339747
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаДругие методич. материалыМетодическая разработка тематического классного часа по математике в 7 классе на тему: «Парадокс Банаха -- Тарского»

Методическая разработка тематического классного часа по математике в 7 классе на тему: «Парадокс Банаха -- Тарского»

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Методическая разработка тематического классного часа по математике в 7 классе учителя СОШ № 42 Уруймаговой З. Ю. на тему:

«Парадокс Банаха -- Тарского»


Цели: Развивать логическое мышление учащихся, их пространственное мышление в работе с объёмными фигурами. Воспитывать навыки аккуратной работы с чертёжно-письменными принадлежностями.


Методы: рассказ, самостоятельная, практическая работа.


Оборудование: лист бумаги, пластелин.


Ход урока: Ребята, вы видите репродукцию картины немецкого художника Макса Эрнста «Au premier mot limpede»- «Комбинация из двух пальцев».

В 1924 году польские математики Стефан Банах и Альфред Тарский доказали следующее утверждение: Любой шар можно разбить на конечное число частей, из которых без наложений и пустот можно составить два шара того же радиуса.

Это, конечно, удивительный парадокс. Это утверждение является парадоксом и на математическом, и на физическом, и на чисто житейском уровне. И тем не менее- это строго доказанная теорема. На данный момент число частей, на которые разбивается шар, доведено до пяти. Из двух частей складывается один шар, а из оставшихся трёх ещё один - оба равные исходному. Стало доступнее и само доказательство. Наши старшеклассники могут разобраться в нём самостоятельно, если есть интерес и желание. Вы понимаете, что части на которые разбивается шар в парадоксе Банаха-Тарского, устроены и перепутаны чудовищно сложным образом. Они относятся к так называемым неизмеримым множествам – ко множествам, объём которых нельзя определить никаким разумным образом.

Что касается невозможности физической реализации парадокса Банаха – Тарского, то тут и говорить не о чем. Вы можете познакомиться с нехитрой фантазией на эту тему, прочитав статью А.К.Дьюдени «Об одном математическом парадоксе и золотом слитке, полученном из ничего. ( журнал «В мире науки» 1989, № 6)

А сейчас, опровергая только что сказанное, приступим к практическому удвоению реального шарика. Лучше, если это будет твёрдый шарик диаметром в один или два сантиметра. Подойдёт и шарик, скатанный из пластелина. Вернёмся к картине Макса Эрнста, а именно к её фрагменту.

Положите шарик на горизонтальную поверхность, по которой шарик катался бы но не скользил. Перекрестите между собой указательный и средний пальцы, как на картине, и наложите перекрещенные пальцы подушечками на шарик. Закройте глаза и слегка покатайте шарик- вы отчётливо ощутите, что шарик удвоился. К сожалению, когда вы откроете глаза и уберёте пальцы- два шарика превратятся в один. Присутствие парадокса Банаха – Тарского тут неоспоримо. Наш вывод не исчерпывает всего содержания картины Макса Эрнста , но основное схвачено.

Картина написана в 1923 году, парадокс Банаха- Тарского опубликован в 1924 году- знаменательное совпадение!

Далее зачитывается доклад о жизни и творчестве Макса Эрнста с показом репродукций с его картин.



множеств.hello_html_43bb2cdb.jpg

Краткое описание документа:

Цели: Развивать логическое мышление учащихся, их пространственное мышление в работе с объёмными фигурами. Воспитывать навыки аккуратной работы с чертёжно-письменными принадлежностями.

 

Методы: рассказ, самостоятельная, практическая работа.

 

Оборудование: лист бумаги, пластелин.

 

Ход урока:  Ребята, вы видите репродукцию картины  немецкого художника Макса Эрнста  «Aupremiermotlimpede»- «Комбинация из двух пальцев».

       В 1924 году польские математики Стефан Банах и Альфред Тарский доказали следующее утверждение: Любой шар можно разбить на конечное число частей, из которых без наложений и пустот можно составить два шара того же радиуса.

Общая информация

Номер материала: 383900

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.