Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Другие методич. материалы / Методические особенности формирования вычислительных навыков

Методические особенности формирования вычислительных навыков

  • Начальные классы

Поделитесь материалом с коллегами:

Методические особенности формирования вычислительных навыков

1. ИЗ ПРОГРАММЫ
К концу 1 класса обучающиеся должны знать:
- таблицу сложения чисел в пределах 10 и соответствующие случаи вычитания
К концу 2 класса обучения должны знать:
- таблицу сложения однозначных чисел и соотв. случаи вычитания
                                                        
уметь:
- находить сумму и разность чисел в пределах 100: в более лёгких случаях устно, в более сложных – письменно
К концу 3 класса обучения должны знать:
- таблицу умножения и деления
                                                          
уметь:
- выполнять устно 4 арифметических действия в пределах 100
- выполнять письменно сложение, вычитание двузначных и трёхзначных чисел в пределах 1000
К концу 4 класса обучения должны уметь:
- выполнять письменные вычисления (сложение, вычитание, умножение, деление) с многозначными числами)
2.ЗНАЧИМОСТЬ ФОРМИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ НАВЫКОВ
Формирование вычислительных умений и навыков – одна из основных задач начального курса математики.
Вычислительное умение – это развёрнутое осуществление действия, в котором каждая операция осознаётся и контролируется.
Вычислительное умение предполагает усвоение вычислительного приёма. Любой выч. приём можно представить в виде последовательности операций, выполнение каждой из которых связано с определённым математическим понятием или свойством.
В отличие от умения навыки характеризуются свёрнутым, в значительной мере автоматизированным выполнением действия, с пропуском промежуточных операций, когда контроль переносится на конечный результат.
В начальном курсе математики учащиеся должны усвоить на уровне навыка:
- таблицу сложения (вычитания) в пределах 10;
- таблицу сложения однозначных чисел с переходом через разряд и соотв. случаи вычитания;
- таблицу умножения и соотв. случаи деления.
Усвоение этих таблиц должно быть доведено до автоматизма. В противном случае учащиеся будут испытывать трудности при овладении различными вычислительными умениями, в каждое из которых в качестве операций входят вычислит. навыки.
3.ПОДХОДЫ ФОРМИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ НАВЫКОВ
В формировании вычислительных навыков в школьной практике используются различные подходы:
·        Можно просто выучить (вызубрить) таблицы сложения, умножения и соотв. случаи деления и вычитания; закрепить их в процессе решения примеров, так как сами примеры представляют собой таблицу, только вразбивку. Познавательная деятельность в этом учащихся в этом случае характеризуется активной работой памяти и напряжением произвольного внимания.
·        При втором подходе учащиеся знакомятся с различными вычислительными приёмами, самостоятельно составляют таблицы и непроизвольно запоминают их в процессе выполнения различных вычислительных упражнений.
·        Третий подход отличается от второго тем, что в определённый момент, после использования предметных действий и различных вычислительных приёмов, ученику даётся установка на запоминание.
Какой из подходов наиболее эффективен? Какой из них может обеспечить в более короткие сроки сформированность прочных (доведённых до автоматизма) выч. навыков?
На этот вопрос трудно ответить однозначно, так как многое зависит от индивидуальных особенностей памяти и внимания младшего школьника. Тем не менее практика показывает, что для большинства наиболее приемлем третий вариант.
4. МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ФОРМИРОВАНИЯ НАВЫКОВ СЛОЖЕНИЯ И ВЫЧИТАНИЯ В ПРЕДЕЛАХ 10
Усвоение вычислительных навыков предполагает осознанное составление таблиц и их непроизвольное или произвольное запоминание в процессе специально организованной деятельности.
Таблицы сложения и вычитания в пределах 10 можно условно разделить на 4 группы, каждая из которых связана с теоретическим обоснованием и соответствующим способом действия.



Теоретическое
обоснование

Способ действия

Таблицы сложения и
вычитания

Принцип построения
натурального ряда чисел

Присчитывание и
отсчитывание по
единице

   +1         - 1

Смысл сложения и
вычитания

Присчитывание и
отсчитывание по
частям

   +2     +3        +4
    
-2      -3        -4

Переместительное
свойство сложения

Перестановка
слагаемых

+5         +6        +7
 
+8         +9

Взаимосвязь сложения и
вычитания

Правило: если из
значения суммы
вычесть одно слагаемое,
то получим другое
слагаемое

6-        7-         8-
9-        10-

Составление первых двух таблиц не вызывает у учащихся затруднений. При формировании выч навыков для случаев + и -, представленных во 2-й, 3-й, 4-й группах, работа организуется в соответствии с определёнными этапами:
·        Подготовка к знакомству с выч приёмом.
·        Ознакомление с выч приёмом.
·        Составление таблиц с помощью выч. приёмов.
·        Установка на запоминание таблиц.
·        Закрепление таблиц в процессе тренировочных упражнений.
5.МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ФОРМИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ НАВЫКОВ В ПРЕДЕЛАХ 100
А) Овладение выч. приёмами предполагает усвоение:
·        Нумерации чисел в пределах 100 (разрядного состава двузначного числа)
·        Табличных случаев + и – и свойств + и –
·        Прибавления числа к сумме, вычитания числа из суммы; прибавления суммы к числу, вычитания суммы из числа
Б) Основным способом введения выч. приёма является показ образца действия, который в некоторых случаях разъясняется на предметном уровне, а затем закрепляется в процессе выполнения тренировочных упр-й.
В) Процесс формирования выч. умений сориентирован на усвоение способа действия для частных случаев + и – чисел.
6.МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ФОРМИРОВАНИЯ НАВЫКОВ ТАБЛИЧНОГО УМНОЖЕНИЯ И ДЕЛЕНИЯ.
Табличные случаи * и : учащиеся должны усвоить на уровне навыка. Это сложный и длительный процесс, в котором выделяют 2 этапа. Первый связан с составлением таблиц, второй – с их усвоением, т. е. прочным запоминанием.
Так как в современной нач. школе речь идёт о формировании сознательных выч. навыков, то составлению таблиц умножения и деления предшествуют изучение теоретических вопросов, являющихся основой тех выч. приёмов, которыми учащиеся будут пользоваться при составлении этих таблиц.
В число таких вопросов входят:
- смысл действия умножения как сложения одинаковых слагаемых
- переместительное свойство умножения
- взаимосвязь компонентов и результата умножения
- смысл деления
7.МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ФОРМИРОВАНИЯ НАВЫКОВ ПИСЬМННОГО СЛОЖЕНИЯ И ВЫЧИТАНИЯ.
При сложении многозначных чисел в основе действий учащихся лежит алгоритм сложения, суть которого сводится к следующему:
·        Записывают второе слагаемое под первым так, чтобы соответствующие разряды находились друг под другом.
·        Складывают цифры разряда единиц. Если сумма меньше 10, её записывают в разряд единиц ответа и переходят к следующему разряду.
·        Если сумма цифр единиц больше или равна 10, то представляют её в виде: 10+Со, где Со – однозначное число; записывают Со в разряд единиц ответа и прибавляют 1 к цифре десятков первого слагаемого, после чего переходят к разряду десятков.
·        Повторяют те же действия с десятками, потом с сотнями и т.д. Процесс сложения заканчивается, когда произведено сложение цифр старших разрядов.
Алгоритм вычитания.
·        Записывают вычитаемое под уменьшаемым так, чтобы соответствующие разряды находились друг под другом.
·        Если цифра в разряде единиц вычитаемого не превосходит соответствующей цифры уменьшаемого, то её вычитают из соответствующей цифры уменьшаемого, после чего переходят к след. Разряду.
·        Если цифра единиц вычитаемого больше цифры единиц умень-го, а цифра десятков умень-го отлична от нуля, то ум-ют цифру десятков ум-го на 1, одновременно ув-ют цифру единиц умень-го на 10, после чего выч-ют из числа число и записывают рез-т в разряде ед-ц разности, далее переходят к след. разряду.
·        Если цифра ед-ц вычитаемого больше цифры ед-ц умень-го, а цифры, стоящие в разряде десятков, сотен ит.д. ум-го, равны нулю, то берут первую, отличную от нуля цифру в умом, уменьшают её на 1, все цифры в младших разрядах до разряда десятков включительно ув-ют на 9, а цифру в разряде ед-ц на 10, вычитают число из числа, записывают рез-т в разряде ед-ц разности и переходят к следующему разряду.
·        Процесс вычитания заканчивается, когда произведено вычитание из старшего разряда уменьшаемого.
Приведённые алгоритмы даются учащимся в упрощенном виде, где фиксируются только основные моменты.
8.МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ПИСЬМЕННОГО УМНОЖЕНИЯ И ДЕЛЕНИЯ
 
Письменное умножение опирается на:
- запись числа в десятичной системе счисления;
- таблицу умножения однозначных чисел;
- законы умножения и сложения;
- таблицу сложения однозначных чисел.
Именно поэтому млд школьники знакомятся с алгоритмом письменного умножения после изучения всех названных понятий.
Алгоритм п/умножения на однозначное число – основа овладения учащимися алгоритмом п/умножения на 2-х и 3-хзначные числа.
Письменное деление рассматривается как действие деления с остатком. Поэтому сознательное овладение алгоритмом п/деления во многом зависит от умения находить остаток при делении одного числа на другое. Основа этого умения – осознание взаимосвязи между делимым, делителем, неполным частным и остатком.
Также для успешного овладения алгоритмом ученики должны усвоить разрядный и десятичный состав числа, взаимосвязь умножения и деления.



Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 18.09.2015
Раздел Начальные классы
Подраздел Другие методич. материалы
Просмотров765
Номер материала ДA-051714
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх