498640
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаПрезентацииМетодическая разработка по геометрии 11кл.

Методическая разработка по геометрии 11кл.

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Обратная функция — функция, обращающая зависимость, выражаемую данной функци...
Если функция у = f ( х ) принимает каждое своё значение у только при одном з...
Пусть у = f(x) – обратимая функция. Тогда каждому у из множества значений фу...
Не для всякой функции можно указать обратную. Условие обратимости функции -...
y=11-5x x= (11-y)/5 y = (11-x)/5 Графики взаимно-обратных функций симметричны...
Дана функция: Найдем обратную ей функцию. Выразим x Поменяем x и y местами.
х х у у 0 0 2 2 D(у)=(-∞;2)∪(2;+∞) Е(у)=(-∞;0)∪(0;+∞) 2. Е(у)=(-∞;2)∪(2;+∞) D...
Свойства обратных функций 1. Область определения обратной функции f(-х) совпа...

Описание презентации по отдельным слайдам:

1 слайд
Описание слайда:

2 слайд Обратная функция — функция, обращающая зависимость, выражаемую данной функци
Описание слайда:

Обратная функция — функция, обращающая зависимость, выражаемую данной функцией.

3 слайд Если функция у = f ( х ) принимает каждое своё значение у только при одном з
Описание слайда:

Если функция у = f ( х ) принимает каждое своё значение у только при одном значении х, то эту функцию называют обратимой.

4 слайд Пусть у = f(x) – обратимая функция. Тогда каждому у из множества значений фу
Описание слайда:

Пусть у = f(x) – обратимая функция. Тогда каждому у из множества значений функции соответствует одно определённое число х из области её определения, такое, что f(x) = y. Это соответствие определяет функцию х от у, которую обозначим х = g(y). Поменяем местами х и у: у = g(x). Функцию у = g(x) называют обратной к функции у = f(x)

5 слайд Не для всякой функции можно указать обратную. Условие обратимости функции -
Описание слайда:

Не для всякой функции можно указать обратную. Условие обратимости функции - ее монотонность, то есть функция должна только возрастать или только убывать. Если функция не монотонна на всей области определения, но монотонная на некотором промежутке, тогда можно задать обратную ей функцию только на этом промежутке.

6 слайд
Описание слайда:

7 слайд y=11-5x x= (11-y)/5 y = (11-x)/5 Графики взаимно-обратных функций симметричны
Описание слайда:

y=11-5x x= (11-y)/5 y = (11-x)/5 Графики взаимно-обратных функций симметричны относительно прямой y=x.

8 слайд Дана функция: Найдем обратную ей функцию. Выразим x Поменяем x и y местами.
Описание слайда:

Дана функция: Найдем обратную ей функцию. Выразим x Поменяем x и y местами.

9 слайд х х у у 0 0 2 2 D(у)=(-∞;2)∪(2;+∞) Е(у)=(-∞;0)∪(0;+∞) 2. Е(у)=(-∞;2)∪(2;+∞) D
Описание слайда:

х х у у 0 0 2 2 D(у)=(-∞;2)∪(2;+∞) Е(у)=(-∞;0)∪(0;+∞) 2. Е(у)=(-∞;2)∪(2;+∞) D(у)=(-∞;0)∪(0;+∞)

10 слайд Свойства обратных функций 1. Область определения обратной функции f(-х) совпа
Описание слайда:

Свойства обратных функций 1. Область определения обратной функции f(-х) совпадает с множеством значений исходной f(х), а множество значений обратной функции f(-х)с овпадает с областью определения исходной функции f(х): D(f(-x)) = E(f(x)), E(f(-x)) = D(f(-x)). 2. Монотонная функция является обратимой: если функция f(x) возрастает, то обратная к ней функция f(-x) также возрастает; если функция f(x) убывает, то обратная к ней функция f(-x) также убывает.

Общая информация

Номер материала: ДБ-397725

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Онлайн-конференция Идет регистрация