310552
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаДругие методич. материалыМетодическая разработка по теме: <<Признак или свойство>>.

Методическая разработка по теме: <<Признак или свойство>>.

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Признак или свойство?

Понятия «признак», «свойство» являются одними из фундаментальных в геометрии. Однако в школьных учебниках определения этих понятий практически не встречаются.

Я считаю, что уверенное владение этими понятиями является необходимым условием хорошего знания математики.

Цель статьи - помочь учителю научить ученика свободно и грамотно оперировать понятиями «признак» и «свойство».

Известно, как трудно включаются дети в геометрию на аксиоматическом уровне. Аксиомы, определения, теоремы-признаки, теоремы-свойства. Многие сразу теряют интерес, а это - достаточное условие для дальнейших неудач.

Первое открытие, которое дети могут сделать для себя на уроках геометрии, - это то, что они ничуть не хуже легендарного сыщика Шерлока Холмса и им также по плечу использование дедуктивного метода.

Великий сыщик Шерлок Холмс имел в своем распоряжении громадное количество общих утверждений, которыми он умело пользовался, опираясь на дедуктивный метод – от общего к частному. Так, например, из общего утверждения

«Если человек имеет татуировку в виде якоря, то этот человек – моряк»

И частного рассуждения

«Джон Смит имеет татуировку в виде якоря»,

Холмс делает вывод:

«Джон Смит – моряк».

Здесь общее утверждение есть не что иное, как признак моряка, т.е. только ему присущая черта. В словаре русского языка можно найти определение моряка: «Моряком называется человек, который служит во флоте». Приведенный пример показывает, что определение и признак – разные утверждения.

Подведем итог. Во всяких утверждениях вида «Если А, то этот человек – моряк» А является признаком моряка.

Заметим, что синонимом слова «признак» является слово «примета». И тогда можно вспомнить известные признаки хорошей погоды, плохой погоды.

В качестве домашнего задания следует предложить придумать признаки доброго человека, злого человека, умного человека, сильного человека, красивого человека. Помимо дидактического , ото задание содержит и воспитательное значение, так как затем на уроке, проведя обсуждение придуманных утверждений, вы узнаете, как дети представляют себе добро, зло, ум, силу, красоту т. д.

В утверждении вида «Если человек – моряк, то А» А выражает свойство моряка. Вместо А можно подставить подходящие утверждения, например, «любит море», «умеет вязать морские узлы». Свойство отличается от признака тем, что присуще не только моряку. Но, с другой стороны, если вы встретили моряка, то он обязательно обладает этим свойством.

В качестве домашнего задания можно предложить ребятам выписать в тетради утверждения, которые выражали бы свойства умного человека, скучного человека, доброго человека, сильного человека.

Успешное овладение понятиями признак и свойство – один из главных этапов осмысленного подхода к решению задач.

Для этого на уроках необходимо включать в уроки небольшие логические игры и упражнения, цель которых – научить ребят хорошо разбираться в том, что есть «признак», а что есть «свойство». Вот примеры таких упражнений.

Упражнение 1. Используя слова «признак» или «свойство», назовите следующие утверждения:

«Если человек любит животных, то он добрый».

«Если человек сильный, то сможет подтянуться 20 раз».

«Если человек голодный, то он злой».

«Если человек умный, то он подумает прежде, чем сказать».

Упражнение 2. Сформулируйте в виде «Если …, то…» утверждения:

«В том то и признак настоящего искусства, что оно всегда современно, насущно-полезно» (Ф.Достоевский).

«У всех учеников 7 «Б» класса есть замечательное свойство: они любят математику».

Упражнение 3. Назовите двумя способами, используя слова «свойство» и «признак», утверждение:

«Если человек спортсмен, то он обладает хорошим здоровьем».

«Если человек хорошо играет в шахматы, то он умеет мыслить логически».

Следует довести до понимания ученика, что в одном и том же общем утверждении содержится как признак, так и свойство. Поэтому на первых парах наибольшую ценность представляют задачи, в которых используются и свойство, и признак.

Пусть, например требуется доказать что биссектрисы накрест лежащих углов при параллельных прямых параллельны.

Прямые параллельны, следовательно, надо использовать утверждения вида «Если прямые параллельны, то:», то есть свойства параллельных прямых. Далее, нужно доказать, что биссектрисы параллельны, значит, надо использовать признак параллельных прямых.

Упражнение 4. Назовите углы, которые обладают тем же свойством, что и

а) вертикальные углы; б) смежные углы.

Возможные ответы:

а) углы при основании равнобедренного треугольника, накрест лежащие углы при параллельных прямых, соответственные углы;

б) углы треугольника, внутренние односторонние углы при параллельных прямых.

В данном упражнении закрепляется понимание того, что свойство – это нечто непременно присущее данному объекту, но подобным свойством могут обладать и другие объекты.

Упражнение 5. Назовите признаки: а) равных углов; б) параллельных прямых; в) равнобедренного треугольника.

Полезно при формулировках теорем-признаков произносить их не только в форме «Если…, то…» , но и в форме «А является признаком В».

Данное упражнение должно сформировать понимание того, что объект может иметь много признаков, и по одному признаку найти все объекты данного вида мы не сможем.

Например, признаком того, что число делится на 2, является его делимость на 4, на 6, на 10. Используя один из этих признаков мы действительно находим числа, которые делятся на 2, но это будут не все такие числа.

Упражнение 6. Приведите пример свойства, которое одновременно является признаком.

Из вышесказанного ясно, что это должно быть уникальное свойство, то есть присущее только этому объекту. Например, свойство углов при основании равнобедренного треугольника.

Итак, в конце 7 класса надо добиться понимания того, что:

  1. Признаком А являются такие утверждения В, что верно предложение

«Если В, то А».

  1. Свойством А являются такие утверждения В, что верно предложение

«Если А, то В».

  1. Одно и то же утверждение вида

«Если А, то В»

Можно рассматривать как признак В или как свойство А.





На первых уроках геометрии в 8 классе можно сообщить учащимся, что для тех утверждений, которые мы называли признаками и свойствами, в математике используются термины «достаточное условие» и «необходимое условие».

Например, известное свойство вертикальных углов можно сформулировать следующим образом: «Для того чтобы углы были вертикальными, необходимо, чтобы они были равны» или «Равенство углов является необходимым условием вертикальных углов».

Упражнение 7. Используя термины «необходимо» и «необходимое условие», сформулируйте теоремы о свойстве вертикальных углов, свойствах равнобедренного треугольника.

Возможный ответ: свойство является лишь необходимым условием; следовательно, теорему-свойство углов равнобедренного треугольника можно сформулировать так:

  1. «Для того чтобы треугольник был равнобедренным, необходимо, чтобы углы при его основании были равны».

  2. «Для того чтобы треугольник был равнобедренным, необходимо, чтобы его медиана являлась высотой».



Упражнение 8. Используя термин «достаточно», сформулируйте признак равенства треугольников и признак равнобедренного треугольника.

Понятия «необходимое условие», «достаточное условие» очень удобно отрабатывать в процессе изучения темы «Четырехугольники». Эта тема содержит большое число утверждений, которые одновременно являются и необходимыми, и достаточными.

Упражнение 9. Установите, какие из утверждений являются верными, а какие-нет:

а) для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его диагонали делились точкой пересечения пополам;

б) для того чтобы четырехугольник был ромбом, необходимо и достаточно, чтобы его диагонали были перпендикулярны;

в) для того чтобы четырехугольник был прямоугольником, необходимо и достаточно, чтобы его диагонали были равны.

Ответ: утверждение а) верно.

Рассмотрим подробнее утверждения б) и в). Конечно равенство диагоналей четырехугольника не является достаточным условием для того, чтобы он был прямоугольником, так же как и перпендикулярность диагоналей – лишь необходимое условие для того, чтобы четырехугольник был ромбом.

Задание к упражнению 9: «Заменить слово в предложениях б) и в) так, чтобы данные утверждения стали верными».

Ответ: вместо слова «четырехугольник» надо поставить слово «параллелограмм».

Упражнение 10. Проверьте, верно ли утверждение:

а) для того чтобы четырехугольник был прямоугольником, необходимо и достаточно, чтобы его диагонали были равны и точкой пересечения делились пополам;

б) для того чтобы четырех угольник был ромбом, необходимо и достаточно, чтобы все его стороны были равны;

в) для того чтобы четырехугольник был ромбом, необходимо и достаточно, чтобы диагонали были биссектрисами его углов.

Упражнение 11. Вставьте вместо многоточия подходящие по смыслу термины «необходимо», «достаточно» и «необходимо и достаточно».

а) для того чтобы четырехугольник был параллелограммом, … чтобы его противолежащие углы были равны;

б) для того чтобы диагонали в четырехугольнике были равны, … чтобы он был прямоугольником;

в) для того чтобы четырехугольник был квадратом, … чтобы все его углы были равны.

Ответы: а)необходимо и достаточно; б) достаточно; в) необходимо.

Важным видом упражнений являются упражнения по обратному переводу на язык «Если … , то …».

Упражнение 12. Сформулируйте в виде «Если А, то В» следующие утверждения:

а) Перпендикулярность диагоналей – необходимое условие для того, чтобы четырехугольник был ромбом;

б) «Знать необходимо не затем, чтобы только знать, но для того, чтобы делать» (М.Горький)

Другими словами: знание – необходимое, но недостаточное условие для того, чтобы делать что то полезное.

Итак, если в 7 классе ученики прочно овладели понятиями «признак» и «свойство», то в 8 классе целесообразно введение терминов «необходимо» и «достаточно», поскольку тема «Четырехугольники» представляет немало возможностей для работы с этими терминами.

Краткое описание документа:

   Понятия "признак" и "свойство","необходимое условие", "достаточное условие" являются одними из главных в геометрии. Однако в школьных учебниках определения этих понятий практически не встречаются.

  Уверенное владение этими понятиями является необходимым условием хорошего знания математики.

  Цель разработки - помочь учителю научить ученика свободно и грамотно оперировать понятиями "признак" и "свойство","необходимое условие", "достаточное условие" . Конечно, за несколько уроков этого добиться трудно. Но общематематический характер задачи позволяет решать ее поэтапно, на разных "этажах" математики, начиная с первых уроков геометрии и кончая уроками математического анализа.

Общая информация

Номер материала: 109204

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Онлайн-конференция Идет регистрация