислить предел функции:

hello_html_39638e68.gif.

  1. Вычислить предел функции:

hello_html_m18618797.gif.

Вариант 4

  1. Вычислить предел функции:

hello_html_m3e24f1fa.gif.

  1. Вычислить предел функции:

hello_html_2fdc3923.gif.

  1. Вычислить предел функции:

hello_html_7e0f4090.gif.

  1. Вычислить предел функции:

hello_html_m5967d7f4.gif.

Вариант 5

  1. Вычислить предел функции:

hello_html_m296725d8.gif.

  1. Вычислить предел функции:

hello_html_762d59cd.gif.

  1. Вычислить предел функции:

hello_html_m75bec42f.gif.

  1. Вычислить предел функции:

hello_html_m718e0e97.gif.

Вариант 6

  1. Вычислить предел функции:

hello_html_58a9fc74.gif.

  1. Вычислить предел функции:

hello_html_71cb32fa.gif.

  1. Вычислить предел функции:

hello_html_mee238e.gif.

  1. Вычислить предел функции:

hello_html_m32fa6938.gif.

Время на выполнение: 40 мин.

Критерии оценивания:

«отлично» - верно выполнено 4 задания;

«хорошо» - верно выполнено 3 задания;

«удовлетворительно» - верно выполнено 2 задания;

«неудовлетворительно» - верно выполнено менее 2 заданий.



Проверочная работа № 2 по теме « Производная, физический смысл».


Вариант 1

1.Найти производную функции hello_html_m511490cc.gif.

2.Найти производную третьего порядка функции hello_html_daca622.gif.

3.Написать уравнение касательной к графику функции hello_html_m71fcbb18.gif в точке с абсциссой hello_html_7adea91b.gif, hello_html_72ad10fe.gif.

4.Материальная точка движется по закону hello_html_32c2a6cc.gif. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 2

1.Найти производную функции hello_html_m714f3bf3.gif.

2.Найти производную третьего порядка функции hello_html_1e0b04cd.gif.

3.Написать уравнение касательной к графику функции hello_html_m1968ea52.gif в точке с абсциссой hello_html_2cdda589.gif, hello_html_m500e5064.gif.

4.Материальная точка движется по закону hello_html_m2e845686.gif. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 3

1.Найти производную функции hello_html_m11847bbc.gif.

2.Найти производную третьего порядка функции hello_html_m18223060.gif.

3.Написать уравнение касательной к графику функции hello_html_649ab52e.gif в точке с абсциссой hello_html_2cdda589.gif, hello_html_72ad10fe.gif.

4.Материальная точка движется по закону hello_html_m13e1d057.gif. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 4

1.Найти производную функции hello_html_m2b395374.gif.

2.Найти производную третьего порядка функции hello_html_m55af193b.gif.

3.Написать уравнение касательной к графику функции hello_html_7fac3dd5.gif в точке с абсциссой hello_html_7adea91b.gif, hello_html_m500e5064.gif.

4.Материальная точка движется по закону hello_html_m7c25432f.gif. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 5

1.Найти производную функции hello_html_m61a23692.gif.

2.Найти производную третьего порядка функции hello_html_b63200.gif.

3.Написать уравнение касательной к графику функции hello_html_4d5b44c9.gif в точке с абсциссой hello_html_m333ed8af.gif, hello_html_7100b07f.gif.

4.Материальная точка движется по закону hello_html_m7c735c.gif. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 6

1.Найти производную функции hello_html_1b30651c.gif.

2.Найти производную третьего порядка функции hello_html_m3421f153.gif.

3.Написать уравнение касательной к графику функции hello_html_m77d7fffe.gif в точке с абсциссой hello_html_2cdda589.gif, hello_html_4e2d5a1d.gif.

4.Материальная точка движется по закону hello_html_m41b7dd0a.gif. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)


Время на выполнение: 40 мин.

Критерии оценивания:

«отлично» - верно выполнено 4 задания;

«хорошо» - верно выполнено 3 задания;

«удовлетворительно» - верно выполнено 2 задания;

«неудовлетворительно» - верно выполнено менее 2 заданий.



Проверочная работа №3 по теме «Неопределенный интеграл. Непосредственное интегрирование. Замена переменной».


Вариант 1

Найти неопределенные интегралы методом непосредственного интегрирования (для № 1-5).

  1. hello_html_m17df827b.gif.

  2. hello_html_5819012e.gif.

  3. hello_html_m6b134b8.gif.

  4. hello_html_m5b6fe5fa.gif.

  5. hello_html_m13eeddce.gif.

Найти неопределенные интегралы методом подстановки (для № 6-8).

  1. hello_html_m7e667d2.gif.

  2. hello_html_652b58c2.gif.

  3. hello_html_46a59fa7.gif.

  4. Найти неопределенный интеграл методом интегрирования по частям: hello_html_m60c7345e.gif.


Вариант 2

Найти неопределенные интегралы методом непосредственного интегрирования (для № 1-5).

  1. hello_html_51e8c694.gif.

  2. hello_html_5b1f8fc9.gif.

  3. hello_html_m5e632e17.gif.

  4. hello_html_m5c46a0f5.gif.

  5. hello_html_3089aa56.gif.

Найти неопределенные интегралы методом подстановки (для № 6-8).

  1. hello_html_5f8ee17.gif.

  2. hello_html_47e90703.gif.

  3. hello_html_m50619fd7.gif.

  4. Найти неопределенный интеграл методом интегрирования по частям: hello_html_2a070b6a.gif.

Время на выполнение: 45 мин.

Критерии оценивания

«отлично» - 85%-100% правильных ответов,

«хорошо»- 65%-85% правильных ответов,

«удовлетворительно»- 50%-65% правильных ответов,

«неудовлетворительно»- менее 50% правильных ответов



Проверочная работа № 4 по теме «Определенный интеграл. Вычисление определенного интеграла. Геометрический смысл определенного интеграла».



Вариант 1

  1. Вычислить определенный интеграл: hello_html_7c20a922.gif.

  2. Вычислить определенный интеграл методом подстановки: hello_html_m3737e8cb.gif.

  3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: hello_html_30e0f6b9.gif.

  4. Найти объем тела, полученного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями: hello_html_m45264fb8.gif.

  5. Скорость движения точки изменяется по закону hello_html_f7f721.gif (м/с). Найти путь S, пройденный точкой за 10 с от начала движения.


Вариант 2

  1. Вычислить определенный интеграл: hello_html_m3e82dffa.gif.

  2. Вычислить определенный интеграл методом подстановки: hello_html_4343e255.gif.

  3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: hello_html_6ebe4a43.gif.

  4. Найти объем тела, полученного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями: hello_html_76681165.gif.

  5. Скорость движения точки изменяется по закону hello_html_mbb6717d.gif (м/с). Найти путь S, пройденный точкой за четвертую секунду.


Время на выполнение: 45 мин.

Критерии оценивания

«отлично» - 85%-100% правильных ответов,

«хорошо»- 65%-85% правильных ответов,

«удовлетворительно»- 50%-65% правильных ответов,

«неудовлетворительно»- менее 50% правильных ответов


Проверочная работа №5 по теме «Обыкновенные дифференциальные уравнения»


Вариант 1

1.Являются ли данные функции решениями данных дифференциальных уравнений (для № 1-2).

1. hello_html_2e24b05b.gif.

2.hello_html_6c41e5f.gif.

2.Решить следующие дифференциальные уравнения первого и второго порядка (для № 3-6).

3.hello_html_6f515a6f.gif.

4.hello_html_m73dad1c1.gif.

5.hello_html_7ba29071.gif.


Вариант 2

1. Являются ли данные функции решениями данных дифференциальных уравнений (для № 1-2).

1. hello_html_307d0271.gif

2. hello_html_m1fc7a3e.gif

2. Решить следующие дифференциальные уравнения первого и второго порядка (для № 3-6).

3.hello_html_6a32f81a.gif

4.hello_html_69ef9fb9.gif

5. hello_html_m5a4c8645.gif

Вариант 3

1.Являются ли данные функции решениями данных дифференциальных уравнений (для № 1-4).

1.hello_html_m216ac649.gif.

2.hello_html_m3fd4814d.gif.


2.Решить следующие дифференциальные уравнения первого и второго порядка (для № 6-12).

3.hello_html_1194cfa9.gif.

4.hello_html_3055c4ae.gif.

5.hello_html_m775ba938.gif.


Вариант 4

1.Являются ли данные функции решениями данных дифференциальных уравнений (для № 1-2).

1.hello_html_m1c0447ff.gif

2. hello_html_m205177d4.gif

2.Решить следующие дифференциальные уравнения первого и второго порядка (для № 6-12).

3.hello_html_19c9f8b3.gif

4.hello_html_2fd96eb6.gif

5.hello_html_42a7e749.gif


Время на выполнение: 45 мин.

Критерии оценивания

«отлично» - 85%-100% правильных ответов,

«хорошо»- 65%-85% правильных ответов,

«удовлетворительно»- 50%-65% правильных ответов,

«неудовлетворительно»- менее 50% правильных ответов


Проверочная работа №6 по теме «Случайная величина. Вероятность»

Вариант 1

  1. Из корзины, в которой находятся 4 белых и 7 черных шара, вынимают один шар. Найти вероятность того, что шар окажется черным.

  2. Определить вероятность появления «герба» при бросании монеты.

  3. В корзине 20 шаров: 5 синих, 4 красных, остальные черные. Выбирают наудачу один шар. Определить, с какой вероятностью он будет цветным.

Вариант 2 .

1. В одной корзине находятся 4 белых и 8 черных шаров, в другой – 3 белых и 9 черных. Из каждой корзины вынули по шару. Найти вероятность того, что оба шара окажутся белыми.

2. Бросают две монеты. Определить, с какой вероятностью появится «герб» на обеих монетах.

3. Из корзины, в которой находятся 7 белых и 3 черных шара, вынимают один шар. Найти вероятность того, что шар окажется белым.


Время на выполнение: 30 мин.

Критерии оценивания

«отлично» - верно выполнено 3 задания;

«хорошо» - верно выполнено 2 задания;

«удовлетворительно» - верно выполнено 2 задания, но имеются недочеты;

«неудовлетворительно» - верно выполнено менее 2 заданий.



Проверочная работа № 7 по теме «Математическое ожидание и дисперсия случайной величины».

  1. В лотерее 100 билетов. Разыгрывается один выигрыш в 200 рублей и двадцать выигрышей по 50 рублей. Пусть Х – величина возможного выигрыша для человека, имеющего один билет. Составить закон распределения этой случайной величины Х.

  2. Случайная величина Х задана законом распределения:

1

4

6

0,1

0,6

0,3

Найти ее математическое ожидание.

  1. Согласно статистике, вероятность того, что двадцатипятилетний человек проживет еще год, равно 0,992. Компания предлагает застраховать жизнь на год на 1000 у.е. с уплатой 10 у.е. взноса. Определить, какую прибыль ожидает компания от страховки одного двадцатипятилетнего человека.

  2. Случайная величина Х задана законом распределения:

1

5

8

0,1

0,2

0,7

Найти дисперсию и среднее квадратичное отклонение этой случайной величины Х.

  1. Случайные величины X и Y заданы законом распределения. Найти математическое ожидание этих случайных величин и определить по таблицам, какая из данных величин более рассеяна. Подсчитать дисперсии D(X) и D(Y). Убедиться, что D(X)>D(Y).

X

2

20

28

50

hello_html_6a148f9f.gif

hello_html_6a148f9f.gif

hello_html_6a148f9f.gif

hello_html_6a148f9f.gif


Y

23

25

26

hello_html_6a148f9f.gif

hello_html_6a148f9f.gif

hello_html_m3907a0ac.gif


Время на выполнение: 40 мин.

Критерии оценивания

«отлично» - 85%-100% правильных ответов,

«хорошо»- 65%-85% правильных ответов,

«удовлетворительно»- 50%-65% правильных ответов,

«неудовлетворительно»- менее 50% правильных ответов

Проверочная работа № 8 по теме «Численное интегрирование и дифференцирование».

Вариант 1

1.Приближенное значение интеграла hello_html_m78c9ce6e.gif, вычисленное по формуле прямоугольников

hello_html_m1243973c.gif, где hello_html_48d66ead.gif, n=5, hello_html_m172bb1d7.gif, i=0,1,…,n-1, равно…


2. По таблице значений функции

x

0

1

2

y

4

6

9

Составлена таблица конечных разностей:

X

Y

y

2y

0


1


2

4


6


9


2


3



1

Тогда приближенное значение производной функции hello_html_m122817e8.gif в точке x =0,5 равно …

Вариант 2

1. Приближенное значение интеграла hello_html_13f0bf62.gif, вычисленное по формуле прямоугольников

hello_html_m1243973c.gif, где hello_html_48d66ead.gif, n=4, hello_html_m172bb1d7.gif, i=0,1,…,n-1, равно…

2. По таблице значений функции

x

1

2

3

y

0

3

7

Составлена таблица конечных разностей:

X

Y

y

2y

1


2


3

0


3


7


3


4



1

Тогда приближенное значение производной функции hello_html_m122817e8.gif в точке x= 1,5

Вариант 3

1. Приближенное значение интеграла hello_html_b4c452e.gif, вычисленное по формуле трапеции hello_html_e3abd87.gif равно


2. По таблице значений функции

x

8

9

10

y

1

4

9

Составлена таблица конечных разностей:

X

Y

y

2y

8


9


10

1


4


9


3


5



2

Тогда приближенное значение производной функции hello_html_m122817e8.gif в точке x= 8,5 ,равно …

Вариант 4

1. Приближенное значение интеграла hello_html_319f2668.gif, вычисленное по формуле трапеции hello_html_e3abd87.gifравно

2. По таблице значений функции

x

5

6

7

y

2

3

10

Составлена таблица конечных разностей:

X

Y

y

2y

5


6


7

2


3


10


1


7



6

Тогда приближенное значение производной функции hello_html_m122817e8.gif в точке x = 5,5 , равно …

Вариант 5

1.Приближенное значение интеграла hello_html_m2824aeb6.gif, вычисленное по формуле прямоугольников

hello_html_3d916d60.gif, где hello_html_48d66ead.gif, n=4, hello_html_m172bb1d7.gif, i=0,1,…,n-1, равно…


2. По таблице значений функции

x

3

4

5

y

2

6

7

Составлена таблица конечных разностей:

X

Y

y

2y

3


4


5

2


6


7


4


1



-3

Тогда приближенное значение производной функции hello_html_m122817e8.gif в точке x = 3,5 , равно …

Вариант 6

1.Приближенное значение интеграла hello_html_6145b3a1.gif, вычисленное по формуле прямоугольников

hello_html_3d916d60.gif, где hello_html_48d66ead.gif, n=4, hello_html_m172bb1d7.gif, i=0,1,…,n-1, равно…


2. По таблице значений функции

x

1

2

3

y

3

6

7

Составлена таблица конечных разностей:

X

Y

y

2y

1


2


3

3


6


7


3


1



-2

Тогда приближенное значение производной функции hello_html_m122817e8.gif в точке x = 1,5 , равно …

Время на выполнение: 30 мин.

Критерии оценивания

«отлично» - верно выполнено 2 задания,

«хорошо»- выполнено 2 задания с недочетами,

«удовлетворительно»- верно выполнено 1 задание,

«неудовлетворительно»- не выполнено ни одного задания.


Практические работы


ПРАКТИЧЕСКАЯ РАБОТА №1

по учебной дисциплине «Математика»

Тема: Вычисление пределов функций с использованием первого и второго замечательных пределов.

Цель: Научиться применять теоретические знания вычисления пределов и использовать формулы первого и второго замечательных пределов к решению упражнений.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, самостоятельное выполнение заданий – 60 минут.


Задания.

Найти пределы:

Вариант 1 Вариант 2 Вариант 3

1. limhello_html_733a9515.gif 1. limhello_html_44d4646d.gif 1. lim(1+hello_html_45793531.gif)2x

x→∞ x→0 x→∞


2. limhello_html_m24e1e972.gif 2. limhello_html_2ca16112.gif 2. lim(1+hello_html_m2f2956a3.gif)-3x

x→∞ x→0 x→∞


3. limhello_html_m524954cb.gif 3. limhello_html_m7086896d.gif 3. lim(1-hello_html_m49ec4a44.gif)-0,5x

x→∞ x→0 x→∞


4. limhello_html_5897b286.gif 4. limhello_html_m430fd07a.gif 4. lim(1+hello_html_m25ceab27.gif)2,5x

x→∞ x→0 x→∞


5. limhello_html_23e33277.gif 5. limhello_html_38ebb5ab.gif 5. lim(1-x)4/x

x→∞ x→0 x→0


6. limhello_html_m3325069a.gif 6. limhello_html_m2ae756fb.gif 6. lim(1+x)3/x

x→∞ x→0 x→0


7. limhello_html_12f123b6.gif 7. limhello_html_m1e2d1ee7.gif 7. limhello_html_6701110d.gif

x→-2 x→0 x→2


8. limhello_html_me75afe9.gif 8. limhello_html_38bd9d79.gif 8. lim x(hello_html_1da62b6.gif-x)

x→2 x→0 x→∞


9. limhello_html_m1d02b10a.gif 9. limhello_html_50f225e7.gif 9. limhello_html_5a60a5d1.gif

x→6 x→0 x→0


10. limhello_html_665c7ced.gif 10. limhello_html_m48d3957f.gif 10. limhello_html_14eefe37.gif

x→3 x→0 x→4


11. limhello_html_1dc61f80.gif 11. limhello_html_mb16b567.gif 11. limhello_html_30ede256.gif

x→1 x→0 x→0

12. limhello_html_m5814f4f6.gif 12. lim tgx 12. lim(hello_html_m34ce59.gif)3x

x→-5 x→0 x→∞


ПРАКТИЧЕСКАЯ РАБОТА №2

по учебной дисциплине «Математика»

Тема: Нахождение производных по алгоритму. Вычисление производных сложных функций.

Цель: Научиться вычислять производные по таблице производных и производные сложных функций.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, самостоятельное выполнение заданий – 60 минут.


Задания

Вариант №1

1. Найдите производную функций:

1) f(x) = ctg x +2x3 – 2x , 2) f(x) = x2sinx, 3) f(x) =hello_html_5c1ac0c0.gif,

4) f(x) = (3x2 – 2tgx)5, 5) f(x) = hello_html_m53d4ecad.gifhello_html_318becb5.gif- 3x + hello_html_m71b0be77.gif - 10.

6) f(x)=hello_html_m644a8902.gif 7) f(x)=3sin2x – 2cos3x


Дополнительное задание.

2. Точка движется по закону S = 3t3 – 12t +5. Найдите скорость движения при t = 2с.


3. Определите угловой коэффициент касательной, проведенной к кривой

у = 3cosx+sinx в точке х0 = п.



Вариант №2

1. Найдите производную функций:

1) f(x) =hello_html_38b6034.gif- x + hello_html_m57dba424.gif + 8hello_html_m247fcf1a.gif, 2) f(x) = (x2 – 2sinx)3, 3) f(x) =hello_html_m2dcbe3e1.gif,

4) f(x) = x 2 tgx, 5) f(x) = 5cos x +x5 – ex .

6) f(x)=x3+cos x. 7) f(x)=3 4x +x2

Дополнительное задание.


2.Точка движется по закону S =2t3 + t -5. Найдите скорость движения при t = 3с.


3.Определите угловой коэффициент касательной, проведенной к кривой у = ex+ lnx в точке

х0 = 1.



Вариант №3

1. Найдите производную функций:

1) f(x) =hello_html_1d92546e.gif, 2) f(x) = (x – 5cosx)3,3) f(x) =hello_html_m1335daca.gif- 2x9 + hello_html_a57f080.gif - 2,

4) f(x) = x 7 ctgx, 5) f(x) = sin x - 2x7 – 6x .

6) f(x)=2x – sin x. 7) f(x)= 4e 5x – 7x3

Дополнительное задание.

2. Точка движется по закону S = 5t3 – 8t +3. Найдите скорость движения при t = 1с.

3. Определите угловой коэффициент касательной, проведенной к кривой

у = 3tgx- cosx в точке х0 = п.



Вариант №4

1. Найдите производную функций:

1) f(x) = cos x +6x4 – 4x , 2) f(x) = x 3 ctgx, 3) f(x) =hello_html_b8d8b42.gif,

4) f(x) = (2x3 – 5lnx)3, 5) f(x) = hello_html_m53d4ecad.gifhello_html_m3d35bb1c.gif- 3x + hello_html_m57dba424.gif +1.

6) f(x)=2x + 1 7) f(x)=sin(x+x3) - hello_html_37b8fa1f.gif.

Дополнительное задание.

2. Точка движется по закону S = 2t3 – 2t +5. Найдите скорость движения при t = 3с.


3. Определите угловой коэффициент касательной, проведенной к кривой

у = 3log 2 x-5 в точке х0 = 3.


Вариант №5

1. Найдите производную функций:

1) f(x) =hello_html_m1286d8c8.gif- x7 + hello_html_m57dba424.gif - hello_html_m247fcf1a.gif, 2) f(x) = (5x – 4cosx)5, 3) f(x) =hello_html_1bacd281.gif,

4) f(x) = x 2 tgx, 5) f(x) = 5sin x +x6 – 8ex .

6) f(x)=cos x – x 7) f(x)= -ex + 3x3x

Дополнительное задание.

2. Точка движется по закону S = t3 – 4t . Найдите скорость движения при t = 2с.


3. Определите угловой коэффициент касательной, проведенной к кривой

у = 3(x3 +5) в точке х0 = 2.


Вариант №6

1. Найдите производную функций:

1) f(x) =hello_html_30a00ecb.gif, 2) f(x) = (x2ex)5, 3) f(x) =hello_html_1d371cf1.gif- 5x4 + hello_html_m44e93838.gif - 3,

4) f(x) = x 5 lnx, 5) f(x) = hello_html_m247fcf1a.gif - x2 – 2x

6 f(x)=x5 – sin x 7) f(x)=x4 + cos(x+3x2)


Дополнительное задание.

2. Точка движется по закону S = t3 + 12t -5. Найдите скорость движения при t = 2с.


3. Определите угловой коэффициент касательной, проведенной к кривой

у = 3/x в точке х0 = 3.


ПРАКТИЧЕСКАЯ РАБОТА №3

по учебной дисциплине «Математика»

Тема: Интегрирование простейших функций. Вычисление простейших определенных интегралов.

Цель: Научиться вычислять табличные интегралы и по формуле Ньютона-Лейбница вычислять определенные интегралы.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, самостоятельное выполнение заданий – 60 минут.



Задания.


Вариант 1 Вариант 2

1).hello_html_m4b97f695.gif

1).hello_html_63c4bfec.gif

2).hello_html_m7a86e5d4.gif

2). hello_html_m7d92cf5f.gif

3).hello_html_m6c2a440c.gif

3) hello_html_2980f1f8.gif


4).hello_html_m3887ab26.gif

4).hello_html_m311c8c1f.gifhello_html_m53d4ecad.gifhello_html_m53d4ecad.gif

5).hello_html_5a2d6707.gifhello_html_m53d4ecad.gif

5).hello_html_m39a57dce.gif

6).hello_html_ef63dde.gif

6)hello_html_65ec5f8f.gif

7).hello_html_2ef35a62.gif

7).hello_html_e79d9e2.gif

8).hello_html_5bf0af7f.gif

8).hello_html_c995197.gif






ПРАКТИЧЕСКАЯ РАБОТА №4

по учебной дисциплине «Математика»

Тема: Решение прикладных задач.

Цель: Научиться применять приложения определенного интеграла к вычислению площадей плоских фигур и объемов тел вращения.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, самостоятельное выполнение заданий – 60 минут.

Задания .

Вариант 1


1. Вычислить определенный интеграл: hello_html_md523d1.gif

2. Вычислить определенный интеграл: hello_html_m72a59655.gif

3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной

линиями: y = - x2 + 4, y = 0, x = -2, x = 2 .

4. Найти объем тела, полученного при вращении вокруг оси абсцисс

криволинейной трапеции, ограниченной линиями:

hello_html_51304e1b.gif, y = 0, x = 1, x = 4 .

5. Скорость движения точки изменяется по закону hello_html_2363b130.gif (м/с). Найти


Вариант 2

1. Вычислить определенный интеграл: hello_html_m3d2a189b.gif

2. Вычислить определенный интеграл методом подстановки:

hello_html_49080156.gif

3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной

линиями: y= -x2 + 1, y=0, x=1

4. Найти объем тела, полученного при вращении вокруг оси абсцисс

криволинейной трапеции, ограниченной линиями:

hello_html_51304e1b.gif, y = 0, x = 0, x = 1.

5. Скорость движения точки изменяется по закону hello_html_m742b8e8b.gif(м/с). Найти путь S,

пройденный точкой за четвертую секунду.


ПРАКТИЧЕСКАЯ РАБОТА №5

по учебной дисциплине «Математика»

Тема: Решение дифференциальных уравнений с разделяющимися переменными.

Цель: Научиться решать дифференциальные уравнения с разделяющимися переменными.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, самостоятельное выполнение заданий – 60 минут.


Задания .


Индивидуальное задание по порядковому номеру в журнале, т.е в задании вместо N студент подставляет свой порядковый номер.

Решить дифференциальные уравнения и найти частные решения.

hello_html_m926199b.gif




ПРАКТИЧЕСКАЯ РАБОТА №6

по учебной дисциплине «Математика»

Тема: Решение однородных дифференциальных уравнений первого порядка.

Цель: Научиться решать дифференциальные уравнения первого порядка различными методами.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, самостоятельное выполнение заданий – 60 минут.


Задания .


Вариант 1

Являются ли данные функции решениями данных дифференциальных уравнений

1. hello_html_6aab25d7.gif, hello_html_74c07979.gif

2. hello_html_5979d212.gif, hello_html_m75a222fa.gif



3. Решить задачу Коши:hello_html_4083ea0a.gif, y(1) = 8 .

Решить следующие дифференциальные уравнения первого и второго порядка

4. hello_html_m513b8684.gif

5. y’ = -6y

6. hello_html_78511cad.gif

7. hello_html_78511cad.gif


Вариант 2

Являются ли данные функции решениями данных дифференциальных уравнений

1. hello_html_70d4f8e7.gif, hello_html_3809dd96.gif

2. hello_html_21a4c27d.gif, hello_html_m514a28db.gif

3. Решить задачу Коши:hello_html_m8bdc9b6.gif, y(2) = 19 .


Решить следующие дифференциальные уравнения первого и второго порядка

4. hello_html_84e458a.gif

5. y’ = -8y

6. hello_html_m7182be97.gif

7. hello_html_m107195cd.gif


Дополнительное задание.

Индивидуальное задание по порядковому номеру в журнале, т.е. в задании вместо N студент подставляет свой порядковый номер.

Решить дифференциальные уравнения .

hello_html_m39ddeaa3.gif

ПРАКТИЧЕСКАЯ РАБОТА №7

по учебной дисциплине «Математика»

Тема: Решение однородных дифференциальных уравнений второго порядка.

Цель: Научиться решать дифференциальные уравнения второго порядка различными методами.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, , самостоятельное выполнение заданий -60 минут .


Задания.

Вариант 1

Являются ли данные функции решениями данных дифференциальных уравнений

1. hello_html_m32437d6d.gif , hello_html_83e1250.gif

2. hello_html_5e5da82a.gif , hello_html_m2e945910.gif

Решить следующие дифференциальные уравнения первого и второго порядка

3. y’ – 3y + 5 = 0

4. y’’ – 7y’ + 10y = 0

5. y’’ + 4y’ + 4y = 0


Вариант 2

Являются ли данные функции решениями данных дифференциальных уравнений

1. hello_html_m6836d204.gif , hello_html_aa8a5db.gif

2. hello_html_1d5e2dcc.gif , hello_html_57648ab.gif

3. y’ + 8y - 3 = 0

4. y’’ + 8y’ + 16y = 0

5. y’’ + y’ + 12y = 0


ПРАКТИЧЕСКАЯ РАБОТА №8

по учебной дисциплине «Математика»

Тема: Решение простейших задач на определение вероятности.

Цель: Научиться решать простейшие задачи на определение вероятности, математического ожидания.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, , самостоятельное выполнение заданий – 60 минут.


Задания.

Вариант 1


1. Вычислить:


а) hello_html_m135c0c39.gif

б) hello_html_m6b2fd88.gif


2.Из урны, в которой находятся 5 белых и 4 черных шара, вынимают один шар. Найти вероятность того, что шар черный.


3. В ячейке содержится 10 одинаковых деталей помеченных номерами 1,2,3,…,10. наудачу извлечены 6-ть деталей. Найти вероятность того, что среди извлеченных деталей останется деталь № 1


Вариант 2


1. Вычислить:


а) hello_html_15e354b1.gif

б) hello_html_6c4d6c62.gif


2. В лотерее из 10 000 билетов имеются 2 000 выигрышных. Вынимают наугад один билет. Чему равна вероятность тому, что билет выигрышный.


3. В ящике содержится 10 одинаковых деталей помеченных номерами 1,2,3,…10. научу извлечены 6-сть деталей. Найти вероятность того, что среди извлеченных деталей останется деталь № 1 и №2.


Вариант 3


1. Выписать значения выражений:


А) 5!+6!;

Б) hello_html_56e61b31.gif

2. В ящике 12 белых и 17 черных шаров. Извлекают на удачу один шар. Найти вероятность того, что вынутый шар окажется белым.


3.В коробке 5 одинаковых деталей, 3-и из них окрашены, на удачу извлекли 2-а изделия. Найти вероятность того, что среди извлеченных изделий окажется одно окрашенное изделие.


Вариант 4


1. Вычислите:


А)hello_html_72404458.gif

Б)hello_html_m61c3a8bd.gif


2. Пусть имеется 80 деталей, среди которых 60 исправленных, а 20 бракованных. Найти вероятность того, что взята наугад деталь окажется исправной.


3. В коробке 5 одинаковых деталей, 3-и из них окрашены, на удачу извлекли 2-а изделия. Найти вероятность того, что среди извлеченных изделий окажется одно окрашенное изделия.


Вариант 5


1. Вычислить:


А) hello_html_m3f9ff79e.gif

Б)hello_html_m6240d419.gif

2. Телефонный номер состоит из шести цифр. Найдите вероятность, что все цифры различные.


3. В группе 14 студентов, из которых 10 отличников. По списку наудачу отбирают 8 студентов. Найти вероятность того, что среди отобранных студентов окажутся 5-ть отличников.


Вариант 6


1. Вычислить:


А)hello_html_1a80322.gif

Б)hello_html_6c802f69.gif

2. Среди 180 деталей, изготовленных на станке, оказалось 10 деталей, не отвечающих стандарту. Найти вероятность выбора детали, не отвечающих стандарту.


3. В цехе работают 6-ть мужчин и 4 женщины. По табельным номерам на удачу отобрали 7 человек. Найти вероятность того, что среди отобранных лиц окажутся 3-и женщины.



ПРАКТИЧЕСКАЯ РАБОТА №9

по учебной дисциплине «Математика»

Тема: Вычисление интегралов по формулам прямоугольников, трапеций, и формуле Симпсона. Оценка погрешности.

Цель: изучение методов численного интегрирования функций, практическое интегрирование функций и сравнение различных методов.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, , самостоятельное выполнение заданий – 60 минут.

Задания.

Вариант 1


Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции


hello_html_1ffc03af.gifгде hello_html_m11fac74c.gif , n=4, x=a+ih , i= 0,1,…,n-1, равно


Вариант 2


Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции


hello_html_m492fb48a.gifгде hello_html_m11fac74c.gif , n=5 x=a+ih , i= 0,1,…,n-1, равно


Вариант 3


Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции


hello_html_m5a4e6edc.gifгде hello_html_m11fac74c.gif , n=5 x=a+ih , i= 0,1,…,n-1, равно


Вариант 4


Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции


hello_html_2a2f8b39.gifгде hello_html_m11fac74c.gif , n=4, x=a+ih , i= 0,1,…,n-1, равно


Вариант 5


Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции


hello_html_m11336f39.gifгде hello_html_m11fac74c.gif , n=4, x=a+ih , i= 0,1,…,n-1, равно


Вариант 6


Найти приближенное значение интеграла вычисленное по формуле прямоугольников и трапеции


hello_html_m40502d48.gifгде hello_html_m11fac74c.gif , n=5 x=a+ih , i= 0,1,…,n-1, равно





Практическая работа № 10

Тема: « Нахождение производных функции в точке х по заданной таблично функции y = f (x) методом численного дифференцирования

Цель: Научиться находить производные функций в точке х по заданной таблично функции y = f (x) методом численного дифференцирования.

Время выполнения: Повторение теоретического материала – 12 минут, решение по образцу – 18 минут, , самостоятельное выполнение заданий – 60 минут.

Задания.


Вариант 1

По таблице значений функции


Х

0

1

2

у

4

6

9

Составлена таблица конечных разностей:


Х

У

у

hello_html_m4cc0c031.gif

0


1


2

4


6


9


2


3



1


Тогда приближенное значение производной функции hello_html_m79fe7a99.gif(∆у0 + hello_html_m479eda04.gifhello_html_4681421f.gif где hello_html_5444a79d.gif в точке x=0.5, равно…


Вариант 2

По таблице значений функции


Х

3

4

5

у

0

5

9

Составлена таблица конечных разностей:


Х

У

у

hello_html_m4cc0c031.gif

3


2


3

0


3


7


3


4



1


Тогда приближенное значение производной функции hello_html_m79fe7a99.gif(∆у0 + hello_html_m479eda04.gifhello_html_4681421f.gif где hello_html_5444a79d.gif в точке x=1,5, равно…


Вариант 3

По таблице значений функции


Х

4

5

6

у

2

3

9






Составлена таблица конечных разностей:


Х

У

у

hello_html_m4cc0c031.gif

4


5


6

2


3


9


1


6



5


Тогда приближенное значение производной функции hello_html_m79fe7a99.gif(∆у0 + hello_html_m479eda04.gifhello_html_4681421f.gif где hello_html_5444a79d.gif в точке x=4,5 равно…


Вариант 4

По таблице значений функции


Х

8

9

10

у

1

4

9

Составлена таблица конечных разностей:


Х

У

у

hello_html_m4cc0c031.gif

8


9


10

1


4


9


3


5



2


Тогда приближенное значение производной функции hello_html_m79fe7a99.gif(∆у0 + hello_html_m479eda04.gifhello_html_4681421f.gif где hello_html_5444a79d.gif в точке x=8,5 равно…


Вариант 5

По таблице значений функции


Х

5

6

7

у

2

3

10










Составлена таблица конечных разностей:


Х

У

у

hello_html_m4cc0c031.gif

5


6


7

2


3


10


1


7



6


Тогда приближенное значение производной функции hello_html_m79fe7a99.gif(∆у0 + hello_html_m479eda04.gifhello_html_4681421f.gif где hello_html_5444a79d.gif в точке x=5,5 равно…


Вариант 6

По таблице значений функции


Х

3

4

5

у

2

6

7

Составлена таблица конечных разностей:


Х

У

у

hello_html_m4cc0c031.gif

3


4


5

2


6


7


4


1



-3


Тогда приближенное значение производной функции hello_html_m79fe7a99.gif(∆у0 + hello_html_m479eda04.gifhello_html_4681421f.gif где hello_html_5444a79d.gif в точке x=3,5 равно…




Критерии оценки выполнения практических работ

«5»-Работа должна быть выполнена правильно и в полном объёме , 90-100% выполнения.

«4»-Работа выполнена правильно, но имеются недочеты, процент выполнения 75-89%.

«3»- Работа выполнена правильно, но имеются ошибки, процент выполнения 50-74%.


Порядок оформления:

Работа оформляется в отдельной тетради в соответствии с требованиями, предъявляемыми к практическим работам.

Работы должны быть написаны аккуратно (разборчивый почерк, оставление полей, записаны полностью условия заданий и т.п.).

Приступать к выполнению практической работы следует только после проработки теоретического материала на занятиях, по материалам конспектов и учебника «Математика» для СПО, под редакцией А.А. Дадаян.









4. Экзаменационные вопросы


  1. Определение предела функции в точке и в бесконечности.

  2. Основные теоремы о пределах.

  3. Первый и второй замечательные пределы.

  4. Непрерывность функции в точке и на промежутке. Точки разрыва.

  5. Производная функции. Дифференциал функции. Правила дифференцирования.

  6. Таблица производных. Производная сложной функции.

  7. Механический и геометрический смысл производной.

  8. Первообразная. Неопределенный интеграл и его свойства.

  9. Таблица неопределенных интегралов.

  10. Методы интегрирования: метод непосредственного интегрирования, метод замены переменной, метод интегрирования по частям.

  11. Определенный интеграл и его свойства.

  12. Вычисление определенного интеграла по формуле Ньютона-Лейбница.

  13. Вычисление площадей плоских фигур с помощью интегралов.

  14. Вычисление объемов тел вращения с помощью интегралов.

  15. Дифференциальные уравнения с разделяющимися переменными.

  16. Дифференциальные уравнения первого порядка и методы их решения.

  17. Дифференциальные уравнения второго порядка и методы их решения.

  18. Элементы и множества. Задание множеств. Операции над множествами.

  19. Отношения. Свойства отношений.

  20. Понятие события. Достоверные, невозможные, совместные, несовместные, противоположные события. Классическое определение вероятности.

  21. Теорема сложения вероятностей. Теорема умножения вероятностей.

  22. Случайная величина. Дискретная и непрерывная случайные величины. Закон распределения случайной величины.

  23. Математическое ожидание дискретной случайной величины. Отклонение случайной величины.

  24. Дисперсия случайной величины. Среднее квадратичное отклонение случайной величины.

  25. Приближенные методы вычисления определенных интегралов.

  26. Формулы прямоугольников.

  27. Формулы трапеций.

  28. Формула Симпсона и абсолютная погрешность при численном интегрировании.

  29. Численное дифференцирование. Формулы приближенного дифференцирования.

  30. Погрешность в определении производной.








5. Экзаменационные задания


  1. Вычислить предел hello_html_m6cd704.gif.

  2. Вычислить пределы:

а) hello_html_7df5c3bf.gif; б) hello_html_4563e660.gif; в) hello_html_m3cdf372.gif.

  1. Вычислить предел hello_html_m1e702678.gif.

  2. Вычислить предел hello_html_m3150226d.gif.

  3. Вычислить предел hello_html_76c62009.gif.

  4. Вычислить предел hello_html_5066dc5a.gif.

  5. Исследовать функцию hello_html_m7af0eb11.gif на непрерывность в точке hello_html_m469bbebc.gif.

  6. Исследовать функцию hello_html_4a6b32fc.gif и построить ее график.

  7. Вычислить значение производной следующих функций в точке hello_html_m66ccad2a.gif:

а) hello_html_m674f90c6.gif; б) hello_html_62530c22.gif.

  1. Найти производную функции hello_html_m325a0395.gif.

  2. Найти производную функции hello_html_5e683980.gif.

  3. Найти производную функции hello_html_1b11e062.gif.

  4. Найти производную функции hello_html_bceac6c.gif.

  5. Найти неопределенный интеграл hello_html_3a780ebf.gif.

  6. Найти неопределенный интеграл методом замены переменной hello_html_m511b7851.gif.

  7. Найти неопределенный интеграл методом замены переменной hello_html_m34855db6.gif.

  8. Найти неопределенный интеграл методом замены переменной hello_html_m61e225fd.gif.

  9. Найти неопределенный интеграл методом замены переменной hello_html_1d105ce3.gif.

  10. Вычислить определенный интеграл hello_html_1a983da5.gif.

  11. Вычислить определенный интеграл hello_html_m5ed743ea.gif.

  12. Вычислить определенный интеграл hello_html_mf20f791.gif.

  13. Скорость движения точки изменяется по закону hello_html_m52e49bf5.gif (м/с). Найти путь s, пройденный точкой за 4 с от начала движения.

  14. Вычислить объем тела, полученного от вращения фигуры, ограниченной линиями hello_html_m546bf5e.gif, hello_html_m7d90b1e6.gif, hello_html_4f255b8b.gif, hello_html_8cf0565.gif, вокруг оси Ox.

  15. Вычислить площадь фигуры, ограниченной линиями hello_html_m546bf5e.gif, hello_html_m7d90b1e6.gif, hello_html_4f255b8b.gif, hello_html_m2d71b7ff.gif.

  16. Решить дифференциальное уравнение hello_html_29a71ce8.gif.

  17. Решить уравнение hello_html_mc5373e8.gif

  18. Вычислить hello_html_m3e4577ae.gif

  19. Вычислить hello_html_m36dc91f0.gif

  20. Вычислить hello_html_m6c3f17a4.gif

  21. Тело движется прямолинейно со скоростью hello_html_m3f9d7201.gifм/с. Вычислить путь, пройденный телом за 10 сек.

  22. Решить уравнение hello_html_453113f5.gif

  23. Решить дифференциальное уравнение hello_html_m61ee2726.gif.

  24. Вычислить площадь фигуры, ограниченной линиями

y=2x2; x=1 и x=2

  1. Скорость движения точки изменяется по закону hello_html_m53d4ecad.gifhello_html_m1cde7232.gifhello_html_m53d4ecad.gifм/с. Найдите путь, пройденный точкой за 10 с от начала движения

  2. В одной корзине находятся 5 белых и 10 черных шаров, в другой – 4 белых и 11 черных. Из каждой корзины вынули по шару. Найти вероятность того, что оба шара окажутся черными.

  3. В лотерее 1000 билетов. Разыгрывается один выигрыш в 200 рублей и десять выигрышей по 100 рублей. Пусть Х – величина возможного выигрыша для человека, имеющего один билет. Составить закон распределения этой случайной величины Х.

  4. Случайная величина Х задана законом распределения:

4

6

7

0,4

0,5

0,1

Найти математическое ожидание, дисперсию, среднее квадратичное отклонение этой случайной величины Х.





6. Шкала оценки образовательных достижений


Процент результативности (правильных ответов)

Оценка уровня подготовки

балл (отметка)

вербальный аналог

90 ÷ 100

5

отлично

80 ÷ 89

4

хорошо

70 ÷ 79

3

удовлетворительно

менее 70

2

неудовлетворительно


7. Экзаменационные билеты


Департамент кадровой политики Белгородской области

Областное государственное бюджетное образовательное учреждение

среднего профессионального образования

«Шебекинский техникум строительства,

промышленности и транспорта»


УТВЕРЖДАЮ

Заместитель директора

по учебной работе

__________Л.В.Срывкина

«___» _________ 2012 г.

Дисциплина математика

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1



1. Определение предела функции в точке и в бесконечности.

2. Вычислить определенный интеграл hello_html_mf20f791.gif.

3. Случайная величина Х задана законом распределения:

4

6

7

0,4

0,5

0,1

Найти математическое ожидание, дисперсию, среднее квадратичное отклонение этой случайной величины Х.





Составитель _______________ В. Ф. Войтенко

(подпись)

Председатель цикловой комиссии _______________ Н.Ф.Зайцев

«____»__________________2012 г. (подпись)

-----------------------------------------------------------------------------------------------------------

В комплекте - 30 билетов.

К комплекту экзаменационных билетов прилагаются разработанные преподавателем и утвержденные на заседании цикловой комиссии оценки по дисциплине.

Критерии оценки:

  • оценка «отлично» выставляется студенту, если отражены в ответе все вопросы в полном объёме и решена задача;

  • оценка «хорошо», если отражены в ответе все вопросы, имеются неточности и решена задача;

  • оценка «удовлетворительно», если отражён в ответе только один вопрос и решена задача;

  • оценка «неудовлетворительно» не в полном объёме отражены ответы на вопросы и не решена задача.


8. Критерии оценки уровня и качества подготовки студентов

"Отлично" - если студент глубоко и прочно усвоил весь программный материал в рамках указанных общих и профессиональных компетенций, знаний и умений. Исчерпывающе, последовательно, грамотно и логически стройно его излагает, тесно увязывает с условиями современного производства, не затрудняется с ответом при видоизменении задания, свободно справляется с задачами и практическими заданиями, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок.

  • "Хорошо" - если твердо студент знает программный материал, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении практических заданий.

  • "Удовлетворительно" - если студент усвоил только основной материал, но не знает отдельных деталей, допускает неточности, недостаточно правильные формулировки, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении практических заданий.

  • "Неудовлетворительно" - если студент не знает значительной части программного материала, допускает существенные ошибки, с большими затруднениями выполняет практические задания, задачи.



Список используемой литературы:

  1. Гмурман, В.Е. Руководство по решению задач по теории вероятностей и математической статистики. - М.: Высшее образование, 2009.

  2. Дадаян, А.А. Математика. - М.: ФОРУМ: ИНФРА, 2007.

  3. Дадаян, А.А. Сборник задач по математике. - М.: ФОРУМ: ИНФРА, 2007.


Интернет ресурсы:

  1. http://festival.1september.ru/

  2. http://www.fepo.ru

  3. www.mathematics.ru



Приложение А



Оформление вопросов для собеседования


Департамент кадровой политики Белгородской области

Областное государственное бюджетное образовательное учреждение

среднего профессионального образования


«Шебекинский техникум строительства,

промышленности и транспорта»



Вопросы для собеседования


по дисциплине _математика__________

(наименование дисциплины)



Раздел 1 Математический анализ

1 . Дать определение производной.

3.Что такое дифференцирование?

4. В чем заключается геометрический смысл производной?

5. В чем заключается физический смысл производной?

6.Чему равна производная постоянной величины?

7. Чему равны производные: суммы, произведения, частного.

8. Чему равны производные элементарных функций.

9.Дать определение первообразной.

10. Дать определение неопределенного интеграла.

11. Что такое интегрирование функции?

12. Рассказать правила интегрирования.

13.Перечислить основные свойства неопределенного интеграла.

14.Перечислить методы интегрирования.

15.Дать определение определенного интеграла.

16 Записать формулу Ньютона-Лейбница.

17. Сформулировать основные свойства определенного интеграла.

18. Дать определение дифференциального уравнения.

19. Дать определение дифференциального уравнения первого порядка.

20. Дать определение дифференциального уравнения с разделяющимися переменными.

21. Дать определение дифференциального уравнения второго порядка.


Раздел 2. Основы дискретной математики

1 .Дать понятие множества и его элемента.

2. Какие множества называются упорядоченными?

3. Перечислить способы задания множеств.

4. Перечислить основные операции над множествами.

5. Дать определение отношения.

6. Перечислить свойства отношений.

7. Дать определение графа.

8. Элементы графов.

9. Виды графов и операции над ними.


Раздел 3. Основы теории вероятностей и математической статистики.

1. Какие события называются совместными и несовместными?

2. Какие события называются противоположными?

3. дать классическое определение вероятности.

4. Что называется дискретной случайной величиной?

5. Что такое закон распределения дискретной случайной величины?



Критерии оценки:


  • оценка «отлично» выставляется студенту, если верно отвечает на 90-100% вопросов;

  • оценка «хорошо» выставляется студенту, если верно отвечает на 75-89% вопросов;

  • оценка «удовлетворительно» выставляется студенту, если верно отвечает на 50-74% вопросов;

  • оценка «неудовлетворительно» выставляется студенту, если верно отвечает на менее 50% вопросов;



Составитель ________________________ В.Ф. Войтенко

(подпись)

«____»__________________20 г.





Приложение Б



Оформление комплекта заданий для контрольной работы


Департамент кадровой политики Белгородской области

Областное государственное бюджетное образовательное учреждение

среднего профессионального образования


«Шебекинский техникум строительства,

промышленности и транспорта»


Комплект заданий для контрольной работы


по дисциплине _математика___________________

(наименование дисциплины)


Тема «Итоговая контрольная работа


Вариант 1

Задание 1. Найти предел :а)hello_html_6d2a25ab.gif б) hello_html_m502cf026.gif в) hello_html_m711d111f.gif

Задание 2. Найти наибольшее и наименьшее значение функции hello_html_480a06d9.gif на числовом отрезке [1,3]

Задание 3. Найти интеграл hello_html_m697aa230.gif

Задание 4. Найти площадь фигуры, ограниченной линиями hello_html_546bd494.gif. Выполнить чертеж.

Задание 5. Решить дифференциальное уравнение hello_html_25c865ec.gif и найти его частное решение, удовлетворяющее условиям: при х=1 y=-4.

Задание 6. В ящике 24 детали. Из них 4 бракованных. Какова вероятность того, что наугад взятая деталь окажется стандартной?

Вариант 2

Задание 1. Найти предел: а) hello_html_4e899575.gif б) hello_html_m66d7c96c.gif в) hello_html_4a2b0239.gif

Задание 2. Найти наименьшее и наибольшее значение функцииhello_html_262c1180.gif на числовом отрезке [2,4].

Задание 3. Найти интеграл hello_html_m58fff86d.gif

Задание 4. Найти площадь фигуры, ограниченной линиями hello_html_m2aa3b15d.gif. Выполнить чертеж.

Задание 5. Решить дифференциальное уравнение hello_html_m24458098.gif и найти его частное решение, удовлетворяющее условиям: при х=1 y=2.

Задание 6. В магазине 30 пар обуви данного размера. Из них 3 пары со скрытыми дефектами. Какова вероятность того, что покупатель купит 1 пару обуви без дефектов?



Вариант 3

Задание 1. Найти предел: а) hello_html_m58aec956.gif б) hello_html_78dab2c5.gif в) hello_html_m1373c078.gif

Задание 2. Найти наибольшее и наименьшее значение функции hello_html_m7b187de0.gif на числовом отрезке [-1,1].

Задание 3. Найти интеграл hello_html_m2f31e697.gif

Задание 4. Найти площадь фигуры , ограниченной линиями hello_html_m396c06ba.gif. Выполните чертеж.

Задание 5. Решить дифференциальное уравнение hello_html_m23e96c0c.gif и найти его частное решение, удовлетворяющее условиям : при х=0 y=0.

Задание 6. В группе 20 студентов. Из них 3 отличника. Какова вероятность того, что среди отправленных на олимпиаду студентов есть отличник?


Вариант 4

Задание 1. Найти предел : а) hello_html_4c55cce1.gif б) hello_html_48099075.gif в) hello_html_68f10faf.gif

Задание 2. Найти наибольшее и наименьшее значение функции hello_html_3fb2e54e.gif на числовом отрезке [2,4].

Задание 3. Найти интеграл hello_html_m29472527.gif

Задание 4. Найти площадь фигуры, ограниченной линиями hello_html_m4a4d3405.gif. Выполните чертеж.

Задание 5. Решить дифференциальное уравнение hello_html_m59a8694d.gif и найти его частное решение, удовлетворяющее условиям : при х=0 y=0.

Задание 6. в партии 20 лампочек из них 4 бракованных. Какова вероятность того, что среди взятых наугад лампочек одна окажется набракованной?


Вариант 5


Задание 1. Найти предел: а) hello_html_m4e746570.gif б) hello_html_3d4ce1f1.gif в) hello_html_m214eadb5.gif

Задание 2. Найти наибольшее и наименьшее значение функции hello_html_32d7ad9b.gif на числовом отрезке [2,4].

Задание 3. Найти интеграл hello_html_m2f1cc2ab.gif

Задание 4. Найти площадь фигуры, ограниченной линиями hello_html_m5e573c87.gif. Выполнить чертеж.

Задание 5. решить дифференциальное уравнение hello_html_53b3d34.gif и найти его частное решение, удовлетворяющее условиям: при х=0 y=-2.

Задание 6. В урне 10 красных, 8 синих и 6 зеленых шаров. Какова вероятность того, что взятый наугад шар окажется синим?



Вариант 6

Задание 1. Найти предел : а) hello_html_662bc4f8.gif б) hello_html_m6965c3a6.gif в) hello_html_55491707.gif

Задание 2. Найти наибольшее и наименьшее значение функции hello_html_78b37565.gif на числовом отрезке [0,2].

Задание 3. Найти интеграл hello_html_m16cd39e2.gif

Задание 4. Найти площадь фигуры, ограниченной линиями hello_html_m46466a2e.gif. Выполнить чертеж.

Задание 5 Решить дифференциальное уравнение hello_html_m767e2322.gif и найти его частное решение, удовлетворяющее условиям: при х=2 y=1.

Задание 6. В партии 40 деталей. Из них 8 бракованных. Какова вероятность того, что взятая наугад деталь окажется стандартной ?



Критерии оценки:


  • оценка «отлично» выставляется студенту, если верно выполнено 5-6 заданий;

  • оценка «хорошо» выставляется студенту, если верно выполнено 4-5 заданий;

  • оценка «удовлетворительно» выставляется студенту, если верно выполнено 3-4 задания;

  • оценка «неудовлетворительно» выставляется студенту, если верно выполнено менее 3х заданий.


Составитель ________________________ В.Ф. Войтенко

(подпись)

«____»__________________2012 г.










57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 10.11.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров204
Номер материала ДВ-143887
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх