Для всех учителей из 37 347 образовательных учреждений по всей стране

Скидка до 75% на все 778 курсов

Выбрать курс
Получите деньги за публикацию своих
разработок в библиотеке «Инфоурок»
Добавить авторскую разработку
и получить бесплатное свидетельство о размещении материала на сайте infourok.ru
Инфоурок Другое Другие методич. материалыМетодические рекомендации для студентов Специальности 44.02.02 Дошкольное образование по МДК 03.04 Теория и методика математического развития

Методические рекомендации для студентов Специальности 44.02.02 Дошкольное образование по МДК 03.04 Теория и методика математического развития

библиотека
материалов

145






Методические рекомендации для студентов

Специальности 44.02.02 Дошкольное образование

по МДК 03.04 Теория и методика математического развития












































Методика математического развития



1. Основные математические понятия: множество, число, цифра, натуральный ряд чисел, система счисления, счетная, вычислительная, измерительная деятельность, величина, форма, геометрическая фигура, время, пространство.


Методика ФЭМП в системе пед.наук призвана оказать помощь в подготовке детей дошкольного возраста к восприятию и усвоению математики – одного из важнейших предметов в школе и всестороннего развития ребёнка.


Методика ФЭМП имеет специфическую, чисто математическую терминологию.


Это:

- множество;

- число;

- счётная и вычислительная деятельность;

- величина;

- геометрические фигуры;

- время;

- пространство.


МНОЖЕСТВО — это совокупность объектов, которые рассматриваются как единое целое. Мир, в котором живет человек, представлен разнообразными множествами: мно­жество звезд на небе, растений, животных вокруг него, множество разных звуков, частей собственного тела.

Множества состоят из элементов. Элемен­тами множества называют объекты, составляющие множе­ства. Это могут быть реальные предметы (вещи, игрушки, рисунки), а также звуки, движения, числа и др.

Элементами множества могут быть не только отдельные объекты, но и их совокупности. Например, при счете пара­ми, тройками, десятками. В этих случаях элементами множе­ства выступает не один предмет, а два, три, десять - сово­купность.


Таким образом, множества рассматривают как набор, совокупность, собрание каких-либо предметов и объектов, объединённых общим, для всех характерным свойством.


Всякое свойство можно рассматривать как принадлежность некоторым предметам.

Например, свойством быть красным обладают некоторые цветы, ягоды, автомашины и другие предметы. Свойством быть круглым обладают луна, мяч, колеса велосипедов и автомашин, детали различных машин и станков и др.

Таким образом, с каждым свойством связывается множество (предметов), обладающих этим свойством. Говорят также, что множество характеризуется данным свойством — или множество задано указанием характеристического свойства.


Под характеристическим свойством множества подразумеваются такое свойство, которы­м обладают все объекты, принадлежащие данному множеству (элементы этого множества), и не обладает ни один предмет, который не при­надлежит ему, т.е. этот предмет не является его элементом.


Если некоторое множество А задано указанием характеристиче­ского свойства Р, то это записывается следующим образом:


А = {х | Р(х)}


и читается так: «А – множество всех х таких, что х обладает свой­ством Р», или, короче, «А – множество всех х, обладающих свой­ством Р». Когда говорят: «множество всех предметов, обладающих свойством Р», имеются в виду те и только те предметы, которые обладают этим свойством.

Таким образом, если множество А задано характеристическим свойством Р, то это означает, что оно состоит из всех предметов, обладающих этим свойством, и только из них. Если какой-нибудь а обладает свойством Р, то он принадлежит множеству А, и, наоборот, если предмет а принадлежит множеству А, то он обладает свойством Р.


Некоторым свойством может обладать бесконечное множество предметов, другим — лишь конечное множество. Поэтому множества подразделяются на конечные и бесконечные.


Конечное множество может быть задано непосредственным перечислением всех его элементов в произвольном порядке. Например, множество детей данной группы, живущих на Садовой улице, может быть задано описанием с помощью характеристического свойства: {х | х - живет на Садовой улице) или перечислением всех его элементов в произвольном порядке: {Лена, Саша, Витя, Ира, Коля}.


Вполне понятно, что бесконечное множество нельзя задать перечислением всех его элементов.

Математика в большей мере имеет дело с бесконечными множествами (числа, точки, фигуры и другие объекты), но основные математические идеи и логические структуры могут быть смоделированы на конечных множествах.

Естественно, что в предматематической подготовке обычно имеют дело с конечными множествами.


СЧЕТ - первая и основная математическая деятельность, основанная на поэлементном сравнении конечных множеств.



ЧИСЛО – это общая неизменная категория множества, которая является показателем мощности множества. Это лишь звуковое обозначение.


Теоретические основы формирования элементарных математических представлений у дошкольников включают детальное изучение лишь системы натуральных чисел. Поэтому, говоря «числа», мы имеем в виду натуральные числа.


ЦИФРЫсистема знаков (“буквы”) для записи чисел (“слов”) (числовые знаки). Слово “цифра” без уточнения обычно означает один из следующих десяти знаков: 0 1 2 3 4 5 6 7 8 9 (т.н. “арабские цифры”). Сочетания этих цифр порождают дву-(и более) значные числа.


Число имеет 2 значения: количественное и порядковое.


При количественном значении нас интересует количество элементов во множестве. Мы используем вопрос СКОЛЬКО? и счёт начинаем с количественного числительного ОДИН.


При порядковом значении числа нас интересует место числа среди других или порядковый номер элемента во множестве. Используется вопрос КОТОРЫЙ ПО СЧЁТУ? и задаётся направление счёту. Используются порядковые числительные, счёт начинается со слова ПЕРВЫЙ.


Когда мы говорим о количестве, не имеет значения направление счёта, предмет, с которого начали счёт. Итоговое число не меняется. При порядковом счёте – итоговое число может меняться.


СЧЁТНАЯ ДЕЯТЕЛЬНОСТЬ рассматривается как деятельность с конкретными элементами множества, при которых устанавливается взаимосвязь между предметами и числительными. Изучение числительных и множеств предметов ведёт к усвоению счётной деятельности.


ВЫЧИСЛИТЕЛЬНАЯ ДЕЯТЕЛЬНОСТЬ – это деятельность с абстрактными числами, осуществляемая посредством сложения и вычитания. Простое называние числительных не будет называться счётной деятельностью. Система вычислительных действий формируется на основе количественных знаний.


ВЕЛИЧИНА – это качество и свойство предмета, с помощью которого мы сравниваем предметы друг с другом и устанавливаем количественную характеристику сравниваемых предметов.

Понятие величина в математике рассматривается как ос­новное.


Прямого ответа на вопрос “что такое величина?” нет, так как общее понятие величины является непосредственным обобщением более конкретных понятий: длины, площади, объёма, массы, скорости и т.д.


Величина предмета — это его относительная характерис­тика, подчеркивающая протяженность отдельных частей и определяющая его место среди однородных. Величина явля­ется свойством предмета, воспринимаемым различными ана­лизаторами: зрительным, тактильным и двигательным. При этом чаше всего величина предмета воспринимается одно­временно несколькими анализаторами: зрительно-двигатель­ным, тактильно-двигательным и т.д.


Величина предмета, т.е. размер предмета, определяется только на основе сравнения. Нельзя сказать, большой это или маленький предмет, его только можно сравнить с дру­гим.

Восприятие величины зависит от расстояния, с которо­го предмет воспринимается, а также от величины предмета, с которым он сравнивается. Чем дальше предмет от того, кто его воспринимает, тем он кажется меньшим, и наоборот, чем ближе - тем кажется большим.

Характеристика величины предмета зависит также от рас­положения его в пространстве. Один и тот же предмет может характеризоваться то как высокий (низкий), то как длинный (короткий). Это зависит от того, в горизонтальном или вер­тикальном положении он находится. Так, например на рисунке предметы расположены в вертикальном положении и харак­теризуются как высокий и низкий, а на другом рисунке (в горизонтальном положении) эти же самые предметы характеризуются как длинный и короткий.

Величина предмета всегда относительна, она зависит от того, с каким предметом он сравнивается. Сравнивая пред­мет с меньшим, мы характеризуем его как больший, а срав­нивая этот же самый предмет с большим, называем его мень­шим.

Итак, величина конкретного предмета характеризуется такими особенностями: сравнимость, изменчивость и отно­сительность.

1) сравнимость, осуществляемая:

- наложением,

- приложением,

- измерением с помощью условной мерки,

- сравнением на глаз.

2) относительность – зависит от предмета, с которым мы сравниваем, от расстояния, на которое мы сравниваем, от расположения в пространстве.

3) изменчивость. Величина тесно связана с размером. А размер является свойством изменчивости величины. Каждый предмет имеет своё родовое предназначение. Он может изменять свои размеры, не меняя своей сущности.


ГЕОМЕТРИЧЕСКАЯ ФИГУРА – абстрактное понятие, с помощью которого мы все окружающие нас предметы олицетворяем в форме.

Геометрическая фигура – это наличие точек на плоскости, ограниченное пространством.


Фигуры бывают плоские (круг, квадрат, треугольник, многоугольник…) и пространственные (шар, куб, параллелепипед, конус...), которые ещё называют геометрическими телами.


ГЕОМЕТРИЧЕСКОЕ ТЕЛО – это замкнутая часть пространства, ограниченная плоскими и кривыми поверхностями.


Если поверхность, ограничивающая тело, состоит их плоскостей, то тело называют многогранником. Эти плоскости пересекаются по прямым, которые называются рёбрами, и образуют грани тела. Каждая из граней есть многоугольник, стороны которого являются рёбрами многогранника; вершины этого многоугольника называются вершинами многогранника.


Некоторые многогранники с определённым числом граней имеют особые названия: четырёхгранник – тетраэдр, шестигранник – эксаэдр, восьмигранник – октаэдр, двенадцатигранник – додекаэдр, двадцатигранник – икосаэдр.


Что же такое геометрическая ФОРМА?

ФОРМА – это очертание, наружный вид предмета.

Форма (лат. forma - форма, внешний вид) – взаимное расположение границ (контуров) предмета, объекта, а так же взаимное расположение точек линии.


ВРЕМЯ – это философское понятие, которое характеризуется сменой событий и явлений и длительностью их бытия.


Время имеет свойства:

- текучесть (время не остановить)

- необратимость и неповторимость

- длительность.


ПРОСТРАНСТВО - это такое качество, с помощью которого устанавливаются отношения типа окрестностей и расстояния.

Ориентировка в пространстве предполагает ориентировку на себе, от себя, от других объектов, ориентировку на плоскости и ориентировку на местности.

2. Предмет и задачи курса "Методика математического развития и обучения математики". Связь методики математического развития с другими науками.


Методика формирования элементарных математических представлений в системе педагогических наук призвана оказать помощь в подготовке детей дошкольного возраста к восприятию и усвоению математики — одного из важнейших учебных предметов в школе, способствовать воспитанию всесторонне развитой личности.


Выделившись из дошкольной педагогики, методика формирования элементарных математических представлений стала самостоятельной научной и учебной областью.


Предметом ее исследования является изучение основных закономерностей процесса формирования элементарных математических представлений у дошкольников в условиях общественного воспитания.


Круг задач, решаемых методикой, достаточно обширен:

- научное обоснование программных требований к уровню развития количественных, пространственных, временных и других математических представлений детей в каждой возрастной группе;

- определение содержания фактического материала для подготовки ребенка в детском саду к усвоению математики в школе;

- совершенствование материала по формированию математических представлений в программе детского сада;

- разработка и внедрение в практику эффективных дидактических средств, методов и разнообразных форм организации процесса развития элементарных математических представлений;

- реализация преемственности в формировании основных математических представлений в детском саду и соответствующих понятий в школе;

- разработка содержания подготовки высококвалифицированных кадров, способных осуществлять педагогическую и методическую работу по формированию и развитию математических представлений у детей во всех звеньях системы дошкольного воспитания;

- разработка на научной основе методических рекомендаций родителям по развитию математических представлений у детей в условиях семьи.


Общая задача методики — исследование и разработка практических основ процесса формирования элементарных математических представлений у детей дошкольного возраста. Она решается с позиций марксистско-ленинской теории, которая, выработает единый взгляд на мир, открыв законы развития природы, общество, личности, служит методологической, мировоззренческой основой собой науки.


Формирование элементарных математических представлений — это целенаправленный и организованный процесс передачи и усвоения знаний, приемов и способов умственной деятельности, предусмотренных программными требованиями Основная его цель — не только подготовка к успешному овладению математикой в школе, но и всестороннее развитие детей.


Методика формирования элементарных математических представлений у детей в детском саду связана со многими науками, и прежде всего с теми, предметом изучения которых являются разные стороны личности и деятельности ребенка-дошкольника, процесс но воспитания и обучения.

Наиболее тесная связь существует у нее с дошкольной педагогикой. Методика формирования элементарных математических представлений опирается на разрабатываемые дошкольной педагогикой и дидактикой задачи обучения и умственного воспитания подрастающего поколения: принципы, условия, пути, содержание, средства, методы, формы организации и т. д. Связь эта по своему характеру взаимная: исследование и разработка проблем формирования элементарных математических представлений у детей в свою очередь совершенствовать педагогическую теорию, обогащая ее новым фактическим материалом.


Многосторонние контакты существуют между частными методиками, изучающими конкретные закономерности процесса воспитания и обучения маленьких детей: методикой формирования элементарных математических представлений, развития речи, теорией и методикой физического воспитания и др.


Подготовка детей к усвоению математики в школе не может осуществляться успешно без связи с методикой начального обучения математике и теми аспектами самой математики, которые являются теоретической основой обучения дошкольников и младших школьников.

Опора на эти науки позволяет, во-первых, определить объем и содержание знаний, которые должны быть освоены детьми в детском саду, и служить фундаментом математического образования; во-вторых, использовать методы и средства обучения, в полной мере отвечающие возрастным особенностям дошкольников, требованиям принципа преемственности.

Обучение должно строиться с учетом закономерностей развития познавательной деятельности, личности ребенка, что является предметом изучения психологических наук. Восприятие, представление, мышление, речь не только функционируют, но и интенсивно развиваются в процессе обучения.

Психологические особенности и закономерности восприятия ребенком множества предметов, числа, пространства, времени служат основой при разработке методики формирования элементарных математических представлений. Психология определяет возрастные возможности детей в усвоении знаний и навыков, которые не являются чем-то застывшим и меняются в зависимости от типа обучения.


Рациональное построение процесса обучения связано с созданием оптимальных условий на основе анатомо-физиологических особенностей маленьких детей. Закономерности протекания физиологических процессов у дошкольников служат основой для определения длительности занятий по формированию элементарных математических представлений для каждой возрастной группы детского сада, обусловливают саму их структуру, сочетание и чередование различных методов и средств обучения, разных по характеру видов деятельности (включение физкультминуток, дозирование учебно-познавательных задач и т. д.).


Связь с различными науками создает теоретическую базу методики формирования математических представлений у детей в детском саду.



3. Этапы развития методики математического развития: эмпирический, классический, современный.


Вопросы математического развития детей дошкольного возраста своими корнями уходят в классическую и народ­ную педагогику. Различные считалки, пословицы, поговор­ки, загадки, потешки были хорошим материалом в обуче­нии детей счету, позволяли сформировать у ребенка поня­тия о числах, форме, величине, пространстве.

В ходе их освоения дети не только овладевали пересчетом предметов, но и умением воспринимать и осознавать изменения, происходящие в окружающей их действительности: природные, цветовые, пространственные и временные; количественные, изменения по форме, размеру, расположению, пропорциям. Это обеспечивало естественное развитие у детей некоторых представлений, смекалки и сообразительности.


Первая печатная учебная книжка И.Федорова «Букварь» (1574 г.) включала мысли о необходимости обучения детей счету в процессе различных упражнений.


В XIII—XIX вв. вопросы содержа­ния и методов обучения математике детей дошкольного воз­раста и формирования у них представлений о размере, измерении, о времени и пространстве можно найти в педагогических тру­дах Я.А. Коменского, М.Г. Песталоцци, К.Д. Ушинского, Л.Н. Толстого и других.


Взгляды педагогов XIII—XIX вв. на содержание и методы развития у детей математических представлений - это первый этап развития методики — эмпирический.


Педагоги той эпохи под влиянием требований развивающейся практики пришли к выводу о необходимости подготовки детей к усвоению математики в школе. Ими высказывались определенные предложения о содержании и методах обучения детей, в основном в условиях семьи. Надо сказать, что специальных пособий по подготовке детей к школе они не разрабатывали, а основные свои идеи включали в книги по воспитанию и обучению.

Так, Чешский мыслитель-гуманист и педагог Я.А. Коменский (1592—1670) в книге «Материнская школа» (1632) рекомендует еще до школы обучать ребенка счету в пределах двадцати, умению различать числа больше-мень­шие, четные-нечетные, сравнивать предметы по величине, узнавать и называть некоторые геометрические фигуры, пользоваться в практической деятельности единицами изме­рения: дюйм, пядь, шаг, фунт и др.



И. Г. Песталоцци (1746—1827), швейцарский педагог-демократ, указывал на недостатки существующих в то время методов обучения, в основе которых лежит зубрежка, и рекомендовал учить детей счету конкретных предметов, пониманию действий над числами, умению определять время. Предложенные им методы обучения предпо переход от простых элементов к более сложным, широкое использование наглядности, облегчающей усвоение детьми чисел. Идеи И. Г. Песталоцци послужили в дальнейшем (середина XIX в.) основой реформы в области обучения математике в школе.


Передовые идеи в обучении детей арифметике до школы высказывал русский педагог-демократ, основоположник научной педагогики в России К. Д. Ушинский (1824—1871). Он считал важным научить ребенка считать отдельные предметы и их группы, выполнять действия сложения и вычитания, формировать понятие о десятке как единице счета. Однако все это было лишь пожеланиями, не имеющими никакого научного обо­снования.


Писатель и педагог Л. Н. Толстой издал в 1872 году «Азбуку», одна из частей которой называлась «Счет». Критикуя существующие методы обучения, Л.Н. Толстой предлагал учить детей счету «вперед» и «назад» в пределах сотни и нумерации, основываясь при этом на детском практическом опыте, приобретенном в игре.

Методы развития у детей представлений о числе и форме нашли свое отражение и дальнейшее развитие в системах сенсорного воспитания немецкого педагога Ф. Фребеля (1782—1852), итальянского педагога Марии Монтессори (1870—1952) и др.


В классических системах сенсорного обучения Ф. Фребеля (1782-1852) и М. Монтессори (1870—1952) представлена методика ознакомления детей с геометрическими фигура­ми, величинами, измерением и счетом, составлением рядов предметов по размеру, весу и т. д.


Ф. Фребель видел задачи обучения счету в усвоении детьми дошкольного возраста ряда чисел. Им созданы знаменитые «Дары» — специальное пособие для развития конструктивных навыков в единстве с познанием чисел, форм, размеров, пространственных отношений. Ф. Фребель был убежден в том, что развитие в дошкольном возрасте «пространственного» воображения и мышления создает условия для перехода к усвоению геометрии в школе. Созданные Ф. Фребелем «дары» и в настоящее время используются в качестве дидак­тического материала для ознакомления детей с числом, фор­мой, величиной и пространственными отношениями.


М. Монтессори, опираясь на идеи саморазвития и самообучения, признавала необходимым создание специальной среды для освоения чисел, форм, величин, а также письменной и устной нумерации. Она предлагала использовать для этого специальный материал: счетные ящики, связки цветных бус, нанизанных десятками, счеты, монеты и многое другое.

Наиболее результативно педагогическая деятельность М. Монтессори протекала в первой половине XX в. Использование в обучении и воспитании ребенка материалов по развитию у детей математических представлении строилось на определенном стиле взаимодействия взрослого с ребенком; необходимости наблюдения за поведением детей в условии специально созданной среды; организации совместной с ребенком свободной работы и др. Система М. Монтессори предусматривает развитие у ребенка сенсомоторной сферы и в дальнейшем — интеллекта. Особо выделяемый по своей значимости «золотой» математический материал сначала осваивается ребенком как набор бус в разной количественности, затем — в символах (цифрах), после этого — как средство освоения умений сравнивать числа. Таким образом, десятичная система счисления представляется ребенку зримо и осязаемо, что ведет к успешному овладению арифметикой.


Обширно представлен в системе М. Монтессори раздел «Логика и счет»: изучение фигур, размеров, способов измерения, проекции, моделирования множеств. Наиболее интересны следующие пособия: «Фигуры из гвоздиков», «Математическое солнце», «Сложи узор», «Объедини множества».


В целом обучение математике по системе М. Монтессори начиналось с сенсорного впечатления, затем осуществлялся переход к пониманию символа (т. е. от конкретного — к абстрактному), что делало математику привлекательной и доступной даже для 3—4-летних детей.


Итак, передовые педагоги прошлого, русские и зарубежные, признавали роль и необходимость первичных математических знаний в развитии и воспитании детей до школы, выделяли при этом счет в качестве средства умственного развития и настоятельно рекомендовали обучать детей ему как можно раньше, примерно с трех лет. Обучение понималось ими как «упражняемость» в выполнении практических, игровых действий с применением наглядного материала, использование накопленного детьми опыта в различении чисел, времени, пространства, мер в разнообразных детских деятельностях.

Особое значение вопросы методики математического раз­вития приобретают в педагогической литературе начальной школы на рубеже XIX-XX ст. Авторами методических реко­мендаций тогда были передовые учителя и методисты. Опыт практических работников не всегда был научно обоснованным, зато был проверен на практике. Со временем он усовер­шенствовался, сильнее и полнее в нем выявилась прогрессив­ная педагогическая мысль.


В конце XIX - в начале XX столе­тия у методистов возникла потребность в разработке научного фундамента методики арифметики. Значительный вклад в раз­работку методики сделали передовые русские учителя и мето­дисты П.С. Гурьев, А.И. Гольденберг, Д.Ф. Егоров, В.А. Евтушевский, Д.Д. Галанин и другие.


Становление методики развития элементарных математических представлений в XIX — начале XX вв. происходило также под непосредственным воздействием идей реформирования школьных методов обучения арифметике. Особо выделились два направления: с одним из них связан так называемый метод изучения чисел, или монографический метод, а с другим — метод изучения действий, который назвали вычислительным.

Согласно методу изучения чисел, в разработке немецкого методиста А.В. Грубе преподавание арифметики осуществлялось «от числа к числу». Каждое из чисел, якобы доступное «непосредственному созерцанию», сравнивалось с каждым из предыдущих чисел путем установления между ними разностного и кратного отношения. Действия как бы сами вытекали из знания наизусть состава чисел. Монографический метод получил определение метода, описывающего число.

В процессе изучения каждого числа материалом для счета служили пальцы рук, штрихи на доске или в тетради, палочки. Например, при изучении числа 6 предлагалось разложить палочки по одной. Задавались вопросы: «Из какого количества палочек составилось число?», «Отсчитайте по одной палочке, чтобы получилось шесть и т.д. После каждой группы таких упражнений действия записывались в виде таблицы, результаты которой заучивались наизусть, с тем чтобы в дальнейшем производить арифметические действия по памяти, не прибегая к вычислениям.

В 70-х гг. XIX в. стали появляться противники монографического метода. Недовольство методом нарастало, и в 80—90-х гг. русские математики выступили с его резкой критикой, противопоставляя ему метод изучения действий, или, иначе, вычислительный метод.. Метод изучения действий (вычислительный) — предполагал обучение детей вычислениям и пониманию смысла арифметических действий. Обучение при этом строилось по десятичным концентрам. В пределах каждого концентра изучались не отдельные числа, а счет и действия с числами.

Оба метода (и монографический, и вычислительный) сыграли положительную роль в дальнейшем развитии методики, которая вобрала в себя приемы, упражнения, дидактические средства одного и другого методов.


В конце ХIХ — начале XX вв. были широко распространены идеи обучения математике без принуждения и дидактичности, забавно, но без излишней занимательности. Математики, психологи, педагоги разрабатывали математические игры и развлечения, составляли сборники задач на смекалку, преобразование фигур, решение головоломок (В. А. Латышев, Н. Н. Аменицкий, И. П. Сахаров, А. П. Доморяд, В. Арене и др.).


Авторы стремились придать четкую логику построения, необычность задачам-шуткам, арифметическим ребусам, задачам-головоломкам, задачам на деление целого на части и т. д. В ходе решения таких задач развиваются способность к правильному мышлению, логичность и последовательность мысли, острый ум и смекалка. Задачи на сообразительность, сметливость учат детей применять имеющиеся у них знания к различным случаям жизни, приучают к самоконтролю, а главное — способствуют выработке у детей умений самостоятельно искать путь решения.


Ряд книг был издан специально с целью развития способностей детей, в частности «Забавная арифметика» Н. Н. Аменицкого и И. П. Сахарова. В ней предлагалось живое и забавное решение различных практических задач и вопросов, что стимулировало проявления детской самодеятельности.


Широко применялись в обучении и развитии детей математические игры, в ходе которых был необходим подробный и четкий анализ игровых действий, возможность проявить смекалку в ходе поисков, самостоятельность. Значение математических игр рассматривалось авторами с позиций развития у детей интереса к изучению математики, становления умственных способностей, смекалки и сообразительности, находчивости, волевых черт характера, а также приучения детей к умственному труду.



4. Современные концепции и методические системы математического развития дошкольников, вариативные программы "Радуга", "Развитие", "Детство", методические системы М. Монтессори, Н.А. Зайцева, Е.К. Шулешко, Н.В. Белошистой.


Современное состояние теории и технологии развития математических представлений у детей дошкольного возраста сложилось в 80—90-е гг. XX вв. и первые годы нового столетия под влиянием развития идей обучения детей математике, а также реорганизации всей системы образования.



Уже в 80-е гг. начали обсуждаться пути совершенствования как содержания, так и методов обучения детей дошкольного возраста математике.

В качестве негативного момента отмечалась ориентировка на выработку у детей предметных действий, в основном связанных со счетом и простейшими вычислениями, без должного уровня их обобщенности. Такой подход не обеспечивал подготовку к усвоению математических понятий в дальнейшем обучении.


Специалисты выясняли возможности интенсификации и оптимизации обучения, способствующие общему и математическому развитию ребенка, отмечали необходимость повышения теоретического уровня осваиваемых детьми знаний. Это требовало реконструкции программы обучения, в том числе переосмысления системы представлений, последовательности их формирования.


Начались интенсивные поиски путей обогащения содержания обучения. Решение этих сложных проблем осуществлялось по-разному.


Психологи в качестве основания для формирования начальных математических представлений и понятий предлагали различные предметные действия.

П.Я. Гальперин разработал линию формирования начальных математических понятий и действий, построенную на введении мерки и определении единицы через отношение к мерке. Число при таком подходе воспринимается ребенком как результат измерения, как отношение измеряемой величины к избранной мерке. На основе этих и других исследований в программу обучения детей была включена тема «Освоение величин».

В исследовании В.В. Давыдова был раскрыт психологический механизм счета как умственной деятельности и намечены пути формирования понятия числа через освоение детьми действий уравнивания, комплектования и измерения. Генезис понятия числа рассматривался на основе кратного отношения любой величины (непрерывной и дискретной) к ее части.

В отличие от традиционной методики ознакомления с числом (число — результат счета) новым явился способ введения самого понятия: число как отношение измеряемой величины к единице измерения (условная мерка), т. е. число — результат измерения.


Анализ содержания обучения дошкольников с точки зрения новых задач привел исследователей к выводу о необходимости учить детей обобщенным способам решения познавательных задач, усвоению связей, зависимостей, отношений и логических операций (классификации и сериации).

Для этого предлагались и своеобразные средства: модели, схематические рисунки и изображения, отражающие наиболее существенное в познаваемом содержании.


Математики-методисты (А. И. Маркушевич, Ж. Папи и др.) настаивали на значительном пересмотре содержания знаний для детей 6-летнего возраста, насыщении его некоторыми новыми представлениями, относящимися к множествам, комбинаторике, графам, вероятности и т. д.

Идеи простейшей предлогической подготовки дошкольников разрабатывались в Могилевском педагогическом институте под руководством А. А. Столяра. Методика введения детей в мир логико-математических представлений — свойства, отношения, множества, операции над множествами, логические операции (отрицание, конъюнкция, дизъюнкция) — осуществлялась с помощью специальной серии обучающих игр.


В педагогических исследованиях выяснялись возможности развития у детей представлений о величине, установления взаимосвязей между счетом и измерением; апробировались приемы обучения (Р. Л. Березина, Н. Г. Белоус, 3. Е. Лебедева, Р. Л. Непомнящая, Е. В. Проскура, Л. А. Левинова, Т. В. Тарунтаева, Е. И. Щербакова).



Возможности формирования количественных представлений у детей раннего возраста и пути их совершенствования у детей дошкольного возраста изучены В.В.Даниловой, Л.И.Ермолаевой, Е. А. Тархановой.


Содержание и приемы освоения пространственно-временных отношений определены на основе исследований Т. А. Мусейибовой, К. В. Назаренко, Т. Д. Рихтерман и др.


Методы и приемы математического развития детей с помощью игры были разработаны З.А.Грачевой (Михайловой), Т. Н. Игнатовой, А. А. Смоленцевой, И. И. Щербининой и др.


Исследовались возможности использования наглядного моделирования в процессе обучения решению арифметических задач (Н. И. Непомнящая), познания детьми количественных и функциональных зависимостей (Л. Н. Бондаренко, Р. Л. Непомнящая, А. И. Кириллова), способности дошкольников к наглядному моделированию при освоении пространственных отношений (Р. И. Говорова, О. М. Дьяченко, Т. В. Лаврентьева, Л. М. Хализева).

Комплексный подход в обучении, эффективные дидактические средства, обогащенное содержание и разнообразные приемы обучения нашли отражение в конспектах занятий по формированию математических представлений и методических рекомендациях по их использованию, разработанных Л. С. Метлиной.


Поиск путей совершенствования методики обучения математике детей дошкольного возраста осуществлялся и в других странах.


В начале 90-х гг. XX в. наметилось несколько основных научных направлений в теории и методике развития математических представлений у детей дошкольного возраста.


Согласно первому направлению, содержание обучения и развития, методы и приемы конструировались на основе идеи преимущественного развития у детей дошкольного возраста интеллектуально-творческих способностей (Ж. Пиаже, Д. Б. Эльконин, В. В. Давыдов, Н. Н. Поддьяков, А. А. Столяр и др.):

- наблюдательность, познавательные интересы;

- исследовательский подход к явлениям и объектам окружения (умения устанавливать связи, выявлять зависимости, делать выводы);

- умение сравнивать, классифицировать, обобщать;

- прогнозирование изменений в деятельности и результатах;

- ясное и точное выражение мысли;

- осуществление действия в виде «умственного эксперимента» (В. В. Давыдов и др.).


Предполагались активные методы и приемы обучения и развития детей, такие как моделирование, действия трансформации (перемещение, удаление и возвращение, комбинирование), игра и другие.

Способность к наглядному моделированию выступает как одна из общих интеллектуальных способностей. Дети овладевают действиями с тремя видами моделей (модельных представлений): конкретными; обобщенными, отражающими общую структуру класса объектов; условно-символическими, передающими скрытые от непосредственного восприятия связи и отношения.


Второе положение базировалось на преимущественном развитии у детей сенсорных процессов и способностей (А. В. Запорожец, Л. А. Венгер, Н. Б. Венгер и др.):

- включение ребенка в активный процесс по выделению свойств объектов путем обследования, сравнения, результативного практического действия;

- самостоятельное и осознанное использование сенсорных эталонов и эталонов мер в деятельности использование моделирования («прочтения» моделей и действий моделирования).

- При этом овладение перцептивными ориентировочными действиями, которые ведут к усвоению сенсорных эталонов, рассматривается как основа развития у детей сенсорных способностей.


Третье теоретическое положение, на котором базируется математическое развитие детей дошкольного возраста, основано на идеях первоначального (до освоения чисел) овладения детьми способами практического сравнения величин через выделение в предметах общих признаков — массы, длины, ширины, высоты (П. Я. Гальперин, Л.С.Георгиев, В.В.Давыдов, Г. А. Корнеева, А. М. Леушина и др.). Эта деятельность обеспечивает освоение отношений равенства и неравенства путем сопоставления. Дети овладевают практическими способами выявления отношений по величине, для которых числа не требуются. Числа осваиваются вслед за упражнениями при сравнении величин путем измерения.



Четвертое теоретическое положение основывается на идее становления и развития определенного стиля мышления в процессе освоения детьми свойств и отношений (А. А. Столяр, Р. Ф. Соболевский, Т. М. Чеботаревская, Е. А. Носова и др.).

Умственные действия со свойствами и отношениями рассматриваются как доступное и эффективное средство развития интеллектуально-творческих способностей. В процессе действий с множествами предметов, обладающих разнообразными свойствами (цветом, формой, размером, толщиной и пр.), дети упражняются в абстрагировании свойств и выполнении логических операций над свойствами тех или иных подмножеств. Специально сконструированные игры помогают детям понять точный смысл логических связок и, или, если, то, смысл слов не, все, некоторые.


Теоретические основы современной методики развития математических представлений базируются на интеграции четырех основных положений, а также на классических и современных идеях математического развития детей дошкольного возраста.


МАТЕМАТИЧЕСКОЕ РАЗВИТИЕ ДОШКОЛЬНИКОВ В УСЛОВИЯХ ВАРИАТИВНОСТИ ОБРАЗОВАТЕЛЬНОЙ СИСТЕМЫ И РЕАЛИЗАЦИИ ИДЕЙ РАЗВИВАЮЩЕГО ОБРАЗОВАНИЯ


Математическое развитие детей в конкретном образовательном учреждении (детский сад, группы развития, группы дополнительного образования, прогимназия и т. д.) проектируется на основе концепции дошкольного учреждения, целей и задач развития детей, данных диагностики, прогнозируемых результатов.

Концепцией определяется соотношение предматематического и предлогического компонентов в содержании образования. От этого соотношения зависят прогнозируемые результаты: развитие интеллектуальных способностей детей, их логического, творческого или критического мышления; формирование представлений о числах, вычислительных или комбинаторных навыках, способах преобразования объектов и т. д.


Ориентировка в современных программах развития и воспитания детей в детском саду, изучение их дает основание для выбора методики. В современные программы («Развитие», «Радуга», «Детство», «Истоки» и др.), как правило, включается то логико-математическое содержание, освоение которого способствует развитию познавательно-творческих и интеллектуальных способностей детей.


Эти программы реализуются через деятельностные личностно-ориентированные развивающие технологии и исключают «дискретное» обучение, т.е. раздельное формирование знаний и умений с последующим закреплением.


Для современных программ математического развития детей характерно следующее.


Направленность осваиваемого детьми математического содержания на развитие их познавательно-творческих способностей и в аспекте приобщения к человеческой культуре.

Дети осваивают разнообразие геометрических форм, количественных, пространственно-временных отношений объектов окружающего их мира во взаимосвязи.

Овладевают способами самостоятельного познания: сравнением, измерением, преобразованием, счетом и др. Это создает условия для их социализации, вхождения в мир человеческой культуры.


Обучение детей строится на основе включения активных форм и методов и реализуется как на специально организованных занятиях (через развивающие и игровые ситуации), так и в самостоятельной и совместной деятельности со взрослыми (в играх, экспериментировании, игровых тренингах, упражнениях в рабочих тетрадях, учебно-игровых книгах и т. д.).


Используются те технологии развития математических представлений у детей, которые реализуют воспитательную, развивающую направленность обучения и «прежде всего активность обучающегося». Это технологии поисково-исследовательской деятельности и экспериментирования, познания и оценки ребенком величин, множеств, пространства и времени на основе выделения отношений, зависимостей и закономерностей. В силу этого современные технологии определяются как проблемно-игровые.


Развитие детей зависит от созданных педагогических условий и психологической комфортности, при которых обеспечивается единство познавательно-творческого и личностного развития ребенка.

Необходимо стимулирование проявлений субъектности ребенка (самостоятельности, инициативности, творческих начал, рефлексии) в играх, упражнениях, игровых обучающих ситуациях. Важнейшее условие развития прежде всего заключается в организации обогащенной предметно-игровой среды (эффективные развивающие игры, учебно-игровые пособия и материалы) и положительном взаимодействии между взрослыми и воспитанниками.


Развитие и воспитание детей, их продвижение в познании математического содержания проектируется через освоение средств и способов познания.


Проектирование и конструирование процесса развития математических представлений осуществляется на диагностической основе

Стимулирование познавательного, деятельностно-практического и эмоционально-ценностного развития на математическом содержании способствует накоплению детьми логико-математического опыта. Этот опыт является основой для свободного включения ребенка в предметную, игровую, исследовательскую деятельность: самопознание, разрешение проблемных ситуаций; решение творческих задач и их реконструирование и т. д.

Достоянием субъектного опыта ребенка становятся ориентировка в свойствах и отношениях объектов, зависимостях; умение воспринимать одно и то же явление, действие с разных позиций. Когнитивное развитие ребенка становится более совершенным.


Под математическим развитием дошкольников следует понимать позитивные изменения в познавательной сфере личности, которые происходят в результате освоения математических представлений и связанных с ними логических операций.

Современное состояние теории и методики развития математических представлений у детей дошкольного возраста сложилось под влиянием следующих взглядов


Авторы теории классической системы сенсорного воспитания Ф Фребель, М. Монтессори и др.

- Создание среды, благоприятной для развития.

- Внимание к интеллектуальному развитию ребенка.

- Создание систем наглядных материалов.

- Разработка приемов развития у детей количественных, геометрических и других представлений


Педагоги –методисты Е. И.Тихоева, Л.В Глаголева Ф.Н . Блехер и др.

- Создание обстановки для успешного развития и воспитания детей.

- Разработка игровых методов обучения и подходов к их реализации.

- Конструирование содержания обучения в детском саду и подготовительных классах (в виде уроков).


Психологи 80-90-х Гт. XX в. П.Я. Гальперин В.В. , Давыдов Н. И. Непомнящая и др.

-Выяснение возможностей интенсификации и оптимизации обучения детей.

- Освоение начальных математических представлений через предметные действия уравнивания и измерения. Наглядное моделирование в процессе решения арифметических задач.

- Обогащение содержания обучения и развития (связи и зависимости, логические операции и т.д.).


Ученый-исследователь А. М. Леушина (исследования 1956 г.)

- Теоретическое обоснование до-числового периода обучения детей и периода развития числовых представлений.

- Методика развития количественных и числовых представлений у детей.

- Обучение на занятиях — основной путь освоения содержания. Деление материалов на демонстрационные и раздаточные.

- Целенаправленное формирование элементарных математических представлений у детей


Авторы концепции дошкольного воспитания: В. В. Давыдов, В. А. Петровский и др.

-Реализация идей личностно-ориентированного подхода к развитию и воспитанию детей

-Организация совместной с ребенком деятельности развивающей направленности, самостоятельной и организованной в специально созданной предметно-игровой среде.

-Активизация детской деятельности: использование проблемных ситуаций, элементов РТВ (развитие творческого воображения), моделирования и других путей развития мыслительной деятельности детей


Концепция содержания непрерывного образования (дошкольное и начальное звено, 2000)

-Содержание математических представлений отнесено к познавательно-речевому направлению в развитии ребенка-дошкольника.

- Недопустимость изучения в детском саду элементов программы первого класса и «формирования у детей узкопредметных знаний и умений».

-Основы математического развития состоят в обучении умению выделять признаки, сравнивать и упорядочивать, сосчитывать и присчитывать, ориентироваться в пространстве и во времени.



5. Задачи математического развития дошкольников.


Малыши постигают то содержание математической направленности, которое в современной методике развития математических представлений детей дошкольного возраста именуется предматематикой. Это содержание обеспечивает развитие мышления, освоение логико-математических представлений и способов познания.


Содержание предматематики направлено на развитие важнейших составляющих личности ребенка — его интеллекта и интеллектуально-творческих способностей.


Результатами освоения предматематики являются не только знания, представления и элементарные понятия, но и общее развитие познавательных процессов. Способности к абстрагированию, анализу, сравнению, обобщению, сериации и классификации, умение сравнивать предметы и явления, выяснять закономерности, обобщать, конкретизировать и упорядочивать являются важнейшей составляющей логико-математического опыта ребенка, который дает ему возможность самостоятельно познавать мир.



Освоенные математические представления, логико-математические средства и способы познания (эталоны, модели, речь, сравнение и др.) составляют первоначальный логико-математический опыт ребенка. Этот опыт является началом познания окружающей действительности, первым вхождением в мир математики.


Целью и результатом педагогического содействия математическому развитию детей дошкольного возраста является развитие интеллектуально-творческих способностей детей через освоение ими логико-математических представлений и способов познания.


Задачи математического развития в дошкольном детстве определены с учетом закономерностей развития познавательных процессов и способностей детей дошкольного возраста, особенностей становления познавательной деятельности и развития личности ребенка в дошкольном детстве. Выполнение этих задач должно обеспечивать реализацию принципа преемственности в развитии и воспитании ребенка на дошкольной и начальной школьной ступенях образования.


Основными задачами математического развития детей дошкольного возраста являются:


- развитие у детей логико-математических представлений (представлений о математических свойствах и отношениях предметов, конкретных величинах, числах, геометрических фигурах, зависимостях и закономерностях);

- развитие сенсорных (предметно-действенных) способов познания математических свойств и отношений: обследование, сопоставление, группировка, упорядочение, разбиение;

- освоение детьми экспериментально-исследовательских способов познания математического содержания (воссоздание, экспериментирование, моделирование, трансформация);

- развитие у детей логических способов познания математических свойств и отношений (анализ, абстрагирование, отрицание, сравнение, обобщение, классификация, сериация)';

- овладение детьми математическими способами познания действительности: счет, измерение, простейшие вычисления;

- развитие интеллектуально-творческих проявлений детей: находчивости, смекалки, догадки, сообразительности, стремления к поиску нестандартных решений задач;

- развитие точной, аргументированной и доказательной речи, обогащение словаря ребенка;

- развитие активности и инициативности детей;

- воспитание готовности к обучению в школе: развитие самостоятельности, ответственности, настойчивости в преодолении трудностей, координации движений глаз и мелкой моторики рук, умений самоконтроля и самооценки.


Содержание математического развития детей дошкольного возраста определяется, наряду с целями и задачами, следующими важными факторами.


Личностно-развивающая направленность содержания математического развития дошкольников должна являться эффективным средством развития интеллектуально-творческих способностей ребенка и содействовать развитию важнейшего личностного качества — самостоятельности в решении интеллектуальных задач.


Направленность математического содержания, которое осваивает ребенок в дошкольном возрасте, является социализирующей. Накопленный логико-математический опыт ребенка обязательно станет его значимым личностным приобретением, если обеспечит ситуацию успеха в разных видах деятельности, требующих проявления интеллектуально-творческих способностей.


Содержание математического развития дошкольников пропедевтично. Осваиваемое ребенком содержание должно позволить ему на чувственном, а затем и логическом уровне познать некоторые стороны действительности и развить те структуры мышления, на основе которых впоследствии будут формироваться основные математические понятия.


Осваиваемое содержание должно соответствовать возрастным и индивидуальным возможностям дошкольников, быть ориентированным на зону их ближайшего развития.



6. Взаимосвязь понятий "развитие", "обучение", "воспитание". Математические способности.


Математическое развитие детей дошкольного возраста осуществляется как в результате приобретения ребенком знаний в повседневной жизни (прежде всего, в результате общения со взрослым), так и путем целенаправленного обу­чения на занятиях по формированию элементарных матема­тических знаний.


Именно элементарные математические знания и умения детей следует рассматривать как главное средство математического развития.


В процессе обучения у детей развивается способность точнее и полнее воспринимать окружающий мир, выделять признаки предметов и явлений, раскрывать их связи, заме­чать свойства, интерпретировать наблюдаемое; формируют­ся мыслительные действия, приемы умственной деятельно­сти, создаются внутренние условия для перехода к новым формам памяти, мышления и воображения.


Психологические экспериментальные исследования и педагогический опыт свидетельствуют о том, что благодаря систематическому обучению дошкольников математике у них формируются сенсорные, перцептивные, мыслительные, вербальные, мнемические и другие компоненты общих и спе­циальных способностей.

Задатки индивида превращаются в конкретные способности посредством учения.


Разница в уровнях развития детей, как показывает опыт, выражается главным образом в том, какими темпами и с ка­кими успехами они овладевают знаниями.


Однако при всем важном значении обучения в психиче­ском развитии личности последнее нельзя сводить к учению. Развитие не исчерпывается теми изменениями личности, которые являются прямым следствием обучения. Оно характеризуется теми «умственными поворота­ми», которые происходят в голове ребенка, когда он научает­ся говорить, читать, считать, усваивает социальный опыт, передаваемый ему взрослым.


Как показывают исследования (А. В. Запорожец, Д. Б. Эльконин, В. В. Давыдов и др.), развитие идет дальше того, что усваивается в тот или иной момент обучения. В процессе и под влиянием обучения происходит целостное, прогрессирующее изменение личности, ее взглядов, чувств, способностей. Благо­даря обучению расширяются возможности дальнейшего усвое­ния нового, более сложного материала, создаются новые ре­зервы обучения.


Между обучением и развитием существует взаимная связь. Обучение активно содействует развитию ребенка, но и само опирается на его уровень развития. В этом процессе многое зависит от того, насколько обучение нацелено на раз­витие.


Обучение может по-разному развивать ребенка в зависи­мости от его содержания и методов. Именно содержание и его структура являются гарантами математического разви­тия ребенка.


Под способностями понимается комплекс индивидуально - психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности - сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов.


Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.


Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие.


Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди педагогов заблуждений.


Во-первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей.

Во-вторых, многие думают, что способные к математике школьники отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул.

Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы, сам по себе, не имеет отношения к математических способностям. Ребенок может работать медленно и неторопливо, но, в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.


Крутецкий В.А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей):


1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;

2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;

3) Способность к оперированию числовой и знаковой символикой;

4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;

5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами;

6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);

7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;

8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;

9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.



7. Методы и приёмы математического развития дошкольников.


Разные науки используют понятие метода в связи со своей спецификой. Так, философская наука трактует метод (греч. metodos — буквально «путь к чему-то») в самом общем значении как способ достижения цели, определенным обра­зом упорядоченная деятельность.

Метод есть способ воспро­изведения, средство познания изучаемого предмета. В основе методов лежат объективные законы действительности. Метод неразрывно связан с теорией.

В педагогике метод характеризуется как целенаправлен­ная система действий воспитателя и детей, соответствую­щих целям обучения, содержанию учебного материала, са­мой сущности предмета, уровню умственного развития ре­бенка.

В теории и методике математического развития детей термин «метод» употребляется в двух смыслах: широком и узком. Метод может обозначать исторически сложившийся подход к математической подготовке детей в детском саду (монографический, вычислительный и метод взаимно-об­ратных действий).


В педагогике существует концепция, которая базируется на использовании одного метода (монометода). К такой кон­цепции относится теория поэтапного формирования умст­венной деятельности (П. Я. Гальперин, Н. Ф. Талызина). Процесс формирования деятельности рассматривается авто­рами как процесс передачи социального опыта. Это проис­ходит не исключительно путем взаимодействия учителя с учащимися, а скорее через интериоризацию соответствую­щей деятельности, формирование ее сначала во внешней ма­териальной форме, а затем преобразование во внутреннюю психическую деятельность.

Однако форсирование какого-либо одного метода обуче­ния не получило должного подтверждения на практике. Наиболее рациональным, как показывает опыт, является со­четание разнообразных методов.


При выборе методов учитываются:

  • цели, задачи обучения;

  • содержание формируемых знаний на данном этапе;

  • возрастные и индивидуальные особенности детей;

  • наличие необходимых дидактических средств;

  • личное отношение воспитателя к тем или иным методам;

  • конкретные условия, в которых протекает процесс обуче­ния и др.


Теория и практика обучения накопила определенный опыт использования разных методов обучения в работе с деть­ми дошкольного возраста. При этом классификация методов используется с опорой на средства обучения.


В начале XX в. классификация методов в основном осуществлялась по источнику получения знаний — это были словесные, на­глядные, практические методы.


Практические методы (упражнения, опыты, продуктивная деятельность) наиболее соответствуют возрастным особен­ностям и уровню развития мышления дошкольников. Сущ­ностью этих методов является выполнение детьми действий, которые состоят из рада операций. Например, счет предметов: называть числительные по порядку, соотносить каждое числи­тельное с отдельным предметом, показывая на него пальцем или останавливая взгляд на нем, последнее числительное соот­носить со всем количеством, запоминать итоговое число.

Однако излишнее использование практических методов, задержка на уровне практических действий может отрицатель­но сказываться на развитии ребенка.

Практические методы характеризуются прежде всего са­мостоятельным выполнением действий, применением ди­дактического материала. На базе практических действий у ребенка возникают первые представления о формируемых знаниях. Практические методы обеспечивают выработку умений и навыков, позволяют широко использовать приоб­ретенные умения в других видах деятельности.


Наглядные и словесные методы в обучении математике не яв­ляются самостоятельными. Они сопутствуют практическим и игровым методам. Но это отнюдь не умаляет их значения в ма­тематическом развитии детей.

К наглядным методам обучения относятся: демонстра­ция объектов и иллюстраций, наблюдение, показ, рассмат­ривание таблиц, моделей.

К словесным методам относятся: рассказывание, беседа, объяснение, пояснения, словесные дидактические игры. Часто на одном занятии используются разные методы в разном их сочетании.


Составные части метода называются методическими приемами.

Основными из них, используемыми на занятиях по математике, являются: накладывание, прикладывание, дидактичекие игры, сравнение, указания, вопросы к детям, обследование и т. д.


Между методами и методическими приемами, как изве­стно, возможны взаимопереходы. Так, дидактическая игра может быть использована как метод, особенно в работе с младшими детьми, если воспитатель с помощью игры фор­мирует знания и умения, но может — и как дидактический прием, когда игра используется, например, с целью повыше­ния активности детей («Кто быстрее?», «Наведи порядок»).


Широко распространенным является методический прием — показ. Этот прием является демонстрацией, он может характеризоваться как наглядно-практически-дей­ственный.

К показу предъявляются определенные требова­ния: четкость и расчлененность; согласованность действия и слова; точность, краткость, выразительность речи.


Одним из существенных словесных приемов в обучении детей математике является инструкция, отражающая суть той деятельности, которую предстоит выполнить детям. В стар­шей группе инструкция носит целостный характер, дается до выполнения задания. В младшей группе инструкция должна быть короткой, нередко дается по ходу выполнения действий.


Особое место в методике обучения математике занимают вопросы к детям. Они могут быть репродуктивно-мнемические, репродуктивно-познавательные, продуктивно-позна­вательные. При этом вопросы должны быть точными, конк­ретными, лаконичными. Для них характерна логическая по­следовательность и разнообразие формулировок. В процессе обучения должно быть оптимальное сочетание репродуктив­ных и продуктивных вопросов в зависимости от возраста де­тей, изучаемого материала. Вопросы ценны тем, что они обеспечивают развитие мышления. Следует избегать под­сказывающих и альтернативных вопросов.


Система вопросов и ответов детей в педагогике называется беседой. В ходе беседы воспитатель следит за правильным ис­пользованием детьми математической терминологии, гра­мотностью речи. Это сопровождается различными пояснени­ями. Благодаря пояснениям уточняются непосредственные восприятия детей. Например, воспитатель учит детей обсле­довать геометрическую фигуру и при этом поясняет: «Возьми­те фигуру в левую руку — вот так, указательным пальцем пра­вой руки обведите, покажите стороны квадрата (прямоуголь­ника, треугольника), они одинаковы. У квадрата есть углы. Покажите углы». Или другой пример. Воспитатель учит детей измерению, показ практических действий сопровождает по­яснениями, как следует наложить меру, обозначить ее конец, снять ее, снова наложить. Потом показывает и рассказывает, как подсчитываются меры.


Чем старше дети, тем большее значение в их обучении имеют проблемные вопросы и проблемные ситуации.

Проб­лемные ситуации возникают тогда, когда:

  • связь между фактом и результатом раскрывается не сразу, а постепенно. При этом возникает вопрос: что это такое? (опускаем разные предметы в воду: одни тонут, а другие — нет);

  • после изложения некоторой части материала ребенку необходимо сделать предположение (эксперимент с теп­лой водой, таянием льда, решение задач);

  • использование слов «иногда», «некоторые», «только в от­дельных случаях» служит своеобразными опознаватель­ными признаками или сигналами фактов или результатов (игры с обручами);

  • для понятия факта необходимо сопоставить его с другими фактами, создать систему рассуждений, т. е. выполнить некоторые умственные операции (измерение разными мерами, счет группами и др.).


Многочисленные экспериментальные исследования дока­зали, что при выборе метода важным является учет содержания формируемых знаний. Так, при формировании пространствен­ных и временных представлений ведущими методами явля­ются дидактические игры и упражнения (Т. Д. Рихтерман, О. А. Фунтикова и др.). При ознакомлении детей с формой и величиной наряду с различными игровыми методами и прие­мами используются наглядные и практические.


Место игрового метода в процессе обучения оценивается по-разному. В последние годы разработана идея простейшей логической подготовки дошкольников, введения их в область логико-математических представлений (свойства, операции с множествами) на основе использования специальной серии «обучающих» игр (А. А. Столяр). Эти игры ценны тем, что они актуализируют скрытые интеллектуальные возможности де­тей, развивают их (Б. П. Никитин).


Обеспечить всестороннюю математическую подготовку детей все-таки удается при умелом сочетании игровых мето­дов и методов прямого обучения. Хотя понятно, что игра увлекает детей, не перегружает их умственно и физически. Постепенный переход от интереса детей к игре к интересу к учению совершенно естествен.



8. Средства математического развития, роль развивающей среды


В теории обучения (дидактике) особое место отводится средствам обучения и влиянию их на результат этого процес­са.

Под средствами обучения понимаются: совокупности предметов, явлений, знаки (модели), действия, а также слово, участ­вующие непосредственно в учебно-воспитательном процес­се и обеспечивающие усвоение новых знаний и развитие ум­ственных способностей.

Можно сказать, что средства обуче­ния - это источники получения информации, как правило, это совокупность моделей самой различной природы.


Разли­чают материально-предметные (иллюстративные) модели и идеальные (мысленные) модели.


В свою очередь, материаль­но-предметные модели подразделяются на физические, пред­метно-математические (прямой и непрямой аналогии) и пространственно-временные.

Материально-предметные модели: приборы, таблицы, диапозитивы, диафильмы и др.


Среди идеальных различают образные и логико-математические модели (описание, ин­терпретация, аналогия).Идеальные: дидактические, учебные, методические пособия.


Учитывая двухсторонний характер процесса обучения, А.П. Усова предложила свою классификацию средств обуче­ния, выделив в ней деятельность педагога и ребенка.

На этом основании она разделила дидактические средства на две группы.

Первая группа средств обеспечивает деятельность педагога и характеризуется тем, что взрослый ведет обучение в основном с помощью слова.

Во второй группе средств обу­чающее воздействие передается дидактическому материалу и дидактической игре, построенной с учетом образователь­ных задач, т. е. наглядности и практических действий ребен­ка с ней


Классификация А. П. Усовой соответствует характеристи­ке дидактических средств, которые предложены М. А. Дани­ловым, И. Я. Лернером, М. Н. Скаткиным.

Эти ученые под средствами понимают то, с помощью чего обеспечивается пе­редача информации, — слово, наглядность, практическое действие.


Средства обучения обладают следующими основными функциями:

  1. реализуют принцип наглядности;

  2. репрезентируют сложные абстрактные математические понятия в доступные;

  3. ведут к овладению способами действий;

  4. способствуют накоплению чувственного опыта;

  5. дают возможность воспитателю управлять познаватель­ной деятельностью ребенка;

  6. увеличивают объем самостоятельной познавательной де­ятельности детей;

  7. рационализируют, интенсифицируют процесс обучения.

Следует отметить, что эти функции постоянно меняются в связи с совершенствованием теории и практики обучения детей.


Каждое средство обучения выполняет свои определен­ные функции.

Так, образ как средство обучения в основном обеспечивает развитие личного опыта ребенка, отраженного в представлениях; действие обеспечивает формирование умений и навыков; слово (воспитателя, ребенка и художест­венное слово) создает возможность формирования обоб­щенных представлений, абстрактных понятий.


Понятие «образ» несколько шире, чем наглядность. Под ним понима­ются не только разнообразные виды дидактического матери­ала, но и те образы, которые возникают на основе представ­ления памяти.

Данная трактовка обуслов­лена тем, что при формировании некоторых абстрактных математических представлений обучение осуществляется на основе прошлого опыта ребенка, т.е. на основе тех образов, предметов, явлений, действий, которые закрепились в его сознании в процессе предыдущей практической деятельно­сти.

Обучение математике в детском саду основывается на конкретных образах и представлениях. Эти конкретные представления подготавливают фундамент для формирова­ния на их основе математических понятий. Без обогащения чувственного познавательного опыта невозможно полно­ценное владение математическими знаниями и умениями.

Сделать обучение наглядным — это не только создать зрительные образы, но и включить ребенка непосредственно в практическую деятельность.

На занятиях по математике в детском саду воспитатель в зависимости от дидактических задач использует разнообразные средства наглядности.

На­пример, при обучении счету можно предложить детям реаль­ные (мячи, каштаны, куклы) или условные (палочки, кру­жочки, кубики) объекты. При этом предметы могут быть раз­ными по цвету, форме, величине. На основе сравнения разных конкретных множеств ребенок делает вывод об их количестве, равенстве или неравенстве. В этом случае глав­ную роль играет зрительный анализатор.

В другой раз эти же самые счетные операции можно вы­полнить,, активизируя слуховой анализатор, например, пред­ложив подсчитать количество хлопков, ударов в бубен и др. Можно «считать, опираясь на тактильные, двигательные ощущения.

Использование наглядности в обучении математике не­обходимо. Однако воспитатель должен помнить, что нагляд­ность не самоцель, а средство обучения. Неудачно подобран­ный наглядный материал отвлекает внимание детей, мешает усвоению знаний. Правильно подобранная наглядность повышает эффективность обучения, вызывает живой интерес у детей, облегчает усвоение и осознание материала.

Использование наглядности в педагогическом процес­се детского сада способствует обогащению и расширению непосредственного чувственного опыта детей, уточнению их конкретных представлений и тем самым развитию любознательности, значение которой в учебной деятельности трудно переоценить.


Весь наглядный материал условно мож­но разделить на два вида: демонстрационный и раздаточный.

Демонстрационный отличается от раздаточного размером и назначением. Демонстрационный материал больше по раз­меру, а раздаточный — меньше.

Значение демонстрационного наглядного материала за­ключается в том, что с его помощью можно сделать процесс обучения интересным, доступным и понятным детям, со­здать условия, чувственную опору для формирования конк­ретных математических представлений, для развития позна­вательных интересов и способностей.

Значение раздаточного наглядного материала заключает­ся прежде всего в том, что он дает возможность придать про­цессу обучения действенный характер, включить ребенка непосредственно в практическую деятельность.

Средствами наглядности могут быть реальные предметы и явления окружающей действительности, игрушки, геомет­рические фигуры, карточки с изображением математиче­ских символов — цифр, знаков, действий (рис. 1—4); широ­ко используется словесная наглядность — образное описа­ние объекта, явления окружающего мира, художественные произведения, устное народное творчество и др.


Характер наглядности, ее количество и место в учебном процессе зависят от цели и задач обучения, от уровня усвоения детьми знаний и умений, от места и соотношения конкретного и абстрактного на разных этапах усвоения знаний.

Так, при формировании у детей начальных представлений о числе и счете в качестве наглядного материала широко используются разнообразные конкретные множества, при этом весьма суще­ственно их разнообразие (множество предметов, их изображе­ний, звуков, движений). Воспитатель обращает внимание де­тей на то, что множество состоит из отдельных элементов, оно может быть поделено на части (подмножество). Дети практи­чески действуют с множеством, постепенно усваивая данное свойство множества при наглядном сравнении — коли­чество.


Наглядный материал способствует пониманию детьми того, что любое множество состоит из отдельных групп пред­метов, которые могут пребывать в одинаковом и неодинако­вом количественном соотношении, а это готовит их к усвое­нию счета с помощью слов-числительных. Одновременно дети учатся раскладывать предметы правой рукой слева на­право.

Постепенно, овладевая счетом множеств, состоящих из разных предметов, дети начинают понимать, что число не за­висит ни от размера предметов, ни от характера их размеще­ния. Упражняясь в наглядном количественном сравнении множеств, дети на практике осознают соотношения между смежными числами (6 меньше 7, а 7 больше 6) и учатся уста­навливать равенство. На следующем этапе обучения конк­ретные множества заменяются «числовыми фигурами», «числовой лесенкой» и др.


В качестве наглядного материала используются сюжет­ные картинки, рисунки. Так, рассматривание художествен­ных картин дает возможность осознать, выделить, уточнить временные и пространственные отношения, характерные особенности величины, формы окружающих предметов.


В конце третьего — начале четвертого года жизни ребенок способен воспринимать множество, представленное с помо­щью символов, знаков (квадраты, кружки и др.). Использо­вание знаков (символической наглядности) дает возмож­ность выделять существенные признаки, связи и отношения в определенной чувственно-наглядной форме. Особое зна­чение символическая наглядность имеет при обучении детей вычислительной деятельности (использование цифр, знаков арифметических действий, моделей), при формировании у них пространственных и временных представлений.

Без непосредственной практической ориентировки ребен­ка в пространстве невозможно формирование пространствен­ных представлений и понятий. Однако на определенном этапе обучения, когда необходимо понимание детьми пространст­венных отношений, более существенным является не практи­ческая ориентировка в пространстве, а именно восприятие и понимание пространственные отношений с помощью графи­ков, схем, моделей.

Формирование у детей представлений и понятий о величине и форме просто невозможно без наглядности. В связи с этим используются разнообразные фигуры как эталоны формы, графические и модельные изображения фор­мы. Одной из наиболее распространенных форм наглядностей являются учебные таблицы. Использование таблиц имеет пе­дагогический эффект лишь в том случае, если демонстрация их связана не только с пояснением воспитателя во время изложе­ния нового материала, но и с организацией самостоятельной работы детей.


На занятиях по математже широко используются посо­бия-аппликации (таблица со сменными деталями, которые закрепляются на вертикальной или наклонной плоскости с помощью магнитиков или другими способами), фланелеграф. Эта форма наглядности дает возможность детям прини­мать активное участие в изготовлении аппликаций, делать учебные занятия более интересными и продуктивными. По­собия-аппликации динамичны, дают возможность варьиро­вать, разнообразить модели. Например, с помощью фланелеграфа удобно перегруппировывать геометрические фигу­ры, решать арифметические задачи и примеры.

К наглядности относятся и технические средства обуче­ния (ТСО). Среди технических средств обучения математике наибольшее значение приобретают экранные средства — диапроекторы, эпипроекторы и др. Использование техниче­ских средств дает возможность полнее реализовать возмож­ности воспитателя, использовать готовые изографические или печатные материалы. Рекомендуется использовать так­же диапозитивы.

Воспитатели могут сами изготавливать на­глядный материал, а также приобщать детей к этому (осо­бенно при изготовлении раздаточного наглядного материа­ла).

Материал изготавливается из бумаги, картона, поролона, папье-маше. Часто в качестве счетного материала использу­ется природный (каштаны, желуди, камушки). Чтобы этот материал имел эстетический вид, его покрывают красками и лаками.

Для иллюстрации разных понятий, связанных с множест­вами предметов, нередко используются универсальные мно­жества. Такие множества-блоки в свое время были предло­жены Л. С. Выготским и венгерским психологом-математи­ком Д. Дьенешем. Позднее более детально этот материал разработал и описал логические упражнения с ним А. А. Сто­ляр.

Комплект состоит из 48 деревянных или пластмассовых блоков. Каждый блок имеет четыре свойства, которым он соответствует: форму, цвет, размер и толщину. Есть четыре формы: круг, квадрат, прямоугольник, треугольник; три цвета: красный, синий, желтый; два размера: большой и ма­ленький; две толщины: толстый и тонкий. Автор назвал этот дидактический материал «пространственный вари­ант». Параллельно с этим можно использовать «плоский ва­риант» блоков, которыми являются геометрические фигу­ры. Этот комплект состоит из 24 фигур. Каждая из этих фи­гур полностью характеризуется тремя свойствами: формой, цветом и величиной.


Наглядный материал должен соответствовать определен­ным требованиям:

- предметы для счета и их изображения должны быть из­вестны детям, они берутся из окружающей жизни;

- чтобы научить детей сравнивать количества в разных со­вокупностях, необходимо разнообразить дидактический материал, который можно было бы воспринимать разны­ми органами чувств (на слух, зрительно, на ощупь);

- наглядный материал должен быть динамичным и в доста­точном количестве; отвечать гигиеническим, педагогическим и эстетическим требованиям.


Особые требования предъявляются к методике использо­вания наглядного материала. При подготовке к занятию вос­питатель тщательно продумывает, когда (в какой части заня­тия), в какой деятельности и как будет использованный наглядный материал. Необходимо правильно дозировать на­глядный материал. Негативно сказывается на результатах обучения как недостаточное его использование, так и из­лишки.

Наглядность не должна использоваться только для ак­тивизации внимания. Это слишком узкая цель. Необходи­мо глубже анализировать дидактические задачи и в соот­ветствии с ними подбирать наглядный материал.

Так, если дети получают начальные представления о тех или других свойствах, признаках объекта, то можно ограничиваться небольшим количеством средств. В младшей группе, зна­комя детей с тем, что множество состоит из отдельных эле­ментов, воспитатель демонстрирует множество колец на подносе. И этого бывает достаточно для одного занятия. При ознакомлении детей пятого года жизни с новой геомет­рической фигурой — треугольником — воспитатель демон­стрирует разные по цвету, величине и форме треугольники (равносторонние, разносторонние, равнобедренные, пря­моугольные). Без такого разнообразия невозможно выделить существенные признаки фигуры, т.е. количество сто­рон и углов, невозможно обобщить, абстрагироваться. Для того чтобы показать детям различные связи, отноше­ния, необходимо объединять несколько видов и форм на­глядности. Например, при изучении количественного со­става числа из единиц используются различные игрушки, геометрические фигуры, таблицы и другие виды наглядно­сти на одном занятии.

Способы использования наглядности в учебном процессе раз­личные: демонстрационный, иллюстративный и действенный.

Демонстрационный способ использования наглядности характеризуется тем, что сначала воспитатель показывает, на пример, геометрическую фигуру, а потом вместе с детьми об­следует ее.

Иллюстративный способ предполагает использование наглядного материала для иллюстрации, конкретизации ин­формации воспитателя. Например, при ознакомлении с де­лением целого на части воспитатель подводит детей к необ­ходимости этого процесса, а потом практически выполняет деление.

Для действенного способа использования наглядного материала характерным является связь слова воспитателя с действием. Примером этого может быть обучение детей непосредственному сравнению множеств путем наклады­вания и прикладывания или обучение детей измерению, когда воспитатель рассказывает и показывает, как нужно измерять.

Как правило, на занятиях по математике используются несколько средств, поэтому очень важно продумывать место и порядок их размещения. Демонстрационный материал размещается в удобном для использования месте, в опреде­ленной последовательности. После использования нагляд­ного материала его необходимо убрать, чтобы не отвлекал детей. С этой целью хорошо использовать салфетки, коро­бочки, ширмочки. Раздаточный материал детям младшей группы дают в индивидуальных конвертах, в коробках, на подносах; в старшей группе — на общем подносе для каждо­го стола.

Необходимо научить детей пользоваться раздаточным материалом. Для этого воспитатель следит, чтобы дети осознанно и самостоятельно выполняли практические дей­ствия, аккуратно брали материал правой рукой, размещали его соответственно заданиям, после работы с ним клали на место.

Таким образом, эффективность обучения достигается со­единением слова воспитателя, практических действий детей и различных средств наглядности, поскольку процесс формирования понятий неотделим от конкретных представле­ний, от формирования способов действий.


Развивающая предметная среда - это совокупность природных, социальных и культурных предметных средств, удовлетворяющих потребности актуального, ближайшего перспективного развития ребенка, становления его творческих способностей, обеспечивающих разнообразие деятельности.

Основной неотъемлемой частью развивающей среды являются игры, способствующие развитию интеллектуальных и творческих способностей ребенка. «Без игры нет и не может быть полноценного умственного развития». Игра - это огромное светлое окно, через которое в духовный мир ребенка вливается живительный поток представлений понятий.

В математике заложены огромные возможности для развития мышления детей в процессе их обучения с самого раннего возраста. Работая по формированию элементарных математических представлений у детей дошкольного возраста важным условием в организации развивающей среды является отбор педагогом игр, игрушек, игрового оборудования, оптимальных с точки зрения количества и качества.

Насыщение предметно - развивающей среды должно быть разумным.

Игры должны соответствовать возрасту детей и задачам, которые решаются на данном этапе.

Педагогу необходимо своевременно изменять предметно-развивающую среду за счёт новых атрибутов, игрушек, игрового оборудования в соответствии с новым содержанием игр.

Конечно же, важна и доступность предметно - развивающей среды для детей: игры, игрушки, различные игровые атрибуты должны располагаться не выше вытянутой руки ребенка.

Развивающая среда выступает в роли стимулятора, движущей силы в целостном процессе становления личности ребёнка.

Для формирования элементарных математических представлений детей важно создать такую среду и такую систему отношений, которые бы стимулировали самую разнообразную его умственную деятельность и развивали бы в ребенке именно то, что в соответствующий момент способно наиболее эффективно развиваться.



9. Авторские и структурированные пособия по математическому развитию дошкольников.



Авторские методики раннего развития сейчас очень популярны. Это и понятно, ведь в раннем возрасте ребенок впитывает все, как губка, схватывая буквально на лету большой объем информации. Игры Никитина и Воскобовича, блоки Дьенеша и палочки Кюизенера, игры и книги Лены Даниловой и Марии Монтессори, методики обучения чтению Домана-Маниченко, Зайцева и Чаплыгина являются

помощниками в раннем развитии ребенка.


Структурированные и универсальные дидактические пособия: логические блоки Дьениша, цветные палочки Кьюизенера.


Особая роль на современном этапе обучения отводится дидактическим средствам: логическим блокам Дьенеша и палочкам Кюизенера. Эти дидактические средства используются в разных странах. Отечественным педагогам они тоже знакомы, но в практической работе с детьми используются еще не достаточно. Причины этого в недооценке развивающих возможностей этих дидактических материалов, а так же в недостаточном количестве соответствующей методической литературы.


Логические блоки Дьенеша

hello_html_44fe13c3.png



Набор логических блоков состоит из 48 объемных пластмассовых геометрических фигур, различающихся по:

- цвету - синие, желтые, красные,

- форме - круги, квадраты, треугольники, прямоугольники,

- размеру - большие, маленькие,

- толщине - тонкие, толстые.


Таким образом, каждая фигура характеризуется четырьмя свойствами. В наборе нет даже двух фигур, одинаковых по всем свойствам.

Основная цель – научить ребенка решать логические задачи на разбиение по свойствам.

Число игр с блоками Дьенеша велико. Самые маленькие могут с помощью блоков познакомиться с простейшими геометрическими формами, понятиями "большой-маленький", "толстый-тонкий", "такой же","не такой". Для более старших детей предлагаются игры на сравнение, обобщение, классификацию предметов по нескольким признакам. Игры, где предлагается кодировать - декодировать свойства блоков с помощью специальных символов.


В процессе разнообразных действий с логическими блоками Дьенеша (разбиение, выкладывание по определенным правилам, перестроение) дети овладевают различными мыслительными умениями.

К их числу относятся умение анализа, абстрагирования, сравнения, классификации, обобщения, кодирования, а так же логические операции «не», «и», «или».

Комплект логических блоков дает возможность вести детей в их развитии сначала осваивать умения выявлять и абстрагировать в предметах одно свойство (цвет, форму, размер, толщину), сравнивать, классифицировать и обобщать предметы по каждому из этих свойств.

Затем они овладевают умениями анализировать, сравнивать, классифицировать и обобщать предметы сразу по двум свойствам (цвету и форме, форме и размеру, размеру и толщине и т.д.), несколько позже – по трем (цвету, форме и размеру; форме, размеру и толщине; цвету, размеру и толщине) и по четырем (цвету, форме, размеру и толщине).


Палочки Кюизенера


Игры с палочками Кюизенера проводятся так же в системе, они служат для выработки навыков счета, измерения, вычислений, выполнение разнообразных практических действий.


hello_html_m37e7b6b1.png


Комплект состоит из 116 пластмассовых призм (палочек) 10-ти различных цветов и длин. Каждая палочка – это число, выраженное цветом и величиной. Наименьшая палочка имеет длину 10 мм и является кубом, следующие с последовательным увеличением по длине на 10 мм.


Использование чисел в цвете позволяет развивать у дошкольников представление о числе на основе счета и измерения. К выводу, что число появляется на основе счета и измерения, дети приходят на базе практической деятельности, в результате разнообразных упражнений.


С помощью цветных палочек детей также легко подвести к осознанию отношений больше - меньше, больше – меньше на 1,2,3 .., научить делить целое на части и измерять объекты условными мерками, поупражнять в запоминании состава чисел из единиц и меньших чисел, подойти вплотную к сложению, умножению, вычитанию и делению чисел.


Выделение цвета и длины палочек поможет детям освоить ключевые для их возраста средства познания – сенсорные эталоны (эталоны цвета, размера) и такие способы познания, как сравнение, сопоставление предметов (по цвету, длине, ширине, высоте).


Кроме этого, играя с палочками, дети осваивают такие понятия как «левое», «длинное», «между», «каждый», «одна из…», «какой-нибудь», «быть одного и того же цвета», «быть не голубого цвета», «иметь одинаковую длину» и др.


Пособие Математический планшет ("Школа интересных наук"


hello_html_m256a219d.png


Развитие мелкой моторики, азы геометрии

Математический планшет – это возможность исследовательской деятельности для ребенка, содействие его психосенсомоторному когнитивному (познавательному) развитию, а также развитию творческих способностей. Математический планшет – это поле со штырьками для рисования резиночками.

Занимательные задачи, игры с буквами и цифрами будут способствовать развитию интереса, любознательности. Математический планшет ("Школа интересных наук") дает возможность ребенку на чувственном опыте освоить некоторые базовые концепции планиметрии: периметр, площадь, фигура и т. д. , развивать индуктивное и дедуктивное мышление, дать представление о симметрии, трансформации размера, формы. Математический планшет даст возможность в играх осваивать систему координат.


РАЗВИВАЮЩИЕ ИГРУШКИ И ИГРЫ


Развивающие игры Никитина


Они обладают характерными особенностями:

Каждая игра Никитина представляет собой набор задач, которые ребенок решает с помощью кубиков, кирпичиков, квадратов из дерева или пластика, деталей конструктора-механика и т.д.

hello_html_11d6059f.pnghello_html_m61fc30a3.png

Задачи даются ребенку в различной форме: в виде модели, плоского рисунка, рисунка в изометрии, чертежа, письменной или устной инструкции и т.п., и таким образом знакомят его с разными способами передачи информации.

Задачи расположены примерно в порядке возрастания сложности, т.е. в них использован принцип народных игр: от простого к сложному.

Задачи имеют очень широкий диапазон трудностей: от доступных иногда 2-3-летнему малышу до непосильных среднему взрослому. Поэтому игры Никитина могут возбуждать интерес в течение многих лет (до взрослости).

Постепенное возрастание трудности задач в играх Никитина позволяет ребенку идти вперед и совершенствоваться самостоятельно, т.е. развивать свои творческие способности, в отличие от обучения, где все объясняется и где формируются только исполнительские черты в ребенке.

Решение задачи предстает перед ребенком не в абстрактной форме ответа математической задачи, а в виде рисунка, узора или сооружения из кубиков, кирпичиков, деталей конструктора, т.е. в виде видимых и осязаемых вещей. Это позволяет сопоставлять наглядно "задание" с "решением" и самому проверять точность выполнения задания.

Большинство творческих развивающих игр Никитина не исчерпывается предлагаемыми заданиями, а позволяет детям и родителям составлять новые варианты заданий и даже придумывать новые развивающие игры, т.е. заниматься творческой деятельностью более высокого порядка.


Игры Никитина позволяют каждому подняться до "потолка" своих возможностей, где развитие идет наиболее успешно.



Арифметический счет

hello_html_50ca19ab.png



Эта игрушка - своеобразные счеты. Колечки перемещаются по аркам из толстой проволоки. Всего 10 арок разной высоты. На первой арке - 1 колечко, на второй - 2, на последней - 10. Под каждой аркой написана цифра, соответствующая числу колец на ней.

Игрушка очень полезна при обучении счету. Для начала можно просто пересчитывать колечки. Потом познакомить с изображением цифр. И, наконец, можно решать простые примеры, в этом очень помогает разделитель по середине. Например, оставляем на проволоке с цифрой 5 три колечка, спрашиваем ребенка: "Сколько колечек не хватает? (разделитель по середине не дает видеть, что "происходит" с другой стороны). Ответив, ребенок может сам проверить себя.


Игра с волшебными наклейками. Волшебная геометрия

hello_html_6ad4606c.png


Игра состоит из большого картонного поля, 34х48 см в разложенном виде, и набора наклеек. Наклейки многоразовые, то есть их можно многократно приклеивать-отклеивать.

На поле игры "Волшебная геометрия" изображено море с небольшими островками. В набор наклеек входит лодка, капитан, помощник капитана и динозаврик, который может жить на одном из островов, а также множество геометрических фигур различных форм, цветов и размеров. Можно давать ребенку различные задания: сделать один остров островом Треугольников, а второй - островом Овалов, разделить фигуры по размеру ... Геометрические фигуры также можно использовать для постройки различных строений и сложных фигур.


Игра с волшебными наклейками. Волшебный счет


hello_html_m921de63.png


Игра состоит из большого картонного поля, 34х48 см в разложенном виде, и набора наклеек. Наклейки многоразовые, то есть их можно многократно приклеивать-отклеивать.

Поле игры "Волшебная счет" неожиданное, это не просто цветной лист или школьная доска, как можно было бы ожидать, а уголок природы. Здесь и пруд, и кусочек леса, и плодовые деревья, и грядки. Наклейки позволят "оживить" картинку, среди них грибы, морковки, яблоки, ежики, лягушки ...

Всех предметов несколько, их удобно считать, сравнивать количество. Кроме того, в комплект входят наклейки цифры от 0 до 9, знаки +, =, <, >.

Играя, можно предложить ребенку решить простейшие задачи, например, на кочках сидело 3 лягушки, одна ускакала, сколько осталось, или мальчик нашел 2 гриба, а потом еще 3, сколько всего грибов нашел мальчик.


Пособие «Пять в кубе»

hello_html_m49aabc36.png


Для детей двух-трёх лет кубики — прекрасный строительный материал. В этом же возрасте малыши охотно знакомятся с буквами и цифрами, выкладывают с помощью родителей первые слова.

C четырёх-пятилетними детьми уже можно составлять примеры на сложение и вычитание, составлять и прочитывать многозначные числа. В школе с кубиками намного легче будет изучать сложение, вычитание, умножение (в том числе и столбиком), деление, составлять уравнения.



10. Формы организации работы по математическому развитию.


Одним из существенных компонентов процесса обучения являются формы его организации. В дидактике «форма» (от лат. — устройство, строй, система организации, внутренняя структура) рассматривается как способ построения учебной деятельности.

Организационные формы обучения должны надежно обеспечивать осуществление задач учебного процесса, конечной целью которого является содействие всестороннему, и в первую очередь интеллектуальному, развитию детей.


Разнообразие форм обучения определяется:

-количеством обучающихся,

-местом и временем проведения занятий,

-способами деятельности детей,

- способами руководства со стороны педагога.


Исходя из особенностей организации обучения, определяемой количеством обучающихся, различают индивидуальную, коллективную и групповую (дифференцированную) форму обучения.

Самая древняя форма организации обучения — это индивидуальное обучение. Эта форма в воспитании детей дошкольного возраста использовалась и используется во все времена в семейном воспитании. Впоследствии в связи с организацией общественного дошкольного воспитания она также использовалась, но все больше в сочетании с коллективной. Индивидуальная форма обучения заключается в том, что ребенок приобретает знания, выполняет различные задания, имея возможность получения при этом непосредственной или косвенной помощи со стороны взрослого.

Особое место индивидуальная форма обучения приобрела в системе М. Монтессори. Распространена была и в системе общественного дошкольного воспитания СССР, особенно в 20—30-е гг. (системы Е. И. Тихеевой, Ф. Н. Блехер и др.).

Однако объективные условия (главным образом экономические) на первый план выдвигают коллективную и групповую НОД с детьми.


У индивидуальной формы обучения есть как положительные, так и отрицательные моменты. Положительным следует считать тот факт, что индивидуальное обучение обеспечивает накопление личного опыта, развитие самостоятельности и активности ребенка, переживание положительных эмоций от общения непосредственно с педагогом (или тем взрослым, который организует этот процесс). Оно, как правило, более результативно, нежели коллективное обучение. Именно при индивидуальном обучении сотрудничество ребенка со взрослым позволяет достигать цели. Это связано с тем, что, обучая одного ребенка, взрослый легко может увидеть (определить) его «зону ближайшего развития». А затем это новое образование входит в фонд его «актуального развития» (Л. С. Выготский).

Хотя следует отметить при этом, что индивидуальное обучение весьма экономически не выгодно. Даже если обучение организуется не с одним, а с двумя-тремя детьми одного уровня развития. К тому же в индивидуальном обучении недостаточно реализуются возможности сотрудничества и соперничества со сверстниками, которые являются важным эмоциональным фоном учения.


Возможно, именно поэтому в альтернативу индивидуальной возникла другая форма обученияколлективная, которая, естественно, более экономически выгодна.


При коллективной форме обучения один педагог работает одновременно с целой группой. Здесь налицо взаимная помощь и взаимное обучение. Но значительным недостатком коллективной формы обучения является то, что недостаточно учитываются так называемые в педагогике индивидуальные различия. У разных детей, естественно, разный темп работы, разный уровень способностей, разное отношение к деятельности и т. п. Если педагог не учитывает этого, пытается выравнять всех, подтягивая до среднего уровня одних и сдерживая:, замедляя развитие других, наиболее способных, одаренных детей, то проигрывают в таком случае и первые и вторые.

Следует отметить, к сожалению, что коллективная форма обучения в детском саду с начала 50-х гг. и до настоящего времени занимает ведущее место, в виде НОД со всей группой детей. Традиционно обучение детей осуществляется по единым программам и единым учебным пособиям. Однако дети внутри одного возраста имеют значительные индивидуальные различия, и поэтому организация обучения должна строиться с учетом этих различий.


Когда в настоящее время обсуждается проблема перестройки дошкольного воспитания, то прежде всего речь идет об обновлении форм организации обучения и воспитания детей, о рациональном сочетании индивидуального и коллективного обучения.


Учебно-воспитательный процесс, для которого характерен учет типичных индивидуальных различий детей, уровней развития, принято называть дифференцированным.


Дифференциация обучения осуществляется по следующим критериям:

- способностям или неспособностям к обучению,

- интересам,

- объему материала и степени его сложности,

- степени самостоятельности,

- темпу продвижения в обучении.


Проблема дифференцированного обучения в нашей стране остро встала под влиянием решения важных вопросов развивающего обучения (Ж. С. Выготский, Л. В. Занков, Ю. К. Бабанский и др.). В школьной дидактике обоснованы некоторые принципы развивающего обучения: обучение на высоком уровне трудности; продвижение в обучении быстрым темпом; обеспечение ведущей роли теории и др.

Проблема индивидуализации и дифференциации в обучении и воспитании детей дошкольного возраста исследовалась прежде всего с позиции развития способностей детей.


Если в массовой педагогической практике редко, то в экспериментальных исследованиях проблем обучения в основном всегда организуется дифференцированная работа с подгруппами детей, обладающих одинаковым уровнем возможностей, способностей. На основе оптимальной диагностики определяются уровни обучаемости, разрабатываются специфичные программы, соответствующие уровню развития детей, это и позволяет авторам достигать более высоких результатов обучения.


Деление на подгруппы (дифференцированное обучение) позволяет регулировать объем и сложность изучаемого материала, корректировать количество НОД в неделю (месяц). Подгруппа детей с более низким уровнем возможностей (низкий уровень развития внимания, мышления, памяти, воображения) занимается 2—3 раза в неделю, но занятия несколько короче, и количество программных познавательных задач меньше.


В современной практике дошкольных учреждений наблюдается две тенденции в организации обучения.

Часть педагогов предлагает совершенно отказаться от коллективной НОД по математике, заменив их играми, индивидуальными беседами и другими формами работы. Причем иногда наблюдается вообще спонтанное, исходя из интересов и потребностей детей, решение дидактических задач. При таком подходе программные требования реализуются в основном в небольших подгруппах с помощью самостоятельной деятельности детей. Такой подход к организации учебного процесса может иметь положительный результат только у грамотного, творческого педагога.

Другая часть педагогов отдает предпочтение коллективной форме как одной из ведущих форм учебной деятельности детей. При этом индивидуальная и дифференцированная формы обучения используются как дополнение к основной — коллективной. Они могут осуществляться в различных повседневных учебных ситуациях, т. е. в процессе организации разных режимных моментов: во время приема детей утром, в процессе одевания, раздевания, умывания, а также при руководстве деятельностью дежурных, играх и др. Так, воспитатель предлагает ребенку (нескольким детям) обратить внимание на значки (геометрические фигуры) на шкафчиках для детской одежды, на обувь (правый — левый ботинок), на размещение одежды в шкафчике (на верхней полочке лежит шапка, внизу стоят ботинки) и т. д.

На каждой коллективной НОД имеет место работа с отдельными детьми. Это может быть временное снижение требований, активная непосредственная помощь со стороны воспитателя детям, которые в ней нуждаются. Или, наоборот, предложение некоторым детям сложных, проблемных заданий с учетом их возможностей и интересов.


Особое внимание следует уделить организации такой формы как непосредственно образовательная деятельность по математическому развитию


Наиболее эффективно непосредственно образовательная деятельность по математическому развитию проходит, если организована в форме игровой деятельности. Игра является ведущим видом деятельности в дошкольном возрасте. В процессе игры решаются такие задачи, которые способствуют ускорению формирования и развития у дошкольников простейших логических структур мышления и математических представлений. Овладев логическими операциями, дети становятся более внимательными, умеют мыслить ясно и чётко, умеют в нужный момент сконцентрироваться на сути проблемы, убедить в своей правоте других. Игровая деятельность позволяет удовлетворять детскую любознательность, вовлекать детей в активное познание окружающего мира и себя в нем, помогает овладеть способами установления связей между предметами и явлениями. Играя в дидактические игры, дети даже не подозревают, что усваивают знания, овладевают навыками действия с определенными предметами, учатся культуре общения и взаимодействия друг с другом.


Во время непосредственно образовательной деятельности по математическому развитию обеспечивается сочетание и успешная реализация задач из разных разделов программы (изучение разных тем), активность, как отдельных детей, так и всей группы через использование разнообразных методов и дидактических средств, усвоение и закрепление нового материала, повторение пройденного.

Новый материал дается в первых структурных частях непосредственно образовательной деятельности, по мере усвоения он перемещается в другие части.

Последние части непосредственно образовательной деятельности обычно проводятся в форме дидактической игры, одной из функций которой является закрепление и применение знаний детей в новых условиях.

В процессе непосредственно образовательной деятельности, обычно после первой или второй части, проводятся физкультминутки - кратковременные физические упражнения для снятия утомления и восстановления работоспособности у ребят.

Показателем необходимости физкультминутки является так называемое двигательное беспокойство, ослабление внимания, отвлечение и так далее. В физкультминутку включаются 2-3 упражнения для мышц туловища, конечностей (движение рук, наклоны, прыжки т.д.). Наибольшее эмоциональное воздействие на ребят оказывают физкультурные минутки, в которых движения сопровождаются стихотворным текстом, песней, музыкой. Содержание некоторых физкультурных минуток связано с формированием элементарных математических представлений: например, сделать столько и таких движений, сколько скажет воспитатель, подпрыгнуть на месте на один раз больше (меньше), чем кружков на карточке; поднять вверх правую руку, топнуть левой ногой три раза и т. д. Такая физкультурная минутка становится самостоятельной частью непосредственно образовательной деятельности, занимает больше времени, так как она выполняет, помимо обычной, еще и дополнительную функцию - обучающую. Дидактические игры разной степени подвижности также могут успешно выступать в качестве физкультминутки.

В структуру непосредственно образовательной деятельности по математическому развитию необходимо включать оздоровительные паузы.

Для проведения оздоровительных пауз используются малые формы народного фольклора: потешки, приговорки, заклички, прибаутки. Длительность оздоровительной паузы составляет 2-3 минуты. Проговаривая слова потешек или прибауток, дети обязательно сочетают их с движениями, направленными на увеличение двигательной активности или с элементами самомассажа, дыхательных и пальчиковых упражнений, гимнастики для глаз, способствующими расслаблению мышц и снятию нервно-эмоционального напряжения. Оздоровительные паузы проводятся с учетом физических нагрузок, эмоционального состояния воспитанников, их потребности в двигательной активности. Организуя оздоровительные паузы с детьми, педагоги могут ввести игровой персонаж, использовать музыкальное сопровождение.


Современные требования к жизни таковы, что увеличение информационной нагрузки и усложнение программ для дошкольников неизбежно. В последнее десятилетие вопросы развивающего обучения рассматриваются в тесной связи с интеграцией программных задач, интеграцией разных видов деятельности детей. Особенно это характерно для обучения дошкольников математике.

Одним из новых подходов позволяющим компенсировать негативное влияние повышенных интеллектуальных нагрузок является применение такой формы как интегрированная непосредственно образовательная деятельность. Интегрированная непосредственно образовательная деятельность поможет устранить все те неизбежные противоречия, которые, несомненно, возникнут между развитием личности ребенка и педагогическим процессом, сгладят все те несоответствия между процессом получения новых знаний и подвижной природой ребенка.

Во время интегрированной непосредственно образовательной деятельности объединяются в нужном соотношении в одно целое элементы математического развития и физической, социальной, конструктивной, изобразительной деятельности, удерживая при этом внимание детей разных темпераментов на максимуме. Достигается это за счет того, что каждый малыш найдет близкие для себя темы.

Интегрированная непосредственно образовательная деятельность в полной мере соответствует активной и подвижной природе детей, позволяет им рассмотреть в разных плоскостях объект изучения и попутно закрепить на практике полученные знания. Дошкольник попросту не успевает "устать" от объема полученной на занятии новой информации, ведь в нужный момент он переключается на новую форму подачи материала. Наибольший интерес у детей вызывают игры-путешествия, сюжетно-дидактические игры, игры-проекты, которые позволяют любое явление увидеть и понять целостно, а не в разрозненном виде, как это нередко бывает во время обычной непосредственно образовательной деятельности.


Для детей младшего и среднего дошкольного возраста более естественным является приобретение знаний, умений в игровой, конструктивной, двигательной, изобразительной деятельности. Поэтому рекомендуется один-два раза в месяц проводить интегрированные НОД: математику и рисование; математику и физкультуру; конструирование и математику; занятия по аппликации и математику и т. д. При этом следует различать, когда на занятиях по математике используется как фрагмент (часть занятия) рисование или конструирование, а когда, наоборот, на занятии по аппликации, физической культуре в начале или в конце занятия решаются отдельные задачи по математике.


Экспериментальные исследования и педагогическая практика обучения дошкольников элементам математики убеждают в преимуществе такой организации учебного процесса, при которой органично сочетаются различные формы обучения.




11. Соотношение специально- организованного обучения, совместной и самостоятельной деятельности в организации математического развития дошкольников.


Математическое развитие осуществляется во всех структурах педагогического процесса: в совместной деятельности взрослого с детьми (непосредственно образовательная деятельность и режимные моменты), самостоятельной детской деятельности, тем самым, детям предоставляется возможность анализировать, сравнивать, обобщать.


Главную педагогическую задачу интеллектуального развития дошкольников Л.М. Кларина видит в создании таких условий, при которых у ребенка возникло бы желание научиться и имелась бы возможность это сделать. Такое желание возникает тогда, когда он сталкивается с трудностью, когда для его преодоления необходимо овладеть новыми умениями, когда проявляется потребность учиться, когда он получает удовольствие в процессе учения и когда, наконец, на помощь ребенку приходит игра - это самостоятельное открытие мира. Но интерес к игре пропадает, если вовремя не внести в нее нечто новое, что вновь приведет к открытиям. Словом, играть и учиться - вот правило работы с дошкольниками. Причем учиться нужно так, чтобы это воспринималось как игра, как самоценная деятельность, результат и процесс которой интересен ребенку и доставляет ему удовольствие. Лишение детей удовольствия, инициативы, как правило, ведет к потере игры.


НОД как основная форма организации обучения нашло свое подтверждение в исследованиях A.M. Леушиной.


В последние годы учебная модель организации образовательного процесса подвергается критике за жесткую регламентацию детской деятельности. Однако, отказаться от нее полностью нецелесообразно. От проведения занятий не отказываются программы -"Радуга", "Развитие", "Детство".


Комплексно-тематическая модель - допускает вариативность позиций взрослого (в какие-то моменты он выполняет роль учителя; в какие-то роль партнера по деятельности.


Предметно-средовая модель - обучение математике направлено на преодоление стандартного подхода к детям, предоставление им большой самостоятельности, индивидуализацию образовательного процесса. Роль взрослого заключается в организации развивающей предметной среды, в готовности его подключиться в любой момент к деятельности ребенка.


Н.Я. Михайленко и Н.А. Короткова в ориентирах и требованиях к обновлению содержания дошкольного образования указывают, что наиболее эффективная модель "сборная", в соответствии с которой весь образовательный процесс в ДОУ разделяется на 3 блока:


1) специально организованное обучение в форме НОД;

2) совместная деятельность взрослого с детьми, строящаяся на непринужденной, необязательной форме;

3) совместная самостоятельная деятельность самих детей.


Эта модель хорошо вписывается современный образовательный процесс по формированию математических представлений:

- регламентированные НОД по математике готовят ребенка к школе (в плане введения в базовые академические понятия и подготовки в психологическом плане);

- в совместной деятельности происходит опосредованное обучение на основе сотрудничества и сотворчества взрослого с ребенком,

- в ходе свободной самостоятельной деятельности создаются условия для его творческой самореализации.


Н.Я. Михайленко, Н.А. Короткова справедливо утверждают, что по отношению к детям воспитатель может занимать различные позиции:

- позицию учителя, который ставит перед детьми задачи и определяет способы их решения, при этом находясь в положении "над" ребенком: позицию включенного в деятельность равного партнера, ненавязчиво рекомендуя детям различные способы их более рациональной деятельности, выполняемой вместе с ними;

- позицию создателя развивающей среды, предоставляя детям возможность действовать свободно и самостоятельно.


12. Требования к организации занятий в разных возрастных группах.


Полноценное математическое развитие обеспечивает организованная, целенаправленная деятельность, в ходе которой воспитатель продуманно ставит перед детьми познавательные задачи, помогает найти адекватные пути и способы их решения.

Формирование элементарных математических представлений у дошкольников осуществляется на занятиях и вне их, в детском саду и дома.

Занятия (НОД) являются основной формой развития элементарных математических представлений в детском саду. На них возлагается ведущая роль в решении задач общего умственного и математического развития ребенка и подготовки его к школе.

Занятия по формированию элементарных математических представлений (ФЭМП) у детей строятся с учетом общедидактических принципов: научности, системности и последовательности, доступности, наглядности, связи с жизнью, индивидуального подхода к детям и др.


Во всех возрастных группах занятия проводятся фронтально, т. е. одновременно со всеми детьми. Лишь во второй младшей группе в сентябре рекомендуется проводить занятия по подгруппам (6—8 человек), охватывая всех детей, чтобы постепенно приучить их заниматься вместе.

Количество занятий определено в так называемом «Перечне занятий на неделю», содержащемся в Программе детского сада. Оно относительно невелико: одно (два в подготовительной к школе группе) занятие в неделю.

С возрастом детей увеличивается длительность занятий: от 15 минут во второй младшей группе до 25—30 минут в подготовительной к школе группе.

Поскольку занятия математикой требуют умственного напряжения, их рекомендуют проводить в середине недели в первую половину дня, сочетать с более подвижными физкультурными, музыкальными занятиями или занятиями по изобразительному искусству.


Каждое занятие занимает свое, строго определенное место в системе занятий по изучению данной программной задачи, темы, раздела, способствуя усвоению программы развития элементарных математических представлений в полном объеме и всеми детьми.


В работе с дошкольниками новые знания даются небольшими частями, строго дозированными «порциями». Поэтому общую программную задачу или тему обычно делят на ряд более мелких задач — «шагов» и последовательно реализуют их на протяжении нескольких занятий.


Например, вначале дети знакомятся с длиной, затем шириной и, наконец, высотой предметов. Для того чтобы они научились безошибочно определять длину, ставится задача распознавания длинной и короткой полосок путем их сравнения приложением и наложением, затем подбирается из ряда полосок разной длины такая, которая соответствует предъявленному образцу; далее на глаз выбирается полоска самая длинная (или самая короткая) и одна за другой укладываются в ряд. Так, длинная полоска на глазах самого ребенка становится более короткой по сравнению с предыдущей, а это раскрывает относительность смысла слов длинный, короткий.

Такие упражнения постепенно развивают глазомер ребенка, приучают видеть отношения между размерами полосок, вооружают детей приемом сериации (укладывание полосок по возрастающей или убывающей длине). Постепенность в усложнении программного материала и методических приемов, направленных на усвоение знаний и умений, позволяет детям почувствовать успехи в своей работе, свой рост, а это в свою очередь способствует развитию у них все большего интереса к занятиям математикой.


Решению каждой программной задачи посвящается несколько занятий, и затем в целях закрепления к ней неоднократно возвращаются в течение года.

Количество занятий по изучению каждой темы зависит от степени ее трудности и успешности овладения ею детьми. Поквартальное распределение материала в программе каждой возрастной группы на протяжении учебного года позволяет полнее реализовать принцип системности и последовательности.


На занятиях, кроме «чисто» образовательных, ставятся также и задачи по развитию речи, мышления, воспитанию качеств личности и черт характера, т. е. разнообразные воспитательные и развивающие задачи.


В летние месяцы (V квартал) занятия по обучению математике ни в одной из возрастных групп не проводятся. Полученные детьми знания и умения закрепляются в повседневной жизни: в играх, игровых упражнениях, на прогулках и т. д.


Программное содержание занятия обусловливает его структуру.

В структуре занятия выделяются отдельные части: от одной до четырех-пяти в зависимости от количества, объема, характера задач и возраста детей.

Часть занятия как его структурная единица включает упражнения и другие методы и приемы, разнообразные дидактические средства, направленные на реализацию конкретной программной задачи.

Общая тенденция такова: чем старше дети, тем больше частей в занятиях. В самом начале обучения (во второй младшей группе) занятия состоят из одной части. Однако не исключается возможность проведения занятий с одной программной задачей и в старшем дошкольном возрасте (новая сложная тема и т. д.). Структура таких занятий определяется чередованием разных видов деятельности детей, сменой методических приемов и дидактических средств.

Все части занятия (если их несколько) достаточно самостоятельны, равнозначны и вместе с тем связаны друг с другом.

Структура занятия обеспечивает

- сочетание и успешную реализацию задач из разных разделов программы (изучение разных тем),

-активность как отдельных детей, так и всей группы в целом,

-использование разнообразных методов и дидактических средств,

-усвоение и закрепление нового материала, повторение пройденного.


Новый материал дается в первой или первых частях занятия, по мере усвоения он перемещается в другие части. Последние части занятия обычно проводятся в форме дидактической игры, одной из функций которой является закрепление и применение знаний детей в новых условиях.


В процессе занятий, обычно после первой или второй части, проводятся физкультминутки — кратковременные физические упражнения для снятия утомления и восстановления работоспособности у ребят. Показателем необходимости физкультминутки является так называемое двигательное беспокойство, ослабление внимания, отвлечение и т. д. В физкультминутку рекомендуется включать 2—3 упражнения для мышц туловища, конечностей (движение рук, наклоны, прыжки и т. д.).

Наибольшее эмоциональное воздействие на ребят оказывают физкультурные минутки, в которых движения сопровождаются стихотворным текстом, песней, музыкой. Возможно связывать их содержание с формированием элементарных математических представлений: сделать столько и таких движений, сколько скажет воспитатель, подпрыгнуть на месте на один раз больше (меньше), чем кружков на карточке; поднять вверх правую руку, топнуть левой ногой три раза и т. д. Такая физкультурная минутка становится самостоятельной частью занятия, занимает больше времени, так как она выполняет, помимо обычной, еще и дополнительную функцию — обучающую.

Дидактические игры разной степени подвижности также могут успешно выступать в качестве физкультминутки.

В практике работы по формированию элементарных математических представлений сложились следующие типы занятий:

1) занятия в форме дидактических игр;

2) занятия в форме дидактических упражнений;

3) занятия в форме дидактических упражнений и игр.

Занятия в форме дидактических игр широко применяются в младших группах. В этом случае обучение носит незапрограммированный, игровой характер. Мотивация учебной деятельности также является игровой. Воспитатель пользуется в основном методами и приемами опосредованного педагогического воздействия: применяет сюрпризные моменты, вводит игровые образы, создает игровые ситуации на протяжении всего занятия, в игровой форме его заканчивает. Упражнения, с дидактическим материалом, хотя и служат учебным целям, приобретают игровое содержание, целиком подчиняясь игровой ситуации.

Занятия в форме дидактических игр отвечают возрастным особенностям маленьких детей; эмоциональности, непроизвольности психических процессов и поведения, потребности в активных действиях. Однако игровая форма не должна заслонять познавательное содержание, превалировать над ним, быть самоцелью. Формирование разнообразных математических представлений является главной задачей таких занятий.


Занятия в форме дидактических упражнений используются во всех возрастных группах. Обучение на них приобретает практический характер. Выполнение разнообразных упражнений с демонстрационным и раздаточным дидактическим материалом ведет к усвоению детьми определенных способов действий и соответствующих им математических представлений.


Воспитатель применяет приемы прямого обучающего воздействия на детей: показ, объяснение, образец, указание, оценка и т. д. В младшем возрасте учебная деятельность мотивируется практическими и игровыми задачами (например, дать каждому зайцу по одной морковке, чтобы узнать, поровну ли их; построить лесенку из полосок разной длины для петушка и т. д.), в старшем возрасте — практическими или учебными задачами (например, измерить полоски бумаги и отобрать определенной длины для ремонта книг, научиться измерять длину, ширину, , высоту предметов и т. д.).

Игровые элементы в разных формах могут включаться в упражнения с целью развития предметно-чувственной, практической, познавательной деятельности детей с дидактическим материалом.


Занятия по формированию элементарных математических представлений в форме дидактических игр и упражнений наиболее распространены в детском саду. Этот тип занятия объединяет оба предыдущих. Дидактическая игра и различные упражнения образуют самостоятельные части занятия, сочетающиеся друг с другом во всевозможных комбинациях. Их последовательность определяется программным содержанием и накладывает отпечаток на структуру занятия.


Согласно общепринятой классификации занятий по основной дидактической цели выделяют:

а) занятия по сообщению детям новых знаний и их закреплению;

б) занятия по закреплению и применению полученных представлений в решении практических и познавательных задач;

в) учетно-контрольные, проверочные занятия;

г) комбинированные занятия.


Занятия по сообщению детям новых знаний и их закреплению проводятся в начале изучения большой новой темы: обучение счету, измерению, решению арифметических задач и др. Наиболее важным для них является организация восприятия нового материала, показ способов действия в сочетании с объяснением, организация самостоятельных упражнений и дидактических игр.

Занятия по закреплению и применению полученных представлений в решении практических и познавательных задач следуют за занятиями по сообщению новых знаний. Они характеризуются применением разнообразных игр и упражнений, направленных на уточнение, конкретизацию, углубление и обобщение полученных ранее представлений, выработку способов действий, переходящих в навыки. Эти занятия могут быть построены на сочетании разных видов деятельности: игровой, трудовой, учебной. В процессе проведения их воспитатель учитывает имеющийся у детей опыт, использует различные приемы активизации познавательной деятельности.

Периодически (в конце квартала, полугодия, года) проводятся проверочные учетно-контрольные занятия, с помощью которых определяют качество освоения детьми основных программных требований и уровень их математического развития. На основе таких занятий успешнее проводится индивидуальная работа с отдельными детьми, коррекционная со всей группой, подгруппой. Занятия включают задания, игры, вопросы, цель которых — выявить сформнрованность знаний, умений и навыков. Занятия строятся на знакомом детям материале, но не дублируют содержания и привычных форм работы с детьми. Кроме проверочных упражнений, на них возможно использование специальных диагностических заданий и методик.

Комбинированные занятия по математике наиболее распространены в практике работы детских садов. На них обычно решается несколько дидактических задач: сообщается материал новой темы и закрепляется в упражнениях, повторяется ранее изученное и проверяется степень его усвоения.


Построение таких занятий может быть различным. Приведем пример занятия по математике для старших дошкольников:

1. Повторение пройденного с целью введения детей в новую тему (2—4 минуты).

2. Рассмотрение нового материала (15—18 минут).

3. Повторение ранее усвоенного материала (4—7 минут).

Первая часть. Сравнение длины и ширины предметов. Игра «Что изменилось?».

Вторая часть. Демонстрация приемов измерения длины и ширины предметов условной меркой при решении задачи на уравнивание размеров предметов.

Третья часть. Самостоятельное применение детьми приемов измерения в ходе выполнения практического задания.

Четвертая часть. Упражнения в сравнении и группировке геометрических фигур, в сравнении численностей множеств разных фигур.

В комбинированных занятиях важно предусмотреть правильное распределение умственной нагрузки: знакомство с новым материалом следует осуществлять в период наибольшей работоспособности детей (начинать после 3—5 минут от начала занятия и заканчивать на 15—18 минуте).

Начало занятия и его конец следует посвящать повторению пройденного.

Усвоение нового может сочетаться с закреплением пройденного, проверка знаний с их одновременным закреплением, элементы нового вводятся в процессе закрепления и применения знаний на практике и т. д., поэтому комбинированное занятие может иметь большое количество вариантов.


Руководство познавательной деятельностью детей на занятиях состоит:

- в четкой постановке учебно-познавательных задач перед детьми и соответствующей возрасту мотивации: учебной, практической, игровой;

- в использовании различных форм организации познавательной деятельности детей: фронтальной, групповой, индивидуальной. При фронтальной форме работы участвуют все дети, их активность обеспечивается постановкой разнообразных вопросов. Групповая форма работы предполагает дифференцирование заданий с учетом индивидуальных возможностей, уровня развития детей. Индивидуальная работа обеспечивает высокий уровень самостоятельности детей, формирование умений и навыков, контроль за усвоением;

- в активизации обучения через содержание, методы, приемы, формы организации.

На занятиях используются организационные средства активизации: «Подумайте, догадайтесь», «Выводы будете делать сами» и др., но они побуждают лишь внешнюю, моторную активность, способствуя быстрой сосредоточенности детей на учебном ; задании, ускоряя действия с наглядным материалом, вызывая непроизвольное внимание, кратковременный интерес к учебной задаче.

Активность внутреннюю, мыслительную удается вызвать разнообразными приемами активизации, которые в свою очередь зависят от цели, содержания обучения, степени усвоения учебного материала. К ним относятся:

- умелое применение дидактических приемов сравнения, противопоставления, обобщения;

- опора на имеющийся опыт детей, мобилизация знаний, чувственного опыта на выполнение задания;

- доступная мотивация дидактических упражнений, формирование интереса, положительного отношения к содержанию обучения;

- творческий характер некоторых заданий;

- применение специальных средств активизации речевой деятельности.


Следует добиваться полной взаимосвязи между уровнем развития практического действия и речевого выражения знаний, способов действия. При изучении нового материала, первоначальном усвоении практических действий (счета, измерения, вычислений) речь ребенка включается непосредственно в процесс выполнения задания или следует за ним. Детям предлагается по вопросам рассказать, что они сделали, как выполнили задание, для чего. В дальнейшем задавать вопросы, предлагать учебные задания надо таким образом, чтобы дети вынуждены были рассуждать, объяснять, пользуясь усвоенной терминологией: «Расскажи, как выполнял задание», «Что узнал, выполнив задание?», «Для чего разложил предметы в два ряда?», «Докажи, что числа 3 и 4 не равны», «Расскажи, как можно сравнить эти предметы».

Активизация мыслительной деятельности на занятиях путем разнообразных средств и приемов ведет к развитию самостоятельности, формированию активной позиции ребенка в учении.

Показателями мыслительной активности на занятиях по формированию элементарных математических представлений следует считать наличие у детей интереса к учебной задаче и процессу ее решения, проявление самостоятельности в поиске решения, умение замечать и исправлять свои ошибки и ошибки товарища, задавать вопросы, выдвигать познавательную задачу в конкретной ситуации.



13. Требования к подготовке воспитателя.


Современные требования к организации обучения дошкольников на материале математики предусматривают новые подходы к подготовке профессиональных кадров.


В исследованиях, проводимых под руководством М.К. Берулава, была выдвинута идея, что среди существующих моделей обучения наиболее перспективная на современном этапеинтегрированная, где приоритетное значение получает, прежде всего, личность наставника.


Анализ психолого-педагогической литературы (исследования Б.З.Вульрова, В.Н.Крутецкого, Н.В.Кузьминой, Т.Н.Токоволина, Б.Н.Харькина и т.д.)говорит о том, что креативная личность педагога должна обладать следующими основными качествами:


способностью к педагогической рефлексии;

устойчивой творческой доминантой.


Опираясь на положения, выдвинутые психологами и педагогами (Т.И. Шамовой, П.И. Пидкасистым, А.Б. Петровским, Б.З. Вульфовым, Б.Н. Харькиным и т.д.), можно выделить следующие условия, обеспечивающие подготовку воспитателя нового типа – творчески индивидуальной личности.

-Стимулирование познавательной активности обучающихся на каждом уровне: воспроизводящем, интерпретирующем, творческом.

-Использование всех типов самостоятельной работы, которые имеют в наличии, действие как воспроизводящего, так и творческого характера.

-Доминирующая роль такого метода в образовании как упражнения в переносе знаний о способах деятельности в новые, нетиповые ситуации, где осуществляется система постепенно убывающих подсказок о способах действий обучаемым.

-Осуществление педагогической импровизации, которая способствует развитию воображения и вдохновения, как составляющих творческой доминанты.


Воспитатель должен обладать

1. Определенным уровнем знаний:

- Знание методик воспитания и обучения дошкольников.

- Знание психологии дошкольника.

- Знание индивидуально-психологических особенностей детей.

- Знание психологии детского коллектива.

- Знание нормативных документов.

- Знание вариативных программ и педагогических технологий.

2. Гностическими умениями

- Умение систематически пополнять свои знания путем самообразования, изучения опыта коллег.

- Умение изучать личность воспитанника и особенности коллектива в плане выявления уровня их развития и условий влияющих на результаты воспитания и развития ребенка.

- Умение правильно оценивать достоинства и недостатки собственной личности и деятельности, перестраивать свою деятельности в соответствии с целями и условиями ее протекания.

3. Проектировочными умениями

- Планирование деятельности в соответствии с целями воспитания и развития дошкольников, характером материала, возрастными особенностями, с учетом связи с различными видами детской деятельности.

- Прогнозирование и корректировка результатов своей деятельности.

4. Конструктивными умениями

- Выбор оптимальных форм, методов и приемов работы с детьми.

- Соблюдение принципов обучения и воспитания дошкольников.

- Умение выбирать диагностические методики, способствующие выявлению уровня сформированности у детей умений и навыков.

- Рациональное распределение времени работы с детьми, логически обусловленные переходы от одного этапа к другому.

5. Организаторскими умениями

- Организация коллектива детей и целенаправленное управление его деятельностью с учетом динамики его развития.

- Организация занятий, кружков с учетом интересов детей.

6. Коммуникативными умениями

Умение устанавливать педагогически целесообразные контакты:

- Воспитатель – дети (требовательность и справедливость во взаимоотношениях с детьми, умение найти в ребенке наиболее сильные положительные стороны его личности, предотвращение и разрешение конфликтов)

- Воспитатель – родители.

- Воспитатель – воспитатель (уравновешенность, требовательность, справедливость, чуткость отзывчивость, доброжелательность, искренность и др.)



14. Требования к речи воспитателя и детей.


Культурные и методические требования к речи воспитателя ДОУ


Культурная речь является обязательным элементом общей культуры человека. Не случайно считается, что речь человека – его визитная карточка, поскольку от того, насколько грамотно он выражается, зависит его успех не только в повседневном общении, но и в профессиональной деятельности.


Особенно актуально данное утверждение по отношению к речи педагога, работающего с детьми дошкольного возраста, потому, что дошкольники говорят то, что слышат, так как внутренние механизмы речи образуются у ребенка только под влиянием систематически организованной речи взрослых.


Речь воспитателя, который находится постоянно в поле зрения детей, в общении с ними, является основным источником, из которого дети получают образец родного языка, культурной речи, поэтому она должна быть не только правильной, с ясным и отчетливым произнесением всех звуков, но и выдержана в определенном темпе, громкости, должна быть интонационно выразительной, правильно оформленной грамматически, связной, доступной для понимания, с правильным и точным использованием словесных обозначений.


Культурные и методические требования к речи педагога:

- строгое соответствие содержания речи воспитателя возрасту детей, их развитию, запасу представлений, с опорой на их опыт;

- владение педагогами методическим мастерством, знание приемов, необходимых для оказания соответствующего влияния на речь детей,

- умение их применять во всех случаях общения с дошкольниками и др.


Значение культуры речи воспитателя детского сада


М.М. Алексеева отмечает, что, подражая взрослым, ребенок перенимает "не только все тонкости произношения, словоупотребления, построения фраз, но также и те несовершенства и ошибки, которые встречаются в их речи".

Именно поэтому к речи педагога дошкольного образовательного учреждения сегодня предъявляются высокие требования, и проблема повышения культуры речи воспитателя рассматривается в контексте повышения качества дошкольного образования.

Качество речевого развития дошкольника зависит от качества речи педагогов и от речевой среды, которую они создают в дошкольном образовательном учреждении.

Такие исследователи, как А.И. Максаков, Е.И. Тихеева, Е.А. Флерина, уделяли особое внимание созданию развивающей речевой среды в детском саду как фактору развития речи детей. По их мнению, дошкольным работникам должно быть вменено в обязанность создать такую обстановку, внутри которой "речь детей могла бы развиваться правильно и беспрепятственно".


Компоненты профессиональной речи воспитателя ДОУ


В современных исследованиях проблем повышения культуры речи педагога выделяются компоненты его профессиональной речи и требования к ней.


К компонентам профессиональной речи педагога относятся:

качество языкового оформления речи;

ценностно-личностные установки педагога;

коммуникативная компетентность;

четкий отбор информации для создания высказывания;

ориентация на процесс непосредственной коммуникации.


Требования к речи воспитателя детского сада


Среди требований к речи педагога ДОУ выделяют:


Правильность – соответствие речи языковым нормам. Педагогу необходимо знать и выполнять в общении с детьми основные нормы русского языка: орфоэпические нормы (правила литературного произношения), а также нормы образования и изменения слов.

Точность – соответствие смыслового содержания речи и информации, которая лежит в ее основе.

Логичность – выражение в смысловых связях компонентов речи и отношений между частями и компонентами мысли.

Чистота – отсутствие в речи элементов, чуждых литературному языку. Устранение нелитературной лексики – одна из задач речевого развития детей дошкольного возраста.

Решая данную задачу, принимая во внимание ведущий механизм речевого развития дошкольников (подражание), педагогу необходимо заботиться о чистоте собственной речи: недопустимо использование слов-паразитов, диалектных и жаргонных слов.


Выразительность – особенность речи, захватывающая внимание и создающая атмосферу эмоционального сопереживания. Выразительность речи педагога является мощным орудием воздействия на ребенка. Владение педагогом различными средствами выразительности речи (интонация, темп речи, сила, высота голоса и др.) способствует не только формированию произвольности выразительности речи ребенка, но и более полному осознанию им содержания речи взрослого, формированию умения выражать свое отношение к предмету разговора.

Богатство – умение использовать все языковые единицы с целью оптимального выражения информации. Педагогу следует учитывать, что в дошкольном возрасте формируются основы лексического запаса ребенка, поэтому богатый лексикон самого педагога способствует не только расширению словарного запаса ребенка, но и помогает сформировать у него навыки точности словоупотребления, выразительности и образности речи.

Уместность – употребление в речи единиц, соответствующих ситуации и условиям общения. Уместность речи педагога предполагает, прежде всего, обладание чувством стиля. Учет специфики дошкольного возраста нацеливает педагога на формирование у детей культуры речевого поведения (навыков общения, умения пользоваться разнообразными формулами речевого этикета, ориентироваться на ситуацию общения, собеседника и др.).


Нужно помнить, что расширение словаря детей не осуществляется только механическим заучиванием слов. Нужно помочь ребенку понять смысл нового слова, научить его пользоваться словом в процессе повествования, в общении с окружающими, посредством собственной речи.

Обладая развитой речью, ребенок, будет более готов к школе. Легче будут восприниматься знания, передаваемые ему преподавателями, меньше будет проблем при общении со сверстниками, ответами у доски.


К вышеперечисленным требованиям необходимо отнести правильное использование педагогом невербальных средств общения, его умение не только говорить с ребенком, но и слышать его.


Наряду с требованиями к речи воспитателя необходимо сказать и о требованиях воспитателя к детям.


1. Воспитателю надо не только дать речевой образец детям, но и проверить, как овладели им дети.

2. Необходимо воспитывать у детей интерес к умению правильно говорить (применяя поощрения, пример хорошо говорящих детей).

3. Нужно систематически контролировать речь детей прислушиваться, как говорят дети, вовремя исправлять ошибки.

Серьёзное внимание нужно уделять речи детей и в повседневной жизни, и на занятиях


На всех занятиях в детском саду воспитатели широко пользуются вопросами как приёмом обучения детей. Вопрос воспитателя—очень действенный приём обучения детей мышлению и речи, так как вопрос направляет внимание, стимулирует мысль, приучает к точности слушания и активизирует речь.


Для того чтобы вопросы выполняли своё назначение, они должны удовлетворять определённым требованиям:


Первое требование — вопрос должен обладать определённым содержанием. В практике проведения занятий часто ставятся лишние, ненужные для намеченного программного содержания, а иногда и вообще пустые и даже бессмысленные вопросы.


Второе требование к вопросу — точность и конкретность.

Доступность вопроса зависит также и от его формулировки.

Небрежное, неправильное построение вопроса делает его мало понятным. Большое значение для ясности понимания вопроса имеет краткость формулировки. Стремясь к точности и краткости, некоторые воспитательницы впадают в другую крайность: чрезмерная краткость тоже делает вопрос непонятным.

Очень важным требованием является целенаправленность и последовательность в постановке вопросов детям.


Воспитательница должна помнить, что цель постановки вопросов — усвоение детьми намеченного программного материала. Поэтому вопросы нужно задавать не обо всём, что можно сказать на данную тему, а об основном, главном. Вопросы должны быть целенаправленными. Эта целенаправленность вопросов обусловливает и последовательность их.


Таким образом, основные требования к вопросу как приёму обучения сводятся к следующему: внимание к смысловому значению вопроса, к точности, краткости и правильности формулировки; вопрос должен быть доступным пониманию детей, целенаправленным; необходимо соблюдать последовательность в постановке вопросов.



15. Концепции развития количественных представлений.


Вопросы развития количественных представлений у детей дошкольного возраста разрабатывались А. М. Леушиной (1898—1982) с 50-х гг. XX в.

Благодаря ее работам методика развития у детей математических представлений получила теоретическое, научное и психолого-педагогическое обоснования, были раскрыты закономерности развития количественных представлений у детей в условиях целенаправленного обучения на занятиях в детском саду. Это стало возможным благодаря глубокому и тщательному анализу различных точек зрения, подходов и концепций формирования числовых представлений; учету достижений отечественной и зарубежной науки, практики общественного воспитания и обучения дошкольников в нашей стране.


Методическая концепция того времени основывалась на работах Е. И. Тихеевой, Л. В. Глаголевой, Ф. Н. Блехер. Суть ее заключалась в следующем: усвоение ребенком математических представлений осуществляется в процессе жизни и разнообразной деятельности. Играя, работая, дети сами черпают необходимые им для развития знания из окружающего мира. Педагог должен лишь создавать условия, пользоваться каждым удобным случаем для совершенствования количественных представлений у детей.

При таком подходе основное внимание уделялось разработке дидактического материала, играм и упражнениям как основному методу и средству работы с детьми.


А.М. Леушина разработала основы дидактической системы формирования элементарных математических представлений, создав программу, содержание, методы и приемы работы с детьми от 3 до 6 лет.

Теоретико-методическая концепция, разработанная А. М. Леушиной, заключается в следующем:


От нерасчлененного восприятия множества предметов детей необходимо переводить к выявлению отдельных составляющих этого множества элементов путем попарного сопоставления их, что представляет дочисловой период обучения (усвоение отношений столько же, поровну, больше, меньше и др.).


Обучение счету основывается на освоении детьми действий с множествами и базируется на сравнении двух множеств.

Дети знакомятся с числом как характеристикой численности конкретной предметной группы (множества) в сопоставлении ее с другой. В дальнейшем сравнении чисел (на наглядной основе) ребенком усваиваются последовательность и отношения между ними, что приводит к сознательному освоению счета и использованию его в вычислениях, выполнению действий при решении простых арифметических задач.

Элементарное представление о числе формируется у детей в ходе накопления ими опыта сравнения нескольких предметных групп по признаку количества, независимо от других признаков (качественных особенностей, расположения в пространстве). На этой основе строится освоение количественного и порядкового счета, определение состава чисел из единиц и двух меньших чисел.


В методике первоначального ознакомления детей с числами, счетом, арифметическими действиями, разработанной А. М. Леушиной, использованы положительные стороны метода изучения чисел (воспроизведение групп предметов, применение числовых фигур и счетных карточек, знакомство с составом чисел) и метода изучения действий (число как результат счета; образование чисел на основе сравнения двух совокупностей и практического установления между ними взаимнооднозначного соответствия; увеличение или уменьшение одного из них на единицу; освоение действий сложения и вычитания на основе сформированных представлений о числах натурального ряда и навыков счетной деятельности).

Согласно методике, предложенной А. М.Леушиной, в процессе развития количественных представлений у детей следует особое внимание уделять накоплению ими чувственного опыта, созданию сенсорной основы счетной деятельности, последовательному обобщению детских представлений. Этим требованиям отвечает предложенная ею система практических упражнений с демонстрационным и раздаточным материалом.


Занятия рассматривались А.М. Леушиной в качестве основной, ведущей формы развития количественных представлений в детском саду. С их помощью возможно освоение детьми знаний повышенной трудности, достаточно обобщенных, лежащих в «зоне ближайшего развития». Самостоятельно приобрести их ребенок не в состоянии. «Попутное» усвоение их в игре или труде малоэффективно, т. к. главными в них являются цели, способы действия и результаты самой деятельности, а не формирование математических представлений.


Полноценное математическое развитие обеспечивает лишь организованная, целенаправленная деятельность на занятии, в ходе которой взрослый продуманно ставит перед детьми познавательные задачи, показывает адекватные пути и способы их решения. В процессе обучения на занятиях необходимо реализовывать основные программные требования, математические представления формировать в определенной системе. Представления и соответствующие им способы действия, сформированные на занятиях, должны обслуживать потребности разных видов детской деятельности, повышая ее продуктивность и результативность.


Вопрос о методах и средствах обучения должен решаться на основе и в тесной связи с содержанием и формами организации процесса развития количественных представлений у детей в детском саду. В содержании обучения основное внимание необходимо уделять формированию счетной и вычислительной деятельности, которые являются основой математического развития ребенка.


Разработанная А. М. Леушиной концепция формирования количественных представлений в 60—70-е гг. была существенно дополнена за счет научно-теоретической и методической разработки проблемы развития пространственно-временных представлений у дошкольников. Результаты научных исследований А.М. Леушиной отражены в ее докторской диссертации «Подготовка детей к усвоению арифметического материала в школе» (1956), многочисленных публикациях, учебных пособиях, таких как «Обучение счету в детском саду» (М., 1959, 1961), «Формирование элементарных математических представлений у детей дошкольного возраста» (М., 1974) и др. Обложку одного из пособий вы видите на илл. 3.


Воспитатели детских садов широко использовали разработанные А. М. Леушиной конспекты занятий: «Занятия по счету в дет ском саду» (М., 1963, 1965) и «Наглядные дидактические материалы» (1965).


В дальнейшем под руководством А. М. Леушиной (по результатам диссертационных исследований) были разработаны содержание и методы формирования у детей пространственных и временных представлений, обучения измерению объема, массы; вопросы умственного и всестороннего развития детей в процессе освоения ими элементарных математических знаний



16. Особенности восприятия дошкольниками количественных представлений в разных возрастных группах.


Развитие количественных и числовых представлений У ДЕТЕЙ ВНЕ ОБУЧЕНИЯ включает:


  • овладение манипулятивными действиями с предметами (ран­ний и младший дошкольный возраст);

  • составление групп предметов, уменьшение и увеличение ко­личества предметов в группе (2—4 года);

  • узнавание количества без счета (явление субитации чисел) (2—3 года);

  • отнесение числа (слова-числительного) к количеству предме­тов (2—4 года);

  • стремление считать предметы и обозначать их цифрой (2,5—3,5 года);

  • увеличение и уменьшение количества предметов;

  • овладение счетом (3—4 года);

  • количественная оценка непрерывных величин (длины, объема жидкости) (3—5 лет);

  • самобытность освоения вычислений.


Уже в раннем возрасте у детей накапливаются представления о совокупностях, состоящих из однородных и разнородных пред­метов. Они овладевают рядом практических действий (расклады­вание в ряд, накладывание одного предмета на другой и др.), на­правленных на восприятие численности множества предметов.

Дети первого и второго года жизни осваивают способы дейст­вий с группами однородных предметов (шарики, пуговицы, коль­ца и др.). Они их перебирают, перекладывают, пересыпают, вновь собирают, раскладывают по горизонтали, в виде кривой линии; выполняют более сложные действия: группируют предметы раз­ной численности по форме и цвету.

Первоначальное формирование представлений о множествен­ности предметов (много) и единичности (один) происходит очень рано (на втором, третьем годах жизни). Показателем этого явля­ется различение детьми единственного и множественного числа.


На втором году жизни дети начинают понимать смысл слов много, мало при различии между группами в два предмета. Однако слова много и мало не имеют для них четкой количественной ха­рактеристики.

Слово много ассоциируется у них и со словом боль­шой, а слово мало — со словом маленький. Слово много относят как к совокупности предметов, так и к их размеру. Так, при воспри­ятии и оценке совокупности, состоящей из больших и маленьких предметов (четыре маленькие машины и одна большая), слово мало они произносили, показывая на маленькие машины, а слово много относили к одной большой машине. Следовательно, коли­чественные представления у детей еще не отдифференцировались от пространственных (В. В. Данилова).

При относительно раннем практическом уровне умения разли­чать совокупности с контрастной численностью элементов слово мало в активном словаре детей появляется позже, чем слово много.

Итак, количественная сторона в совокупности предметов не является еще особым признаком, значимым для детей второго года жизни (В. В. Данилова). В этом возрасте происходит воспри­ятие множества предметов как неопределенной множественно­сти, появляется способность различать по смыслу слова один и много, происходит активное овладение грамматическими форма­ми единственного и множественного числа.

К концу второго года жизни дети уже небезразличны к словам сколько и посчитай. Такие слова стимулируют у них подражатель­ные взрослым действия счета. При этом малыши называют слу­чайные числительные.


На третьем году жизни зарождается тенденция к умению раз­личать разные по численности группы предметов. Слова один, много, мало дети соотносят с определенным количеством предме­тов, выполняют действия в ответ на просьбу взрослых: «Принеси один шарик», «Дай мне много картинок» и т. д.

К концу третьего года дети овладевают умением дифферен­цировать не только предметные совокупности, но и множества звуков.

У детей конца второго — начала третьего года жизни появля­ется стремление самим создавать совокупности предметов.

В этом возрасте наблюдается склонность «сравнивать» пред­меты наложением. Но движения детей еще не точны, к тому же они не видят отношений между сравниваемыми группами пред­метов, их интересует главным образом сам процесс дробления на отдельные предметы и их объединение.

Когда дети накладывают пуговицы на карточку с пятью нари­сованными пуговицами, они обычно раскладывают все имеющие­ся у них пуговицы. При этом они действуют двумя руками в опре­деленном направлении; от середины — к краям, от краев — к се­редине, постепенно переходя к действиям одной рукой в удобном направлении. Иногда при выполнении аналогичных заданий дети ограничиваются фиксацией лишь крайних, наиболее легко и зримо воспринимаемых предметов. Так, ребенок кормит лишь первую и последнюю в ряду куклу, не обращая внимания на про­межуточных между ними. Ребенку предлагают убрать все кубики в коробку или отнести все ложки. Он же ограничивается лишь тем, что убирает несколько кубиков и относит несколько ложек.


Дети третьего года жизни в разных условиях правильно пони­мают и соотносят слова много, мало в пределах пяти предметов.


На третьем году жизни количественная сторона множеств по­степенно начинает абстрагироваться от предметного содержания. У детей появляется умение действовать по указанию, что свиде­тельствует об интеллектуальной активности. Так, приняв задание положить предметы одной совокупности на предметы другой, ре­бенок старается поставить столько игрушек, сколько кружков на­рисовано на карточке. У детей появляется интерес к подобным действиям, что создает основу для понимания отношений больше, меньше, равно. Овладение детьми умением сочетать слова больше, меньше с названиями сравниваемых предметов («больше, чем кукол»), использование слова лишние свидетельствует о понима­нии сути отношений равенства, неравенства.


Постепенно дети начинают овладевать способом простейшего сравнения элементов двух множеств. Они накладывают (прикла­дывают) предметы одной совокупности на предметы другой, уста­навливая между ними взаимнооднозначное соответствие, и видят равенство их по количеству. Однако они часто допускают ошибки, заполняя промежутки между изображениями.

По данным В. В. Даниловой, наиболее доступными для различения и осмы­сливания отношения больше — меньше являются сочетания пред­метов в количестве: 1 и 3, 2 и 4, 5 и 2, 3 и 5.

Дети 3-х лет дифференцируют звуки (при двух и четырех уда­рах). В условиях игры они правильно отвечают на вопрос «Кто по­стучал много, кто — мало, кто — один раз?»


Предметные действия детей раннего возраста (1,5—2,5 года) являются пропедевтикой счетной деятельности. Активно дейст­вуя, дети разбрасывают предметы или, наоборот, собирают их. Как правило, все одинаковые действия сопровождаются повторе­нием одного и того же слова: «вот.., вот.., вот...», или «еще.., еще.., еще...», или «на.., на.., на...»; или хаотическим называнием чисел: «два, один, пять...» Иногда каждое повторяемое ребенком слово соотносится с одним предметом или с одним движением, между словом и предметом устанавливается соответствие. Слово помо­гает выделить элемент из множества однородных предметов, дви­жений, более четко отделить один предмет от другого, способст­вует ритмизации действий. Дети легко усваивают простые считал­ки, отдельные слова-числительные и используют их в процессе движений, игр.


В раннем возрасте (2—3 года) дети от хаотического познания числительных переходят к усвоению последовательности чисел в ограниченном отрезке натурального ряда. Как правило, это числа 1,2, 3.


Итак, к трем годам, о чем свидетельствуют результаты иссле­дования В. В. Даниловой, происходят значительные качественные изменения в восприятии и сравнении детьми множеств.

Дети на­чинают выделять количество. Они проявляют способность разли­чать множества предметов и множества звуков, самостоятельно создавать множества из предметов, усваивать смысл слов много, мало, один, относить их к соответствующим группам предметов, звуков, движений.


Содержание развития количественных и числовых представлений у детей ТРЕТЬЕГО И ЧЕТВЕРТОГО ГОДОВ ЖИЗНИ.


  • Разнообразные манипулятивные действия с множествами предметов, ориентировка в их цвете, размере, форме, количе­стве {один, много, много — мало) в совместных со взрослым действиях в специально организованной предметно-игровой среде.

  • Представления о единичности, умение отделять один предмет от другого, приговаривая: «Один, еще один, еще один» и т. д.

  • Представления об относительности слов мало — много (про­слеживание за изменением ситуации: много яблок, мало слив, затем — много груш, а слив по-прежнему мало).

  • Поэлементное сравнение предметов по количеству (наложе­нием, приложением); установление соответствия. Осуществ­ление сравнения предметов на дочисловом уровне (столько же, больше чем) и по числу (там, где 3 — больше, где 2 — мень­ше). Выделение лишнего предмета и уравнивание по количе­ству; указание на множество, в котором, не хватает предмета.

  • Перечисление однородных и разнородных по составу мно­жеств: один, еще один, еще один и т. д.; называние характе­ристических свойств элементов множества: цвет, размер, форма.

  • Восприятие «чисел», называние количества (1, 2, 3). Выбор со­ответствующих цифр.

  • Пересчет предметов при поддержке взрослого (до 3—4-х лет).

  • Независимость численности множества предметов (в пределах 5 элементов) от способа расположения предметов в простран­стве (на расстоянии, рядом, в виде круга, ряда и т. д.).

  • Воспроизведение множеств предметов, звуков, движений (за­данных в образце в количестве от 1 до 5).


В процессе разнообразных практических действий с совокуп­ностями дети усваивают и используют в своей речи простые слова и выражения: много, один, по одному, ни одного, совсем нет (ничего нет), мало, такой же, одинаковый (по цвету, форме), столько же, поровну; столько, сколько; больше, чем; меньше, чем; каждый из; все, всех.

По просьбе взрослого объясняют и интерпретируют: «Возьму еще один и положу», «Стало», «Становится меньше», «Каждому зайцу дали по морковке», «Всех кукол угостили конфетами», «Этот круг лишний, он мне не нужен», «Квадратов не хватило, значит, их меньше», «Постучал столько же раз» и т. д.

Объяснение своих действий требует от детей использования в речи не только простых, но и более сложных предложений с со­юзами а, и, отрицанием не, частицей чем: «В шкафу много игру­шек, и на полу много», «Большие и маленькие шары положили в коробку», «Красные шары положили в красную коробку, а синие — в синюю», «Здесь красные флажки, а этот — не крас­ный», «Мишек меньше, чем кукол».



НА ПЯТОМ ГОДУ ЖИЗНИ у детей систематизируются представле­ния о счете как способе обозначения количества числом. Уточня­ется цель (ответить на вопрос «Сколько всего?»), средство дости­жения (процесс сосчитывания), назначение результата (получить число, назвать его и обозначить цифрой).

Дети осваивают следующее.

  • Сравнение множеств (поэлементно, на основе зрительного восприятия, проведения линий от одного предмета к другому и т. д.) с определением количественных отношений числом; с выделением различия на 1 элемент, увеличения или уменьше­ния одного из сравниваемых множеств, что помогает ребенку понять способ образования как большего, так и меньшего числа.

  • Умения отсчитывать количество предметов названных, пока­занных счетной карточкой, цифрой; воспроизводить заданное количество; выполнять просьбы взрослого: «возьми и передай Гале 4 флажка»; «отдай 2 карандаша из пяти имеющихся».

  • Согласование числительных с существительными в роде, числе, падеже: одна утка; один мяч; одно окно. В отдельных случаях ребенок может пользоваться словом предмет; началь­ным при счете является числительное один; общее количество называется как «четыре предмета посуды».

  • Подсчет звуков (на слух), предметов, спрятанных в «чудесном мешочке» (по осязанию), движений другого человека (на ос­нове зрительного восприятия), собственных движений (на ос­нове тактильных ощущений).

  • Освоение порядка следования чисел и использование поряд­ковых числительных в практической деятельности: при опре­делении номера дома; места животного, направляющегося к водопою в общей «цепочке». Ответы на вопросы «Который?», «Какой по порядку?»


В процессе практических действий с множествами предметов, счета и сравнения дети овладевают словами и выражениями: число (здесь столько же, тоже три, первый, пятый, последний), пара (разложил в ряд, подложил один предмет под другой, составил пары, добавил один предмет, убрал один предмет, стало меньше, со­считал, отсчитал столько, сколько нарисовано) и др.

При этом они упражняются в построении простых и сложных предложений со связками (и, а, если, то), объяснении своих действий, умении за­давать простые вопросы со словом сколько о количестве предметов в комнате, на картине.

Дети учатся выражать в речи не только результат своих дейст­вий, т. е. отвечать на вопрос «Что ты сделал?», но и способ выпол­нения действия. Сначала по вопросам педагога, а затем самосто­ятельно они объясняют ход своих действий. Дети начинают адек­ватно понимать выражения, употребляемые педагогом: «Сравни по количеству», «Какое из чисел больше?», «Если звуков столько же, сколько предметов, то сколько их?», «Равны по количеству», «Не равны по числу».

В пять лет ребенок владеет счетом до 8—10; число восприни­мается им как итог счета, показатель определенного количества предметов, опознавательный и различительный признак несколь­ких множеств. Поясним. Число 5 и соответствующая цифра пока­зывают на то, что кошек, игрушек, столов по 5. Их количество одинаково. Количество элементов первого, второго, третьего множества выражено одним и тем же числом. Для ребенка пяти лет число является результатом измерения, деления целого на не­равные и равные части.


НА ШЕСТОМ ГОДУ ЖИЗНИ дети осваивают следующее.

Осознание независимости количества предметов от занимаемой ими площади.

Предметы одной совокупности раскладываются по горизонтали на близком расстоянии друг от друга, вто­рой — на более далеком расстоянии. Выделяется общий при­знак предметов, входящих в каждое из множеств. Затем дети по заданию педагога находят отличительные признаки. Это могут быть цвет, форма, размер и т. д. Особо подчеркиваются различия в расстоянии между предметами, а отсюда и в зани­маемой каждой совокупностью площади, т. е. в плотности и длине ряда. Количество несущественных признаков в подоб­ных упражнениях нарастает.

Первые упражнения следует про­водить с использованием однородного материала, при этом подчеркивается, что различие между множествами лишь одно — занимаемая площадь. После противопоставления (предметы расположены близко один к другому, поэтому они занимают мало места, и наоборот) педагог предлагает детям найти способ определения равенства или неравенства количе­ства элементов в множествах: «Как вы считаете, поровну пред­метов или нет? Как это доказать? В чем вы убедились?»

  • Умение разбивать совокупности из 4, 6, 8, 10 предметов на группы по 2, 3, 4, 5 предметов, определять количество групп и отдельных предметов.

  • Освоение состава числа из единиц на конкретных предметах и в процессе измерения, что уточняет и конкретизирует пред­ставление о числе, единице, месте числа в натуральном ряду чисел.

  • Различение количественного и порядкового значения числа, применение количественного и порядкового счета в практи­ческой деятельности.

  • Деление целого (предмет, геометрическая фигура) на 2, 3, 4 равные части, установление зависимостей между частью и целым, частями целого.

  • Освоение умения пользоваться в речи понятиями (словами), отражающими количественные отношения: поровну, столько же, одинаково по количеству, такое же число, не поровну, число, цифра, наложение, приложение, составление пар, часть, целое, половина, четверть и др.

  • Использование в речи простых и сложных предложений, крат­ких и точных выражений; объяснение полученного результа­та; ответы на вопросы «Что ты сделал?», «Что ты узнал?», «Как достичь результата?» Усиливается внимание к осмыслению вопросов со словами столько, который, адресованных сверст­никам, воспитателю.

  • Понимание смысла слов, которые использует воспитатель: коли­чество, сравни по количеству, отсчитай, по сколько, признак и т. д.

  • Сравнение множеств, отличающихся на 2, 3, с целью позна­ния отношений: на сколько больше (меньше).

  • Умение сосчитывать небольшие совокупности (3—5 предме­тов) быстро, на основе только зрительного восприятия, запо­минать числа.

  • Умения составлять объемные и плоские «числовые лесенки» (модели и схемы) из однородных и разнородных картинок, объектов.

  • Освоение измерения условными мерками, определение ре­зультата. Ответы на вопросы «Скольким меркам равна длина скакалки?», «Где больше воды: в бутылке или банке?», «Как ты это узнал?», «Что нужно сделать, чтобы проверить, не ошибся ли ты?» Эти упражнения способствуют познанию числа как отношения измеряемой величины к мере измерения.

  • Освоение состава чисел из двух меньших чисел. Запоминание результатов в процессе практических упражнений и использо­вание их в процессе решения арифметических задач (исклю­чая освоение понятий: условие, решение).



17. Методика обучения образованию множеств из отдельных элементов на основе выделения свойств, выделению элементов из множества и сравнение множеств приемами наложения и приложения путем установления взаимооднозначных соответствий.


Современная математика при обосновании таких важнейших понятий, как «число», «геометрическая фигура» и т.д., опирается на теорию множеств.


Специальную работу по формированию элементарных математических представлений начинают проводить в МЛАДШЕЙ ГРУППЕ с образования множеств, т.к. выполнение детьми дошкольного возраста различных операций с предметными множествами позволяет в дальнейшем развить у малышей понимание количественных отношений и сформировать понятие о натуральном числе.


У трёхлетнего малыша только начинает формироваться представление о множестве, поэтому очень важно до обучения счётным операциям закрепить у него представление о множестве как целостном единстве, состоящем из отдельных элементов.


Задача обучения состоит в том, чтобы подвести ребёнка к абстрагированию количественной стороны (абстрагирование — это мысленное выделение, вычленение некоторых элементов конкретного множества и отвлечение их от прочих элементов данного множества) в любом множестве; стало быть, надо, чтобы малыш научился видеть эту количественную сторону, сравнивать количество предметов в разных совокупностях.

В связи с этим ребёнок овладевает значением слов «столько — сколько», «поровну», «больше — меньше». А это становится возможным лишь тогда, когда малыш научится выделять общее в многочисленном конкретном, ибо чем ограниченнее виды конкретных множеств, тем сложнее выделить из них и то общее, что характерно для всех, т.е. количество.


Это требует разнообразного дидактического материала, который отражал бы количественные отношения.

Этот дидактический материал должен сосредотачивать внимание на количественной стороне, не отвлекая малыша на другие признаки. Поэтому предметы для счёта и их изображения должны быть хорошо известны детям в повседневной жизни.

Следующее немаловажное требование к дидактическому материалу — это его многообразие (наборы мелких кубиков, окрашенных в разные цвета, картонные разноцветные кружочки и треугольнички, наборы флажков, пуговиц разного размера и т.д.).

В качестве дидактического материала можно использовать карточки: нарисованные на них в разном количестве предметы должны быть простыми и чёткими, а главное, расположены линейно, что облегчит трёхлетнему малышу их сосчитывание.


Формирование представлений о множестве довольно сложная задача, которая осуществляется путём овладения приёмами наложения и приложения элементов одного множества к элементам другого, знакомства с равенством и неравенством множеств (конечно, только на наглядных примерах, а не на числах), усвоения выражений «поровну», «столько — сколько» и др.


ПРИЁМ НАЛОЖЕНИЯ способствует тому, что внимание ребёнка всё более от­влекается от самих предметов и фиксируется на равенстве множеств и со­ответствии отдельных элементов, представленных на рисунках и в пред­метах.


Наложение является наиболее простым приемом сравнения является наложение. Для обучение детей этому приему установления соответствия используются карточки с нарисованными предметами, а впослед­ствии и с геометрическими фигурами в количестве 3—6 штук, а также игрушки. Изображенные предметы располагаются в ряд, так как на данном этапе обучения иное расположение пред­метов затрудняет их адекватное воспроизведение. На изображения ставятся мелкие предметы (раздаточный материал) или накладыва­ются силуэты предметов.

Наглядный материал подбирается для занятий таким образом, чтобы дети видели необходимость сопоставления: угостить зайцев морковкой, посадить бабочек на цветы, надеть на кукол платья и т. д.


ПРИЁМ ПРИЛОЖЕНИЯ - его цель заключается в том, чтобы научить ребёнка видеть и соотносить элементы одного множества с элементами другого.


Прием приложений более сложный, чем прием наложения, так как он требует более четкой дифференцировки элементов внутри множества. Для обучения можно использовать карточки с двумя полосками, на ко­торых предметы изображены лишь на верхней полосе. Наложив предметы на изображения, отметив соответствие, педагог последо­вательно сдвигает вниз каждый из них, подкладывая под изобра­жение. Можно пользоваться специальными карточками, на которых нижняя полоса расчерчена на квадраты, что предупреждает ошибки.

При обучении приемам наложения и приложения следует учить детей накладывать и прикладывать предметы только правой рукой слева направо. Педагог упражняет детей в воспроизведении хлопков, движений на слух (без счета). Не умея считать, малыши воспроизводят множество звуков на основе только чувственного восприятия: они хлопают, поднимают руку или стучат молоточками столько же раз, сколько постучал воспитатель. В данном возрасте огромную роль играет включение в работу таких приемов, при которых участвуют различные анализаторы.


Работу с малышами начинают с заданий на подбор и объединение предметов в группы по общему признакуОтбери все синие кубики» и т п.)


Умение выделять качественные признаки предметов и объединять предметы в группу на основе одного общего для всех их признакаважное условие перехода от качественных наблюдений к количественным.


Рассмотрим в качестве примера проведение занятий на образование множеств


ОБРАЗОВАНИЕ МНОЖЕСТВ ИЗ ОТДЕЛЬНЫХ ПРЕДМЕТОВ И ВЫДЕЛЕНИЕ ОДНОГО ПРЕДМЕТА ИЗ МНОЖЕСТВА.


Задача этой темы и приведённых ниже упражнений состоит в том, чтобы сформировать у малыша устойчивое представление о множествах и научить сравнивать их.


Для этого ребёнка нужно познакомить с тем, что всякое множество состоит из отдельных однородных элементов. Это очень важная задача, поскольку она в будущем на математическом языке будет означать, что всякое число состоит из единиц. Этой теме следует посвятить 3–4 занятия.


На первом занятии дети узнают, что всякая совокупность составляется из отдельных предметов и что она может быть разделена на отдельные предметы. В связи с этим малышей нужно знакомить с понятиями «много» — «один».


Разложите на столе (на одном из двух подносов) кучкой разноцветные кубики.









hello_html_m38387659.png

Затем, показывая ребёнку рукой на эту кучку, взрослый должен несколько раз громким и чётким голосом сказать ребёнку: «Много кубиков». Далее, взяв из кучки один кубик и положив его на другой поднос, так же чётко сказать: «Мало кубиков. Один кубик».


Это упражнение необходимо повторять 3–5 раз, на следующий день, меняя кубики на шарики и т.д., до тех пор, пока ребёнок не усвоит это задание, и не будет выполнять его самостоятельно.


Нахождение «много» и «один» в окружающем


Разложить на столе однородные игрушки (кубики, шары и т.д.) таким образом, что бы в некоторых кучках предметов было много, а в некоторых по одному, и предложить ребёнку определить, чего «много» на полу (столе), а чего «один» (это упражнение необходимо повторять не сколько дней, меняя предметы места ми в кучках «много» и «один»).

hello_html_m71a9dd58.png


Научив малыша определять множество среди однородных предметов, переходим ко второму этапу — окончательному закреплению материала.


hello_html_34576cbe.png


На одном столе ставится много мишек и один ёжик, а на другом — много ёжиков и один мишка. Ребёнок должен внимательно посмотреть на этих зверюшек и ответить, сколько на столе стоит мишек и сколько ёжиков. (То есть, чтобы одна и та же группа была представлена в одном случае в единственном числе, а в другом — во множественном).

Задание усложняется тем, что ребёнку предлагается одновременно найти «один» и «много». Если ребёнок не может сам определить множество, подскажите ему: «Здесь мишек много, а ёжик один, а здесь, наоборот, ёжиков много, а мишка один»


Детей приучают последовательно выделять и сравнивать однородные свойства вещей. («Что это? Какого цвета? Какого размера?») Сравнение проводится на основе практических способов сопоставления: наложения или приложения.


Пользуясь приемами наложения или приложения, дети устанавливают наличие или отсутствие взаимно-однозначного соответствия между элементами групп предметов (множеств).


Понятие взаимно-однозначного соответствия для двух групп состоит в том, что каждому элементу первой группы соответствует только один элемент второй и, наоборот, каждому элементу второй группы соответствует только один элемент первой (чашек столько, сколько блюдец; кисточек столько, сколько детей, и т. п.).


СРАВНЕНИЯ МНОЖЕСТВ ПУТЁМ УСТАНОВЛЕНИЯ МЕЖДУ НИМИ ВЗАИМНОГО СООТВЕТСТВИЯ (ПРИ ПОМОЩИ ПРИЁМОВ НАЛОЖЕНИЯ И ПРИЛОЖЕНИЯ)


Упражнение 1 (приём наложения)


Изготовить карточки с нарисованными на них машинками (мишка­ми, зайчиками). Дать ребёнку две карточки с нарисованными на них ма­шинками. На одной карточке 2 машинки, на другой 3 машинки. Рядом поставить коробочку с отдельно вырезанными машинками (но при этом пеобходимо учесть, что вырезанных машинок должно быть больше, чем нарисованных на карточках, например: вырезанных машинок 10, а на карточках их всего 5 штук). Нужно попросить ребёнка наложить выре­занные машинки на машинки, изображённые на карточках.

Далее целесообразно заменить машинки на изображения шариков, кубиков, куколок, зайчиков и т.д. Это необходимо сделать для того, что­бы ребёнок видел, что, как бы ни менялись предметы, их надо положить столько, сколько нарисовано на карточке. Благодаря этому к малышу приходит понимание того, что количество не зависит от характера пред­метов. Ребёнок при этом упражнении также хорошо усваивает значение слов «столько — сколько». То есть родитель должен постоянно при этом упражнении повторять, например, такие слова как: «Положи, пожалуй­ста, столько машинок, сколько их изображено на рисунке».


hello_html_785a0a.jpg

Приём наложения машинок.


hello_html_m273706f6.jpghello_html_49f7e7fc.jpghello_html_312a63c6.jpg


Приём наложения птичек.




hello_html_6eaf6bf4.jpghello_html_m7f7df02d.jpghello_html_5256823b.jpg

Приём наложения мишек.


После закрепления этого упражнения переходим к следующему, которое, собственно, и связывает все предыдущие познания малыша.


Упражнение 2 (приём наложения)


На карточках, выданных ребёнку, нарисовано много мишек и один зай­чик. После того как ребёнок достал из коробочки, лежащей рядом с ним, вырезанные изображения мишек и зайчиков и наложил их на изображе­ния на карточках, его нужно спросить: «Сколько ты положила мишек. Катя?» «Много», — отвечает ребёнок. «А сколько ты положила зайчи­ков, Катя?» «Мало (или одного)о, — отвечает малышка.


hello_html_m61df2cab.jpg

МНОГО мишек, ОДИН зайчик

hello_html_me96a09c.jpg

МНОГО квадратиков

hello_html_m5c4e60ff.jpg

МАЛО (ОДИН) квадратик


(При этом в начале упражнения целесообразно самому проделать это, по­вторяя при откладывании: «Сколько я отложила квадратиков?» — и отвечая самой себе: «Много» или соответственно: «Мало»)


Заучив приём наложения, приступаем к приёму приложения (упражнение 3).


Упражнение 3 (прием приложения)


На столе ставятся белочки. Ребёнку даётся коробка с вырезанными из бу­маги грибочками. Ребёнок должен взять из коробки столько грибков, сколько стоит на столе белочек и положить грибочки рядом с ними (по одному грибку рядом с каждой белочкой).


hello_html_5a774d15.png


«Видишь, — говорит взрослый, — белочек и грибков поровну». Говоря это, воспитатель подчёркивает равенство двух множеств,

hello_html_169750fc.jpg

ОДИН котёнок. Одна рыбка. Котят и рыбок поровну.


hello_html_71b7dece.jpghello_html_m7b7d4d98.jpg

Две собачки. Две косточки. Собачек и косточек поровну,



После освоения данных приемов с применением показа способа действия можно предложить выполнить задание только по словесной инструкции. Начиная с января можно давать комбинированные задания, позволяющие детям усваивать новые знания, и тренировать их в том, что усвоено ранее. («Посмотрите, какая елочка ниже, и поставьте под нее много грибков!»)



18. Методика обучения количественному счёту в разных возрастных группах: этапы, приемы и навыки счета.


Счет – это деятельность с конечными множествами. Счет включает в себя структурные компоненты:

- цель (выразить количество предметов числом),

- средства достижения (процесс счета, состоящий из ряда действий, отражающих степень освоения деятельности),

- результат (итоговое число): сложность представляется для детей в достижении результата счета, то есть итог, обобщение. Выработка умения отвечать на вопрос «сколько?» словами много, мало, один два, столько же, поровну, больше, чем… ускоряет процесс осмысления детьми знания итогового числа при счете.


В возрасте трех—шести лет дети овладевают счетом. В этот период их основная математическая деятельность — счет. В начале формирования счетной деятельности (чет­вертый год жизни) дети учатся сравнивать множества поэ­лементно, путем накладывания и прикладывания, т. е. они овладевают так называемым «дочисловым этапом» счета (А. М. Леушина). Позднее (пятый— седьмой год жизни) обучение счету также происходит только на основе практи­ческих и логических операций с множествами


А. М. Леушина определила шесть этапов развития счет­ной деятельности у детей. При этом первые два этапа явля­ются подготовительными. В этот период дети оперируют с множествами, не используя чисел. Оценка количества осу­ществляется с помощью слов «много», «один», «ни одного», «больше — меньше — поровну». Эти этапы характеризуются как дочисловые.

Первый этап можно соотнести со вторым и третьим годом жизни. Основная цель этого этапа — ознакомление со струк­турой множества. Основные способы — выделение отдель­ных элементов в множестве и составление множества из от­дельных элементов. Дети сравнивают контрастные множест­ва: много и один.

Второй этап также дочисловой, однако в этот период дети овладевают счетом на специальных занятиях по математике.

Цель — научить сравнивать смежные множества поэле­ментно, т. е. сравнивать множества, отличающиеся по коли­честву элементов на один.

Основные способы — накладывание, прикладывание, сравнение. В результате этой деятельности дети должны нау­читься устанавливать равенство из неравенства, добавляя один элемент, т. е. увеличивая, или убирая, т. е. уменьшая, множество.

Третий этап условно соотносится с обучением детей пя­того года жизни.

Основная цель — ознакомить детей с обра­зованием числа.

Характерные способы деятельности — срав­нение смежных множеств, установление равенства из нера­венства (добавили еще один предмет, и их стало поровну — по два, по четыре и т. д.).

Результат — итог счета, обозначенный числом. Таким об­разом, ребенок вначале овладевает счетом, а затем осознает результат — число.

Четвертый этап овладения счетной деятельностью осу­ществляется на шестом году жизни. На этом этапе происхо­дит ознакомление детей с отношениями между смежными числами натурального ряда.

Результат — понимание основного принципа натураль­ного ряда: у каждого числа свое место, каждое последующее число на единицу больше предыдущего, и наоборот, каждое предыдущее — на единицу меньше последующего.

Пятый этап обучения счету соотносится с седьмым го­дом жизни. На этом этапе происходит понимание детьми счета группами по 2, по 3, по 5.

Результат — подведение детей к пониманию десятичной системы счисления. На этом обучение детей дошкольного возраста обычно заканчивается.

Шестой этап развития счетной деятельности связан с овладением детьми десятичной системой счисления. На седь­мом году жизни дети знакомятся с образованием чисел второ­го десятка, начинают осознавать аналогию образованная лю­бого числа на основе добавления единицы (увеличения: і числа на единицу). Понимают, что десять единиц составляют один десяток. Если к нему прибавить еще десять единиц, то полу­чится два десятка и т. д. Осознанное понимание детьми деся­тичной системы происходит в период школьного обучения.


Вся работа по развитию счетной деятельности у дошкольников проходит строго в соответствии с требованиями программного содержания. В каждой возрастной группе детского сада обозначены задачи по развитию у детей элементарных математических представлений, в частности по развитию счетной деятельности, в соответствии с «Программой воспитания и обучения в детском саду».


ВО ВТОРОЙ МЛАДШЕЙ ГРУППЕ начинают проводить специальную работу по формированию элементарных математических представлений. От того, насколько успешно будет организовано первое восприятие количественных отношений и пространственных форм реальных предметов, зависит дальнейшее математическое развитие детей. Малышей не учат считать, но, организуя разнообразные действия с предметами, подводят к усвоению счета, создают возможности для формирования понятия о натуральном числе.


Программный материал второй младшей группы ограничен дочисловым периодом обучения.


- У детей формируются представления о единичности и множественности объектов и предметов. В процессе упражнений, объединяя предметы в совокупности и дробя целое на отдельные части, дети овладевают умением воспринимать в единстве каждый отдельный предмет и группу в целом. В дальнейшем при знакомстве с числами и их свойствами это помогает им освоить количественный состав чисел.


- Дети учатся образовывать группы предметов по одному, а затем и по двум-трем признакам — цвет, форма, размер, назначение и др., подбирать пары предметов. При этом образованное определенным образом множество предметов дети воспринимают как единое целое, представленное наглядно и состоящее из единичных предметов. Они убеждаются в том, что каждый из предметов обладает общими качественными признаками (цвет и форма, раз мер и цвет).


- Группировка предметов по признакам вырабатывает у детей умение сравнивать, осуществлять логические операции классификации. От понимания выделенных признаков как свойств предметов в старшем дошкольном возрасте дети переходят к освоению общности по количеству. У них формируется более полное представление о числах.


- У детей формируется представление о предметных разночисленных совокупностях: один, много, мало (в значении несколько). Они постепенно овладевают умением различать их, сравнивать, самостоятельно выделять в окружающей обстановке.


МЕТОДЫ И ПРИЕМЫ ОБУЧЕНИЯ


Обучение детей младшей группы носит наглядно-действенный характер. Новые знания ребенок усваивает на основе непосредственного восприятия, когда следит за действием педагога, слушает его пояснения и указания и сам действует с дидактическим материалом.


Занятия часто начинают с элементов игры, сюрпризных моментов - неожиданного появления игрушек, вещей, прихода гостей и пр. Это заинтересовывает и активизирует малышей. Однако, когда впервые выделяют какое-то свойство и важно сосредоточить на нем внимание детей, игровые моменты могут и отсутствовать.


Выяснение математических свойств проводят на основе сравнения предметов, характеризующихся либо сходными, либо противоположными свойствами (длинный - короткий, круглый - некруглый и т. п.). Используются предметы, у которых познаваемое свойство ярко выражено, которые знакомы детям, без лишних деталей, различаются не более чем 1-2 признаками.


Точности восприятия способствуют движения (жесты рукой), обведение рукой модели геометрической фигуры (по контуру) помогает детям точнее воспринять ее форму, а проведение рукой вдоль, скажем, шарфика, ленточки (при сравнении по длине) - установить соотношение предметов именно по данному признаку.


Детей приучают последовательно выделять и сравнивать однородные свойства вещей. (Что это? Какого цвета? Какого размера?) Сравнение проводится на основе практических способов сопоставления: наложения или приложения.


Большое значение придается работе детей с дидактическим материалом. Малыши уже способны выполнять довольно сложные действия в определенной последовательности (накладывать предметы на картинки, карточки образца и пр.). Однако, если ребенок не справляется с заданием, работает непроизводительно, он быстро теряет к нему интерес, утомляется и отвлекается от работы. Учитывая это, педагог дает детям образец каждого нового способа действия.


Стремясь предупредить возможные ошибки, он показывает все приемы работы и детально разъясняет последовательность действий. При этом объяснения должны быть предельно четкими, ясными, конкретными, даваться в темпе, доступном восприятию маленького ребенка. Если педагог говорит торопливо, то дети перестают его понимать и отвлекаются. Наиболее сложные способы действия педагог демонстрирует 2—3 раза, обращая внимание малышей каждый раз на новые детали. Только многократный показ и называние одних и тех же способов действий в разных ситуациях при смене наглядного материала позволяют детям их усвоить.


В ходе работы педагог не только указывает детям на ошибки, но и выясняет их причины. Все ошибки исправляются непосредственно в действии с дидактическим материалом. Пояснения не должны быть назойливыми, многословными. В отдельных случаях ошибки малышей исправляются вообще без пояснений. («Возьми в правую руку, вот в эту! Положи эту полоску наверх, видишь, она длиннее этой!» и т. п.) Когда дети усвоят способ действия, то его показ становится ненужным.


Маленькие дети значительно лучше усваивают эмоционально воспринятый материал. Запоминание у них характеризуется непреднамеренностью. Поэтому на занятиях широко используются игровые приемы и дидактические игры. Они организуются так, чтобы по возможности в действии одновременно участвовали все дети и им не приходилось ждать своей очереди. Проводятся игры, связанные с активными движениями: ходьбой и бегом. Однако, используя игровые приемы, педагог не допускает, чтобы они отвлекали детей от главного (пусть еще и элементарной, но математической работы).



Пространственные и количественные отношения могут быть отражены на этом этапе только при помощи слов. Каждый новый способ действия, усваиваемый детьми, каждое вновь выделенное свойство закрепляются в точном слове. Новое слово педагог проговаривает не спеша, выделяя его интонацией. Все дети вместе (хором) его повторяют.

Наиболее сложным для малышей является отражение в речи математических связей и отношений, так как здесь требуется умение строить не только простые, но и сложные предложения, употребляя противительный союз А и соединительный И. Вначале приходится задавать детям вспомогательные вопросы, а затем просить их рассказать сразу обо всем. Например: Сколько камешков на красной полоске? Сколько камешков на синей полоске? А теперь сразу скажи о камешках на синей и красной полосках. Так ребенка подводят к отражению связей: На красной полоске один камешек, а на синей много камешков. Воспитатель дает образец такого ответа. Если ребенок затрудняется, педагог может начать фразу-ответ, а ребенок ее закончит.


Для осознания детьми способа действия им предлагают в ходе работы сказать, что и как они делают, а когда действие уже освоено, перед началом работы высказать предположение, что и как надо сделать. (Что надо сделать, чтобы узнать, какая дощечка шире? Как узнать, хватит ли детям карандашей?) Устанавливаются связи между свойствами вещей и действиями, с помощью которых они выявляются. При этом педагог не допускает употребления слов, смысл которых не понятен детям.


В процессе разнообразных практических действий с совокупностями дети усваивают и используют в своей речи простые слова и выражения, обозначающие уровень количественных представлений: много, один, по одному, ни одного, совсем нет (ничего нет), мало, такой же, одинаковый (по цвету, форме), столько же, поровну; столько, сколько; больше, чем; меньше, чем; каждый из всех.


Итак, в младшем дошкольном возрасте, в дочисловой период обучения дети овладевают практическими приемами сравнения (на­ложение, приложение, составление пар), в результате которых ос­мысливаются математические отношения: «больше», «меньше», «по­ровну». На этой основе формируется умение выделять качественные и количественные признаки множеств предметов, видеть общность и различия в предметах по выделенным признакам


ПРОГРАММА СРЕДНЕЙ ГРУППЫ направлена на дальнейшее формирование математических представлений у детей.


Одна из основных программных задач обучения детей пятого го­да жизни состоит в формировании у них умения считать, выработ­ке соответствующих навыков и на этой основе развитии представ­ления о числе.


Сформированное в младшем дошкольном возрасте (2—4 года) умение анализировать множества предметов с точки зрения их чис­ленности, видеть последовательность и различия по качественным и количественным признакам, представление о равенстве и нера­венстве предметных групп, умение должным образом отвечать на вопрос «сколько?» (столько же, здесь больше, чем там) явля­ется основой овладения счетом.


В среднем дошкольном возрасте (пятый год жизни) в процес­се сравнения двух групп предметов, выделения их свойств, а так­же счета у детей формируются представления:

  1. о числе, позволя­ющие дать точную количественную оценку совокупности, они овла­девают приемами и правилами счета предметов, звуков, движений (в пределах 5);

  2. о натуральном ряде чисел (последовательности, месте числа) их знакомят с образо­ванием числа (в пределах 5) в процессе сравнения двух мно­жеств предметов и увеличения или уменьшения одного из них на единицу;

  3. уделяется внимание сравнению множеств предметов по количеству сос­тавляющих их элементов (как без счета, так и в сочетании со счетом), уравниванию множеств, отличающихся одним элементом, установлению взаимосвязи отношений «больше - меньше» (если ми­шек меньше, то зайцев больше);

  4. дети, овладев умением считать предметы, звуки, движения, отвечать на вопрос «сколько?», учатся определять порядок следования предметов (первый, последний, пятый), отвечать на вопрос «который?», т.е. практически пользовать­ся количественным и порядковым счетом;

  5. у детей формируются умения воспроизводить множества, отсчитывая предметы по образцу, по заданному числу из большего количества, запоминать числа, представление о числе как общем признаке разно­образных множеств (предметов, звуков), они убеждаются в не­зависимости числа от несущественных признаков (например, цвета, занимаемой площади, размеров предметов и др.), используют различные способы получения равных и неравных по количеству групп и учатся видеть идентичность (тождественность), обоб­щать по числу предметы множеств (столько же, по четыре, пять, такое же количество, т.е. число).

  6. формируются представления о первых пяти числах натурального ряда (порядке их следования, зависимости между смежными числами: больше, меньше), вырабатываются умения пользоваться ими в различных бытовых и игровых ситуациях.



МЕТОДЫ И ПРИЕМЫ ОБУЧЕНИЯ СЧЕТУ


Обучение счету в пределах 5. Обучение счету должно помочь детям понять цель данной деятельности (только сосчитав предметы, можно точно ответить на вопрос сколько?) и овладеть ее средствами: называнием числительных по порядку и соотнесением их к каждому элементу группы. Четырехлетним детям трудно одновременно усвоить обе стороны этой деятельности. Поэтому в средней группе обучение счету рекомендуется осуществлять в два этапа.


НА ПЕРВОМ ЭТАПЕ на основе сравнения численностей двух групп предметов детям раскрывают цель данной деятельности (найти итоговое число). Их учат различать группы предметов в 1 и 2, 2 и 3 элемента и называть итоговое число на основе счета воспитателя. Такое "сотрудничество" осуществляется на первых двух занятиях.


Сравнивая 2 группы предметов, расположенные в 2 параллельных ряда, одна под другой, дети видят, в какой группе больше (меньше) предметов или их в обеих поровну. Они обозначают эти различия словами-числительными и убеждаются: в группах поровну предметов, их количество обозначается одним и тем же словом (2 красных кружка и 2 синих кружка), добавили (убрали) 1 предмет, их стало больше (меньше), и группа стала обозначаться новым словом.

Дети начинают понимать, что каждое число обозначает определенное количество предметов, постепенно усваивают связи между числами (2 > 1, 1 < 2 и т. д.).


Организуя сравнение 2 совокупностей предметов, в одной из которых на 1 предмет больше, чем в другой, педагог считает предметы и акцентирует внимание детей на итоговом числе. Он сначала выясняет, каких предметов больше (меньше), а затем - какое число больше, какое меньше. Основой для сравнения чисел служит различение детьми численностей множеств (групп) предметов и наименование их словами-числительными.


Важно, чтобы дети увидели не только то, как можно получить последующее число (n+1), но и то, как можно получить предыдущее число: 1 из 2, 2 из 3 и т. п. (n - 1). Воспитатель то увеличивает группу, добавляя 1 предмет, то уменьшает, удаляя из нее 1 предмет. Каждый раз выясняя, каких предметов больше, каких - меньше, переходит к сравнению чисел. Он учит детей указывать не только, какое число больше, но и какое меньше (2>1, 1<2, 3>2, 2<3 и т. д.). Отношения "больше", "меньше" всегда рассматриваются в связи друг с другом. В ходе работы педагог постоянно подчеркивает: чтобы узнать, сколько всего предметов, надо их сосчитать.

Акцентируя внимание детей на итоговом числе, педагог сопровождает называние его обобщающим жестом (обведение группы предметов рукой) и именует (т.е. произносит название самого предмета). В процессе счета числа не именуются (1, 2, 3 - всего 3 грибочка).


Детей побуждают называть и показывать, где 1, где 2, где 3 предмета, что служит установлению ассоциативных связей между группами, содержащими 1, 2, 3 предмета, и соответствующими словами-числительными.


Большое внимание уделяют отражению в речи детей результатов сравнения совокупностей предметов и чисел. ("Матрешек больше, чем петушков. Петушков меньше, чем матрешек. 2 больше, а 1 меньше, 2 больше, чем 1, 1 меньше, чем 2".)


НА ВТОРОМ ЭТАПЕ дети овладевают счетными операциями. После того как дети научатся различать множества (группы), содержащие 1 и 2, 2 и 3 предмета, и поймут, что точно ответить на вопрос сколько? можно, лишь сосчитав предметы, их учат вести счет предметов в пределах 3, затем 4 и 5.

С первых занятий обучение счету должно строиться так, чтобы дети поняли, как образуется каждое последующее (предыдущее) число, т.е. общий принцип построения натурального ряда. Поэтому показу образования каждого следующего числа предпосылается повторение того, как было получено предыдущее число.


Последовательное сравнение 2-3 чисел позволяет показать детям, что любое натуральное число больше одного и меньше другого, "соседнего" (3 < 4 < 5), разумеется, кроме единицы, меньше которой нет ни одного натурального числа. В дальнейшем на этой основе дети поймут относительность понятий "больше", "меньше".


Они должны научиться самостоятельно преобразовывать множества предметов. Например, решать, как сделать, чтобы предметов стало поровну, что надо сделать, чтобы стало (осталось) 3 предмета вместо 2 (вместо 4) и т. п.


В средней группе тщательно отрабатывают счетные навыки. Воспитатель многократно показывает и разъясняет приемы счета, приучает детей вести счет предметов правой рукой слева направо; в процессе счета указывать на предметы по порядку, дотрагиваясь до них рукой; назвав последнее числительное, сделать обобщающий жест, обвести группу предметов рукой.


Дети обычно затрудняются в согласовании числительных с существительными (числительное один заменяют словом раз). Воспитатель подбирает для счета предметы мужского, женского и среднего рода (например, цветные изображения яблок, слив, груш) и показывает, как в зависимости от того, какие предметы пересчитываются, изменяются слова один, два. Ребенок считает: "Раз, два, три". Педагог останавливает его, берет в руки одного мишку и спрашивает: "Сколько у меня мишек?" - "Один мишка",- отвечает ребенок. "Правильно, один мишка. Нельзя сказать "раз мишка". И считать надо так: один, два..."


Для закрепления навыков счета используется большое количество упражнений. Упражнения в счете должны быть почти на каждом занятии до конца учебного года. Чтобы создать предпосылки для самостоятельного счета, меняют счетный материал, обстановку занятий, чередуют коллективную работу с самостоятельной работой детей с пособиями, разнообразят приемы. Используются разнообразные игровые упражнения, в том числе такие, которые позволяют не только закреплять умение вести счет предметов, но и формировать представления о форме, размере, способствуют развитию ориентировки в пространстве. Счет связывают со сравнением размеров предметов, с различением геометрических фигур и выделением их признаков; с определением пространственных направлений (слева, справа, впереди, сзади).

Детям предлагают найти определенное количество предметов в окружающей обстановке. Вначале ребенку дают образец (карточку). Он ищет, каких игрушек или вещей столько же, сколько кружков на карточке. Позднее дети учатся действовать лишь по слову. ("Найди 4 игрушки".) Проводя работу с раздаточным материалом, надо учесть, что дети еще не умеют отсчитывать предметы. Задания вначале даются такие, которые требуют от них умения считать, но не отсчитывать.


Применение счета в разных видах детской деятельности.

Обучая счету, не следует ограничиваться проведением формальных упражнений на занятиях. Воспитатель должен стремиться к тому, чтобы счет исполь­зовался детьми повсеместно, и число наряду с количественными и пространственными признаками предметов помогало бы детям лучше ориентироваться в окружающей действительности.

Воспитатель постоянно использует и создает различные жизненные и игровые ситуации, требующие от детей применения навыков счета. В играх с куклами, например, дети выясняют, хватит ли посуды для приема гостей, одежды для того, чтобы собрать кукол на прогулку, и пр. В игре в "магазин" пользуются чеками-карточками, на которых нарисовано определенное количество предметов или кружков. Воспитатель своевременно вносит соответствующие атрибуты и подсказывает игровые действия, включающие счет и отсчет предметов.

В быту часто возникают ситуации, требующие выполнения счета: по заданию педагога дети выясняют, хватит ли тех или иных пособий или вещей детям, сидящим за одним столом (коробок с карандашами, подставок, тарелок и пр.). Дети считают игрушки, которые взяли на прогулку. Собираясь домой, проверяют, все ли игрушки собраны. Любят ребята и просто пересчитывать предметы, которые встречаются по пути.


Обучение счету сопровождается беседами с детьми о назна­чении, применении счета в разных видах деятельности. Стремясь углубить представления детей о значении счета, педагог разъясняет им, для чего люди считают, что они хотят узнать, когда считают предметы. Советует детям посмотреть, что считают их мамы, папы, бабушки.

Итак, в средней группе под влиянием обучения формируется счетная деятельность, умение считать различные совокупности пред­метов в разных условиях и взаимосвязях.




В СТАРШЕЙ ГРУППЕ программа направлена на расширение, углубление и обобщение у детей элементарных математических представлений, дальнейшее развитие деятельности счета.


- продолжается работа по формированию пред­ставлений о численности (количественная характеристика) мно­жеств, способах образования чисел, количественной оценке вели­чин путем измерения;

- дети осваивают приемы счета предметов, звуков, движений по осязанию в пределах 10, определяют количество условных мерок при измерении протяженных объектов, объемов жидкостей, масс сыпучих веществ;

- дети учатся образовывать числа путем увеличения или уменьшения данного числа на единицу, уравнивать множества по числу предметов при условии количественных разли­чий между ними в 1, 2 и 3 элемента, как и в средней группе, дети отсчитывают количество пред­метов по названному числу или образцу (числовая фигура, кар­точка) или больше (меньше) на единицу, упражняются в обоб­щении по числу предметов ряда конкретных множеств, отличающихся пространственно-качественными признаками (форма, расположение, направление счета и др.) на основе восприятия различными ана­лизаторами;

- с целью подготовки детей к счету групп их обучают умению разбивать совокупности в 4, 6, 8, 9, 10 предметов на группы по 2, 3, 4, 5 предметов, определять количество групп и число отдельных предметов;

- дети знакомятся с количественным составом чисел из единиц в пределах 5 на конкретных предметах и в процессе измерения, что уточняет и конкретизирует представление о числе, единице, месте числа в натуральном ряду чисел;

- продолжается обучение детей различению количественного и порядкового значения числа, вырабатываются умения применять количественный и порядковый счет в практической деятельности;

- в ходе сравнения множеств и чисел дети знакомятся с циф­рами от 0 до 9, они учатся относить их к числам, различать, исполь­зовать в играх.


МЕТОДЫ И ПРИЕМЫ ОБУЧЕНИЯ СЧЕТУ


Повторение пройденного. В средней группе детей учили вести счет предметов в пределах 5. Закрепление соответствующих представлений и способов действий служит основой для дальнейшего развития деятельности счета.


Сопоставление двух совокупностей, содержащих равное и неравное (больше или меньше на 1) число предметов в пределах 5, позволяет напомнить детям, как образуются числа первого пятка. Для того чтобы довести до сознания детей значение счета и приемов поштучного сопоставления предметов двух групп один к одному для выяснения отношений "равно", "не равно", "больше", "меньше", даются задания на уравнивание совокупностей. ("Принеси столько чашек, чтобы всем куклам хватило и не осталось лишних" и т. п.)


Большое внимание уделяется закреплению навыков счета; детей учат вести счет предметов слева направо, указывая на предметы по порядку, согласовывать числительные с существительными в роде и числе, именовать итог счета. Если кто-то из детей не понимает итогового значения последнего названного при счете числа, то ему предлагается обвести сосчитанные предметы рукой. Круговой обобщающий жест помогает ребенку соотнести последнее числительное со всей совокупностью предметов. Но в работе с детьми 5 лет он, как правило, уже не нужен. Детям теперь можно предлагать сосчитать предметы на расстоянии, молча, т. е. про себя.


Детям напоминают приемы счета звуков и предметов на ощупь. Они воспроизводят определенное количество движений по образцу и указанному числу.


Счет в пределах 10. Для получения чисел второго пятка и обучения счету до 10 используют приемы, аналогичные тем, которые применялись в средней группе для получения чисел первого пятка.


Образование чисел демонстрируется на основе сопоставления двух совокупностей предметов. Дети должны понять принцип получения каждого последующего числа из предыдущего и предыдущего из последующего (n + 1). В связи с этим на одном занятии целесообразно последовательно получить 2 новых числа, например 6 и 7. Как и в средней группе, показу образования каждого следующего числа предпосылается повторение того, как было получено предыдущее число. Таким образом, всегда сравнивается не менее чем 3 последовательных числа. Дети иногда путают числа 7 и 8. Поэтому целесообразно провести большее количество упражнений в сопоставлении множеств, состоящих из 7 и 8 элементов.


Полезно сопоставлять не только совокупности предметов разного вида (например, елочки, грибочки и др.), но и группы предметов одного вида разбивать на части и сопоставлять их друг с другом (яблоки большие и маленькие), наконец, совокупность предметов может сопоставляться с ее частью. ("Кого больше: серых зайчиков или серых и белых зайчиков вместе?") Такие упражнения обогащают опыт действий детей с множествами предметов.


При оценке численностей множеств предметов пятилетних детей еще дезориентируют ярко выраженные пространственные свойства предметов. Однако теперь не обязательно посвящать специальные занятия показу независимости числа предметов от их размеров, формы, расположения, площади, которую они занимают. Возможно одновременно учить детей видеть независимость числа предметов от их пространственных свойств и получать новые числа.


Умение сопоставлять совокупности предметов разных размеров или занимающих разную площадь создает предпосылки для понимания значения счета и приемов поштучного соотнесения элементов двух сравниваемых множеств (один к одному) в выявлении отношений "равно", "больше", "меньше". Например, чтобы выяснить, каких яблок больше - маленьких или больших, каких цветков больше - ноготков или ромашек, если последние расположены с большими интервалами, чем первые, необходимо либо сосчитать предметы и сравнить их число, либо сопоставить предметы 2 групп (подгрупп) один к одному. Используются разные способы сопоставления: наложение, приложение, применение эквивалентов. Дети видят: в одной из групп оказался лишний предмет, значит, их больше, а в другой - одного предмета не хватило, значит, их меньше. Опираясь на наглядную основу, они сравнивают числа (значит, 8 > 7, а 7 < 8).


Уравнивая группы добавлением одного предмета к меньшему их числу или удалением одного предмета из большего их числа, дети усваивают способы получения каждого из сравниваемых чисел. Рассматривание взаимосвязи отношений "больше", "меньше" поможет им в дальнейшем понять взаимно-обратный характер отношений между числами (7 > 6, 6 < 7).


Дети должны рассказывать, как было получено каждое число, т. е. к какому числу предметов и сколько добавили или от какого числа предметов и сколько отняли (убрали). Например, к 8 яблокам добавили 1, стало 9 яблок. Из 9 яблок взяли 1, осталось 8 яблок и т. п. Если ребята затрудняются дать четкий ответ, можно задать наводящие вопросы: "Сколько было? Сколько добавили (убрали)? Сколько стало?"


Смена дидактического материала, варьирование заданий помогают детям лучше понять способы получения каждого числа. Получая новое число, они сначала действуют по указанию педагога ("К 7 яблокам добавьте 1 яблоко"), а потом самостоятельно преобразуют совокупности. Добиваясь осознанных действий и ответов, педагог варьирует вопросы. Он спрашивает, например: "Что надо сделать, чтобы стало 8 цилиндров? Если к 7 цилиндрам добавить 1, сколько их станет?"


Для упрочения знаний необходимо чередовать коллективную работу с самостоятельной работой детей с раздаточным материалом. Ребенок сопоставляет 2 совокупности, раскладывая предметы на карточке с 2 свободными полосками. Демонстрация приемов получения нового числа (сравнение 3 соседних членов натурального ряда) обычно занимает не менее 8-12 мин, чтобы выполнение однообразных заданий не утомляло детей, аналогичная работа с раздаточным материалом проводится чаще на следующем занятии.


Для закрепления навыков счета в пределах 10 используют разнообразные упражнения, например "Покажи столько же". Дети находят карточку, на которой нарисовано столько же предметов, сколько показал педагог. ("Найдите столько игрушек, сколько кружков на карточке", "Кто быстрее найдет, каких игрушек у нас 6 (7, 8, 9, 10)?".) Чтобы выполнить последние 2 задания, педагог заранее составляет группы игрушек.


Когда детей познакомят со всеми числами до 10, им показывают, что для ответа на вопрос сколько? не имеет значения, в каком направлении ведется счет. Они в этом сами убеждаются, пересчитывая одни и те же предметы в разных направлениях: слева направо и справа налево; сверху вниз и снизу вверх. Позднее детям дают представление о том, что считать можно предметы, расположенные не только в ряд, но и самыми различными способами. Они считают игрушки (вещи), расположенные в форме разных фигур (по кругу, парами, неопределенной группой), изображения предметов на карточке лото, наконец, кружки числовых фигур.


Детям показывают разные способы счета одних и тех же предметов и учат находить более удобные (рациональные), позволяющие быстро и правильно сосчитать предметы. Пересчет одних и тех же предметов разными способами (3-4 способа) убеждает детей в том, что начинать счет можно с любого предмета и вести его в любом направлении, но при этом надо не пропустить ни один предмет и ни один не сосчитать дважды. Специально усложняют форму расположения предметов.


Если ребенок ошибается, то выясняют, какая ошибка допущена (пропустил предмет, один предмет сосчитал дважды). Воспитатель, пересчитывая предметы, может намеренно допустить ошибку. Дети следят за действиями педагога и указывают, в чем заключалась его ошибка. Делают вывод о необходимости хорошо запомнить предмет, с какого был начат счет, чтобы не пропустить ни один из них и один и тот же предмет не сосчитать дважды.


Итак, количественные представления у детей 5—6 лет, сформи­рованные под влиянием обучения, носят более обобщенный характер, чем в средней группе. Дошкольники пересчитывают предметы независимо от их внешних признаков, обобщают по числу. У них накапливается опыт счета отдельных предметов, групп, использова­ния условных мерок.

Усвоенные детьми умения сравнивать числа на наглядной, ос­нове, уравнивать группы предметов по числу свидетельствуют о сформированности у них представлений об отношениях между чис­лами натурального ряда.

Счет, сравнение, измерение, элементарные действия над числами (уменьшение, увеличение на единицу) становятся доступными детям в разных видах их учебной и самостоятельной деятельности.



В программе ПОДГОТОВИТЕЛЬНОЙ К ШКОЛЕ ГРУППЕ можно выделить следующие направления:

1. Развитие счетной, измерительной деятельности: точности и быстроты счета, воспроизведения количества предметов в большем и меньшем на один от заданного их числа; подготовка к усвоению чисел на базе измерения, использование цифр в разных видах игровой и бытовой деятельности.

2. Совершенствование умений сравнивать числа, понимание от­носительности числа: при сравнении чисел 4 и 5 получается, что число 5 больше, чем 4, а при сравнении чисел 5 и 6 - 5 меньше 6. Уточнение представлений о закономерностях образования чисел натурального ряда, количественном составе их из единиц, составле­ние чисел до 5 из двух меньших.

3. Формирование представлений об отношениях «целое - часть» на совокупностях, состоящих из отдельных предметов, при делении предметов на равные части, в ходе измерения условной меркой.

4. Увеличение и уменьшение чисел в пределах 10 на единицу, подготовка к усвоению арифметических действий сложения и вычи­тания. Решение простых арифметических задач, используя при этом вычислительные приемы увеличения и уменьшения на единицу.


В подготовительной к школе группе совершенствуются умения сформированные в процессе обучения детей в старшей группе.


В начале учебного года целесообразно проверить, все ли дети, и в первую очередь те, которые впервые пришли в детский сад, умеют считать предметы, сопоставлять количество разных предметов и определять, каких больше (меньше) или их поровну, каким способом при этом пользуются: счетом, умеют ли дети сравнивать численности совокупностей, отвлекаясь от размеров предметов и площади, которую они занимают.


Примерные задания и вопросы: "Сколько здесь больших матрешек? Отсчитай сколько же маленьких матрешек. Узнай, каких квадратов больше: синих или красных. (На столе беспорядочно лежат 5 больших синих квадратов и 6 маленьких красных.) Узнай, каких кубиков больше: желтых или зеленых". (На столе стоят 2 ряда кубиков; 6 желтых стоят с большими интервалами один от другого, а 7 синих - вплотную друг к другу.)


Проверка подскажет, в какой мере дети овладели счетом и на какие вопросы следует обратить особое внимание. Аналогичную проверку можно повторить спустя 2-3 месяца, для того чтобы выявить продвижение детей в овладении знаниями.


Счете отсчет предметов в пределах 10


В счете и отсчете предметов в пределах 10 дети упражняются в течение всего учебного года. Они должны твердо запомнить порядок следования числительных и уметь правильно соотносить числительные с пересчитываемыми предметами, понимать, что последнее названное при счете число обозначает общее количество предметов совокупности. Если дети допускают ошибки при счете, необходимо показать и разъяснить его действия.


Счет групп предметов


При закреплении навыков счета и отсчета важно наряду со счетом отдельных предметов упражнять детей в счете групп, состоящих из однородных предметов.


Дошкольникам предъявляют группу, составленную из равных количеств однородных предметов: матрешек, кубиков, конусов, чашек и т. п. - или моделей геометрических фигур: треугольников, кругов и т. п. Цветные изображения предметов или геометрических фигур могут размещаться на фланелеграфе. Задают вопрос: "Сколько групп...? Сколько... в каждой группе? Сколько всего...?" Отвечая на последний вопрос, дети пересчитывают предметы по одному.


Оживление вносят игровые моменты. Например, воспитатель размещает на фланелеграфе картинки с изображением самолетов и спрашивает: "Сколько звеньев самолетов? Сколько самолетов в каждом звене? Сколько рядов самолетов? Сколько всего самолетов?" Затем дети закрывают глаза, а воспитатель меняет расположение игрушек. Дети открывают глаза, отгадывают, что изменилось, и считают, сколько теперь звеньев самолетов, по скольку самолетов в каждом звене и т. п.


Позднее детям предлагают отсчитать определенное количество предметов и разложить их группами: по 2, по 3, по 4, по 5. Выясняют, сколько групп получилось и по скольку предметов в каждой группе. Вначале можно использовать сюжетный иллюстративный материал, например разделить 8 рыбок в 2 (4) аквариума, а затем абстрактный - геометрические фигуры.


После того как дети выполнят задания и расскажут, сколько получилось групп и по скольку предметов в каждой, им предлагают подумать, сколько станет групп, если в каждой группе будет не по 3, а по 2 предмета или на 1 предмет больше, или, наоборот, сколько будет предметов в каждой группе, если групп станет на 1 больше (меньше) или 4 группы, вместо 3, 2 вместо 3 и т. п.


Нельзя допускать, чтобы дети действовали на авось. Надо предлагать им сначала подумать и самим догадаться, как перестроить группы, не разрушая их, а потом проверить, не ошиблись ли они. Например, распределили 6 кружков на 2 группы, причем в каждой группе по 3 кружка. Надо сделать так, чтобы стало 3 группы кружков. Для этого ребята должны взять по 1 кружку из каждой группы и составить новую.


Каждый раз устанавливают связь между количеством групп и количеством предметов в группе. Дети видят: увеличивают количество групп - уменьшают количество предметов в каждой из них, уменьшают количество групп - увеличивают в каждой из них количество предметов (при условии, что общее число предметов одно и то же).


Упражнениям в счете групп предметов отводят 6-7 занятий. Они имеют существенное значение для развития понятия числа. В качестве единицы счета теперь наряду с отдельными предметами выступают группы предметов. Таким образом, единица отвлекается от отдельностей.


Обучение детей счету групп предметов сопровождается делением совокупности на группы, выделением отношений «целое — часть», зависимости: чем больше по количеству целое (совокупность), тем больше предметов в группе (части). Выделяется и более сложная зависимость между количеством групп, на которое делится целое, и количеством предметов в группе.


К моменту перехода детей в школу у них должна быть воспитана привычка вести счет и раскладывать предметы слева направо, действуя правой рукой. Но, отвечая на вопрос сколько?, дети могут считать предметы в любом направлении: слева направо и справа налево, а также сверху вниз и снизу вверх. Они убеждаются, что считать можно в любом направлении, но при этом важно не пропустить ни одного предмета и ни один предмет не сосчитать дважды.



19. Совершенствование навыков счета путем обучения отсчитыванию из большего количества по образцу и по названному числу в разных возрастных группах.


Одной из важных задач В СРЕДНЕЙ ГРУППЕ является обучение детей умению отсчитывать предметы. После того как дети научатся вести счет предметов, их учат отсчитывать предметы, самостоятельно создавать группы, содержащие определенное число предметов. Данной работе отводят 6-7 занятий.

Необходимо уточнить смысл слов сосчитал и отсчитал.

При сосчитывании определяется число элементов в множестве, а при отсчитывании из большего числа элементов берется опреде­ленная часть, тождественная образцу или названному числу.

Отсчитывание определенной части множества осуществля­ется по тем же правилам, что и счет.

Обучать отсчитыванию целесообразно в привычной для детей обстановке, где меньше отвлекающих моментов.

Обучение отсчету предметов начинают с показа его приемов. Необходимо показать детям способ отсчета, указать, когда следует произносить числительное, отбирая предметы.


Обычно новый способ действия поглощает внимание ребенка, и он забывает, сколько предметов надо отсчитать. Многие дети, отсчитывая, соотносят числительные не с предметами, а со своими движениями, например, берут в руку предмет и произносят один, ставят его и говорят два.


Объясняя способ действия, воспитатель подчеркивает необходимость запомнить число, показывает и разъясняет, что предмет надо брать молча и только тогда, когда он поставлен, называть число.


При проведении первых упражнений детям дается образец (карточка с кружками или рисунками предметов). Ребенок отсчитывает по образцу столько игрушек (или вещей), сколько кружков на карточке. Карточка служит средством контроля за результатами действия. Дети считают кружки сначала вслух, а в дальнейшем про себя. Кружки на карточке-образце могут быть расположены по-разному. Вначале ребенок получает образец в руки, а позднее педагог его только показывает. Особенно полезны упражнения в уравнивании совокупностей предметов типа "Отсчитай и принеси столько пальто, чтобы всем куклам хватило". Ребенок считает игрушки и приносит требуемое. Данные упражнения позволяют подчеркнуть значение счета.


Следует учить отсчитывать, выкладывать, приносить определенное число предметов сначала по образцу, а затем по названному числу. Считать и отсчитывать по образцу детям легче, чем по названному числу. Воспитатель должен это знать и усложнять задания постепенно: сначала предлагать работать по наглядному образцу (дается образец-карточка с кружками и предлагается детям найти столько же игрушек, поставить каждую игрушку на кружок карточки), затем по названному числу (числовой карточке или цифре) (найти трех уточек, отсчитать и принести 4-х зайчиков, поставить столько машин, сколько цифр на доске).


Еще более сложным заданием будет отсчитывание предметов из большего количества. В начале обучения детям предлагают три предмета, которые необходимо расположить по порядку, далее количество предметов увеличить до пяти и более. Хорошую упражняемость в различении количественных отношений обеспечивает выполнение детьми поручений педагога. Например: принести много зайцев и одного мишку; найти, где лежит мало карандашей и много тетрадей; принести один стул и несколько кукол.


Педагог постоянно предупреждает их о необходимости запоминать числа. От упражнения в воспроизведении одной группы дети переходят к составлению сразу двух групп, к запоминанию двух чисел ("Принеси 3 зайчика и 4 морковки"). Давая такие задания, называют соседние в натуральном ряду числа. Это позволяет попутно упражнять детей в сравнении чисел.

Детям предлагают не только отсчитать определенное количество предметов, но и расположить их в определенном месте, например, поставить на верхнюю или нижнюю полочку, положить на столе слева или справа и т. п. Воспитатель меняет количественные соотношения между одними и теми же предметами, а также место их расположения. Устанавливаются связи между числом, качественными признаками и пространственным расположением предметов. Дети все более самостоятельно, не ожидая дополнительных вопросов, рассказывают о том, сколько, каких предметов и где расположено. Результаты отсчета они проверяют, пересчитывая предметы.


На последующих 2-3 занятиях детям предлагают сделать так, чтобы разных предметов было поровну. (3 круга, 3 квадрата, 3 прямоугольника - всех фигур по 3.). Общим признаком для всех групп предметов в данном случае является равное их количество. После таких упражнений дети начинают понимать обобщающее значение итогового числа.


Как и в средней группе, дети в СТАРШЕЙ ГРУППЕ отсчитывают количество предметов по названному числу или образцу (числовая фигура, карточка).


Отсчет предметов в пределах 10. Упражнения в отсчете предметов продолжают усложняться.


Наряду с заданиями на воспроизведение сразу 2 групп предметов разного вида ("Отсчитайте 6 шишек и 7 каштанов") или 2 групп предметов одного вида, но отличающихся либо цветом, либо формой, либо размером (7 больших и 8 маленьких пуговиц), дают задания не только отсчитать 2 группы предметов, но и расположить их в определенном месте, например в указанной части листа бумаги: вверху, внизу, слева, справа, посередине.


Несколько позднее по указанию воспитателя дети помещают предметы вдоль верхнего или нижнего, правого или левого края листа, в верхнем правом, в нижнем левом углах.


Перед тем как дать такие задания, воспитатель специально тренирует детей в нахождении соответствующих частей листа бумаги.


Детей приучают внимательно выслушивать задание, запоминать его, точно выполнять и рассказывать о том, что и как сделали. Вначале им трудно дать полный четкий ответ. Педагог помогает наводящими вопросами. Например, он спрашивает ребенка: "Сколько квадратов и где ты положил? Сколько прямоугольников и где ты положил? А теперь расскажи обо всем, что сделал!" Ответ по частям превращается в целостный рассказ о выполненном задании.


Если ребенок затрудняется выполнить задание, воспитатель, помогая ему, начинает ответ: "6 квадратов я положил...", а ребенок заканчивает. В речи детей непременно должны отражаться связи между количеством предметов, их качественными признаками и пространственным расположением. Изменение количественных соотношений между одними и теми же предметами, а также места их расположения обеспечивают абстрагирование числа от качественных и пространственных признаков множеств предметов. Детей начинают учить повторять задание до его выполнения, обеспечивая развитие планирующей функции речи.


В ПОДГОТОВИТЕЛЬНОЙ ГРУППЕ детям предлагают отсчитать определенное количество предметов и разложить их группами: по 2, по 3, по 4, по 5. Выясняют, сколько групп получилось и по скольку предметов в каждой группе. Вначале можно использовать сюжетный иллюстративный материал, например разделить 8 рыбок в 2 (4) аквариума, а затем абстрактный - геометрические фигуры.


После того как дети выполнят задания и расскажут, сколько получилось групп и по скольку предметов в каждой, им предлагают подумать, сколько станет групп, если в каждой группе будет не по 3, а по 2 предмета или на 1 предмет больше, или, наоборот, сколько будет предметов в каждой группе, если групп станет на 1 больше (меньше) или 4 группы, вместо 3, 2 вместо 3 и т. п.



20. Совершенствование навыков счета через обучение счету с участием различных анализаторов (счет звуков, движений, счет по осязанию) в разных возрастных группах.


Для развития деятельности счета существенное значение имеют упражнения в счете с активным участием разных анализаторов: счет звуков, движений, счет предметов на ощупь.


В СРЕДНЕЙ ГРУППЕ для формирования счета групп предметов (множеств), воспринимаемых разными анализаторами (слуховым, осязательно-двигательным) наряду с опорой на зрительное восприятие (наглядно представленных множеств) важно упражнять детей в счете множеств, воспринимаемых на слух, на ощупь, учить их вести счет движений.


Упражнения в счете на ощупь, а также в счете звуков проводят, не предлагая детям закрывать глаза. Это отвлекает ребят от счета. Воспитатель извлекает звуки за ширмой, чтобы дети только слышали их, но не видели движений руки. Они считают на ощупь предметы, помещенные в мешочки. Для этой цели используют разные пособия. Например, можно считать пуговицы на карточках, отверстия в дощечке, игрушки в мешочке или под салфеткой и т. п. Соответственно и звуки извлекаются на разных музыкальных инструментах: барабане, металлофоне, палочках.


Упражняя детей в счете движений, им предлагают воспроизвести указанное количество движений либо по образцу, либо по названному числу: "Постучи столько раз, сколько раз ударит молоточек", "Присядь 4 раза". Воспитатель постепенно усложняет характер движений, предлагая детям притопнуть правой (левой) ногой, поднять левую (правую) руку, наклониться вперед и т. п. Однако не следует четырехлетним детям предлагать слишком сложные движения, это отвлекает их внимание от счета.


Сначала дети овладе­вают умением считать звуки, движения, производимые воспитателем с помощью игрушки. (Сколько раз квакнула лягушка, подпрыг­нул зайка?) Затем они считают звуки, движения, выполняемые ими самостоятельно, проговаривая числа вслух, а в дальнейшем шепотом и про себя, учатся запоминать числа.

Звуки и движения должны быть ритмичны, разнообразны, интересны: удары в барабан, бубен, стук в дверь, проговаривание одного и того же слова, хлопки над головой, прыжки, подбрасы­вание мяча и др. Лучше, если источник звука скрыт от детей ширмой, дверью. Возможен счет на слух, с закрытыми глазами, что обостряет деятельность слухового анализатора.


Счет предметов по осязанию интересное и развивающее упраж­нение. Вначале он носит игровой характер: взять, достать из «чудесного мешочка» определенное количество одинаковых мелких предметов, кубиков, матрешек. В дальнейшем дети считают предме­ты, зафиксированные неподвижно на плоскости (линейно распо­ложенные: грибы на подставке, пуговицы, нашитые на картон, и т. д.). Наглядный материал после предварительного рассматрива­ния закрывается салфеткой и пересчитывается. Правила счета те же: считать правой рукой, ведя ее по предметам слева направо, называя число в момент фиксации руной предмета, левой рукой поддерживать карточку. Итоговое число называется сразу по окон­чании счета.


При счете движений, предметов по осязанию иногда имеет место неадекватное отражение их количества в числе. Дети, считая одно движение, называют два числа (подъем рук вверх и опуска­ние их вниз). В ходе обучения необходимо пояснять, что название числа должно совпадать с определенным моментом осуществления движения, например при подбрасывании мяча, когда он находится вверху, в полете.


Наиболее сложным для детей средней группы является счет по осязанию, а в дальнейшем и отсчет мелких предметов, не за­фиксированных на плоскости, так как он связан с передвижением их слева направо, что исключает повторение счета. Числа произ­носятся, когда передвижение предмета уже закончено. Считаются предметы, а не движения руки. Задания, наглядный материал раз­нообразятся, показывается практическая необходимость счета.


Сопоставляются множества, воспринятые разными анализаторами, что способствует образованию межанализаторных связей и обеспечивает обобщение знаний о числе. Детям предлагают, например, поднять руку столько раз, сколько они услышали звуков, или сколько пуговиц было на карточке, или сколько игрушек стоит. Данная работа ведется параллельно с упражнениями в отсчете предметов и в большой мере увязывается с ними.

В процессе занятия счет с включением деятельности различных анализаторов сочетается с отсчетом, воспроизведением различных совокупностей по образцу и заданному числу.


В СТАРШЕЙ ГРУППЕ дети упражняются в счете множеств, воспринимаемых различными анализаторами: предметов, звуков, движений. В сравнении со средней группой усложняется характер пересчитываемых звуков, движений, материал для счета на ощупь, возрастает самостоятельность детей:

  • считают количество громких и тихих звуков с разными интервалами,

  • разнообразные движения,

  • предметы, нани­занные на проволоку, зашитые в мешочек,

  • нашитые на карточку (считают, спрятав их за спину) и т. д.

  • считают звуки (когда источник звука отделен ширмой),

  • предметы по осязанию с открытыми глазами и закрытыми глазами,

  • сравнивают полученные числа,

  • отсчитывают предметы по заданному числу и образцу,

  • запо­минают числа и качественные признаки предметов (отсчитать 3 красных и 8 зе­леных карандашей, сосчитать, сколько окон в комнате и сколько дверей, и т.п.).


Счет на ощупь. В старшей группе упражнения в счете предметов на ощупь несколько усложняют. Например, как и в средней группе, дети считают пуговицы, нашитые на карточку, но карточку они держат за спиной. Нашивают на карточку 6 - 10 пуговиц в 2 ряда. Используют пуговицы более мелких размеров. Детям дают задания сосчитать пуговицы на ощупь с закрытыми глазами, сосчитать камешки, перекладывая их из руки в руку. Целесообразно проводить упражнения в такой форме, которая обеспечивала бы включение в работу всех детей. Так, все дети одновременно упражняются в счете на ощупь в игре "Пошли, пошли, пошли...".


Счет звуков. В старшей группе счет звуков связывают со счетом и отсчетом предметов. Характер заданий постепенно усложняют. Например, вначале детям предлагают сосчитать звуки, затем отсчитать столько же игрушек, позднее одновременно считать звуки и откладывать игрушки, а закончив счет, сказать, сколько звуков услышали и сколько игрушек поставили. Счет звуков часто связывают с выполнением движений. ("Подпрыгни столько раз, сколько звуков услышал".) Пятилетним детям можно предлагать считать звуки с закрытыми глазами. Как и в средней группе, звуки извлекают на разных инструментах: например на барабане, металлофоне; постучать палочкой по столу и пр.


В III квартале детей знакомят с составом числа из единиц. Полезно провести такое упражнение: педагог извлекает 3 (4, 5) звука на разных инструментах и спрашивает: "Угадайте, на каком инструменте и сколько звуков я извлекла". Ребенок перечисляет: "1 раз вы ударили палочкой о палочку, 1 раз - по барабану, 1 раз - по металлофону". "Сколько всего звуков ты услышал?" - спрашивает педагог. "Я услышал всего 3 звука",- отвечает ребенок.


Счет и воспроизведение движений. Дети считают движения, выполняемые педагогом или другими детьми. Воспроизводят количество движений по образцу и по названному числу. ("Присядьте столько раз, сколько кружков на карточке", "Наклонитесь столько-то раз".) Чтобы дети активнее включались в работу, заданиям придают игровой характер: "Угадайте, сколько раз я велела Мише подбросить мяч". (Миша подбрасывает мяч, а остальные дети считают его движения.)


Педагог организует упражнения так, чтобы обеспечить охват сразу большого количества детей. Например, дети строятся в 2 шеренги. Пока дети одной шеренги выполняют указанное число движений, стоящие напротив, в другой шеренге, их проверяют. В старшей группе в задания включают более сложные движения: подбросить мяч, попрыгать со скакалкой. Наиболее сложно для ребят задание сделать определенное количество шагов в указанном направлении. Например, ребенку предлагают: "Сделай 5 шагов вперед, повернись направо, сделай еще 3 шага..." Дети, передвигаясь, одновременно тренируются в отсчете шагов и в ориентировке в пространстве. Установление количественных отношений между множествами, воспринимаемыми разными анализаторами, способствует обобщению счетной деятельности.


Важно, чтобы в речи детей отражались связи между количеством движений, звуков, предметов, воспринимаемых зрительно или на ощупь. ("5 раз подпрыгнул, потому что на карточке 5 кружков", "Я подбросил мяч 6 раз, потому что услышал 6 звуков" и т. п.)


Упражнения в счете на ощупь, в счете звуков и движений связывают с разностным сравнением чисел. Дети выполняют задания: "Присядь на 1 раз больше, чем услышал звуков", "Найди карточку, на которой на 1 кружок больше (меньше), чем было звуков", "Назовите, сколько пуговиц на карточке у Сережи, если он подпрыгнет на 1 раз больше


В ПОДГОТОВИТЕЛЬНОЙ ГРУППЕ изучение количественных отношений, определение большего и меньшего числа сочетают с тренировкой в счете с участием различных анализаторов: в счете звуков, движений, в счете предметов путем ощупывания.


Упражнения по-разному комбинируют. Например, дети отсчитывают столько же игрушек, сколько звуков они услышали, находят карточку, на которой столько же кружков, сколько раз они подняли руки, или приседают столько раз, сколько кружков на карточке. Они считают на ощупь пуговицы, нашитые на карточку, и столько же раз хлопают в ладоши или на 1 раз больше (меньше). Например: "Отгадайте, сколько пуговиц на карточке у Сережи, если он хлопнул в ладоши на 1 раз больше (меньше). Сосчитайте, сколько флажков. Подумайте, сколько раз надо поднять руку, чтобы движений сделать на 1 больше (меньше), чем стоит флажков".

Упражнения в установлении равенства и неравенства численностей множеств с включением разных анализаторов имеют место почти на каждом занятии.



21. Формирование понятия числа как количественной характеристики множеств. Виды работы по преодолению феномена Пиаже.


Представление о числах, их последовательности, отношениях, месте в натуральном ряду формируется у детей дошкольного возраста под влиянием счета и измерения. Большое значение при этом имеют операции классификации и сериации.

Освоение детьми счета — длительный и сложный процесс. Истоки счетной деятельности усматриваются в манипуляциях детей раннего возраста с предметами. Счет как деятельность состоит их ряда взаимосвязанных компонентов, каждым из которых ребенок должен овладеть: соотнесение слов-числительных, называемых по порядку, с предметами, определение итогового числа. В результате этой практической деятельности осваивается последовательность чисел.


Счет как деятельность формируется поэтапно:

1 этап - 1,5-2 года. Детей привлекают разнородные виды множественности: предметов, звуков, движений. Все движения с предметами сопровождаются повторением одного и того же слова: «вот», «вот» ...,«вот».., или «еще...», «еще...», или «на ... на ...на». или хаотическим называнием чисел: «раз, один, пять...». Иногда каждое повторяемое ребенком слово соотносится с одним предметом или с одним движением, между словом и предметом устанавливается соответствие. Слово помогает выделить элемент из множества однородных предметов, движений, более четко отделить один предмет от другого, способствует ритмизации действий. При этом устанавливается еще не осознанное ребенком взаимно однозначное соответствие между предметом, движением и словом.

Это еще стихийно используемый ребенком прием, однако он служит подготовкой к счетной деятельности в будущем. Такие действия с множествами можно рассматривать как начало развития счетной деятельности. Дети легко усваивают простые считалки, отдельные слова-числительные и используют их в процессе движений, игр.

Предметные действия детей раннего возраста (1,5—2,5 года) являются пропедевтикой счетной деятельности.


2 этап - 2-3 года. Появляется интерес к сравнению множеств (наложение, приложение). Все эти факты свидетельствуют о стремлении детей определить численность той или иной совокупности или размеров предметов - больше, меньше, поровну. Это первые попытки познать число путем сравнения.


В раннем возрасте (2—3 года) дети от хаотического познания числительных под влиянием обучения переходят к усвоению последовательности чисел в ограниченном отрезке натурального ряда. Как правило, это числа 1, 2, 3.

Дальнейшее упорядочение чисел происходит следующим образом: увеличивается отрезок запоминания последовательности числительных, дети начинают осознавать, что каждое из слов-числительных всегда занимает свое определенное место, хотя они еще не могут объяснить, почему три всегда следует за двумя, а шесть — за пятью. При этом возникают рече-слухо-двигательные связи между называемыми числительными.


В усвоенной цепочке слов (раз, два, три и т. д.) для ребенка совершенно невозможна замена слова раз словом один: образовавшиеся связи разрушаются и ребенок молчит, не зная, что должно следовать за словом один (в некоторых же случаях, в угоду старшим, ребенок (2,5—3 года) называет слово один как предшествующее всей выученной им цепочке).

Встречаются и такие случаи, когда ребенок первые два-три слова-числительные воспринимает как одно слово: делая ударение на первом слоге раз-два-три или раз-два. В таких случаях он относит этот комплекс слов к одному движению или предмету.


Таким образом, в раннем возрасте под влиянием активных действий с предметными совокупностями у детей складывается рече-слухо-двигательный образ натурального ряда чисел. Под влиянием обучения у них появляется интерес к сравнению предметов по их размеру и численности. Подобное поведение характеризует в основном детей в начале третьего года жизни и может рассматриваться как качественно новый этап в развитии счетной деятельности.

Тенденция к сравнению проявляется у детей различно. Одни накладывают предметы один на другой, другие прикладывают предмет к предмету. Это первые способы оценки детьми численности, размеров предметов, их измерения. Сравнивая объекты, дети пытаются установить отношение равенства или неравенства (больше, меньше, поровну). Потребность в количественной оценке путем сравнения возникает как подражание действиям взрослых в различных практических действиях с предметами.

Под влиянием обучения дети в 3 года осваивают умение поэлементно сравнивать одну группу предметов с другой, практически устанавливая между ними взаимно однозначное соответствие. На этом этапе следует учить не словам-числительным, а сравнению множеств путем установления соответствия между его элементами: накладывать предметы один на другой, раскладывать их один под другим или составлять пары, взяв по одному предмету из каждой группы. При таком сопоставлении дети могут видеть равенство или неравенство групп предметов, определяя большую или меньшую по количеству группу, множество из двух, умеют показать лишние элементы или указать место, где их не хватает, указывая на равночисленность групп, пользуются словами и выражениями: поровну или здесь столько же, сколько там, не называя чисел.


3 этап – 3-4 года. Освоение детьми последовательности чисел в процессе счета ими предметов, звуков, движений и составляет содержание этого этапа в развитии у них количественных представлений


В развитие счетной деятельности при сопоставлении элементов множеств начинает включаться последовательное название слов - числительных. Дети через обучение осваивают операции счета до пяти, соотносят числительные с предметами.


У детей 3—4-летнего возраста вслед за рече-слухо-двигательными образами успешно формируется слуховой образ натурального ряда чисел. Слова-числительные выстраиваются в ряд и называются по порядку, но происходит это постепенно. Вначале упорядочивается лишь некоторое множество числительных, после него числительные называются, хотя и с промежутками, но всегда в возрастающем порядке: 1, 2, 3, 4, 5, 6, 8, 10 и т. д.

Однако сформированный у детей слуховой образ натурального ряда чисел еще не свидетельствует об усвоении ими навыков счета.


Счет в этот период очень однообразен. Дети называют слова-числительные: раз (в значении один), два, три, другой (второй), третий и др., показывают при этом на предметы. На вопрос «Сколько?» вновь начинают пересчитывать. Это свойственно всем детям на начальном этапе овладения счетной деятельностью. Они осваивают процесс счета (название чисел, отнесение их к предметам), но последнее названное при этом слово-числительное не соотносят со всем множеством. Такой счет является «безытоговым»

Часто встречающейся ошибкой в этот период является и неточность соотнесения числа с предметом. Ребенок называет одно слово-числительное, показывая при этом на два предмета, и наоборот.


В возрасте 3—4 лет дети, освоившие счет, не могут ответить на вопрос «Какое из чисел идет до числа 4, какое после?». Они начинают или восстанавливать (на пальцах) ряд чисел, или слова до и после заменяют словами впереди, сзади и, называя следующее число, рассматривают его как впереди стоящее. Многие дети, называя следующее число, не могут назвать предыдущее. При выполнении задания найти число, большее на единицу, они мысленно или вслух начинают называть слова-числительные всего ряда, начиная с раз.

Дети понимают, что каждое следующее число больше предыдущего, однако точного представления о предыдущем и следующем числе у них еще нет, что лишает их возможности сразу назвать число, большее или меньшее указанного на единицу.


Так, на основе слухового образа натурального ряда возникает его пространственный образ.



Дальнейшее формирование представлений о числе и натуральном ряде чисел осуществляется под влиянием овладения счетной деятельностью на основе упражнений на уравнение множеств предметов по числу, сравнения множеств и чисел.


Овладевая счетом, дети приобретают умение определять количество предметов в результате осознания итогового значения числа, сравнивать множества и числа с определением отношений между ними (наглядно, в слове). Сравнение чисел (на наглядной основе) раскрывает, выделяет количественное значение числа.

В процессе освоения счета и сравнения двух групп предметов по количеству у детей формируется представление о числе как показателе равночисленности множеств (красных, желтых, белых ромашек по 3; 4 ведерка, 4 совочка, 4 песочницы — игрушек для игр с песком по 4) на основе выделения общих качественных и количественных признаков.

При этом перестраиваются восприятие и мышление детей. У них вырабатывается умение видеть одно и то же количество независимо от внешних несущественных признаков (осознание принципа сохранения количества). Этому способствуют упражнения, убеждающие детей в том, что одно и то же количество может быть представлено из разных объектов, отличаться размером занимаемой площади, расположением.


4 этап – 4-5 лет. Дети усваивают последовательность и наименования числительных, точно соотносят числительное с каждым множеством предметов независимо от их качественных особенностей и форм расположения, усваивают значение названного при счете последнего числа как итогового.


Однако, сравнивая числа, определяют большее из них по дальности его от начала счета или как находящееся впереди (сзади) какого-либо числа, что было свойственно детям на более низком уровне усвоения последовательности чисел.

Освоение счета и сравнение чисел (на наглядной основе, в разных условиях) дает возможность детям выделить число, сравнить совокупность. Число в их представлении постепенно абстрагируется от всех несущественных признаков.

У детей 4—5 лет и старше часто складывается весьма ограниченное представление о значении единицы. Единица ассоциируется у них с некоторым отдельным предметом. Под влиянием обучения дети овладевают умением относить единицу не только к отдельному предмету, но и к группе. Это является основой для понимания десятичной системы счисления.


5 этап - 5-6 лет. Дети осваивают счет с различным основанием единицы, считают уже не отдельные предметы, а группы, состоящие из нескольких предметов. Дети усваивают, что единицей счета может быть целая группа, а не только отдельный предмет.


В старшем дошкольном возрасте дети овладевают измерением. От практического сравнения предметов путем измерения переходят к количественной характеристике его путем подсчета условных мерок. Эта деятельность углубляет представление о числе. Число начинает выступать как отношение целого (измеряемой величины) к части (мере).


Под влиянием овладения двумя видами деятельности, счетом и измерением, у детей формируются четкие представления о месте, порядке следования, количественном значении числа, отношении его к другим числам (в пределах 10).

Достигнутый уровень развития количественных представлений позволяет детям в 5—б лет эмпирически подойти к пониманию принципа построения натурального ряда: каждое следующее число больше предыдущего на 1 и каждое предыдущее меньше следующего на 1.


Итак, общая последовательность развития представлений о числе в период дошкольного детства состоит в следующем: от восприятия множественности (много) и возникновения первых количественных представлений (много, один, мало) через овладение практическими способами установления взаимно однозначного соответствия (столько же, больше, меньше) к осмысленному счету и измерению.


Феномен Пиаже — психологическое явление, наблюдаемое у детей дошкольного возраста и заключающееся в невозможности постижения ими таких характеристик окружающих предметов, как количество, размер, объём и т. п. Этот феномен выражается в ошибках количественного сопоставления характеристик.


Всемирно известный швейцарский психолог Жан Пиаже (1896-1980) провел серию исследований развития у детей понятия (принципа) сохранения количества или величины объектов при изменении их формы. Он обоснованно считал, что понимание сохранения объекта в процессе изменения его формы составляет необходимое условие всякой рациональной деятельности.



Проверка производится рядом опытов, называемых «задачами Пиаже» (англ. Piaget's conservation experiments). Например, ребёнок может указывать, что:

- предметов, положенных в ряд, по его мнению, становится больше, если их же расставить с бо́льшими промежутками.

- кусок пластилина, по его мнению, уменьшается, если из шарика его раскатать в «сосиску» или полоску.

- верёвка становится короче, если её изогнуть.


Феномен объясняют тем, что понимание абстрактных законов происходит в процессе воспитания, не сразу. При этом обычно закон сохранения количества предметов (при их передвижении) постигается ребёнком на 1,5-2 года раньше, чем закон сохранения непрерывного вещества (при деформировании тела).


Отсюда можно сделать вывод, что овладение действием количественного сравнения не происходит спонтанно, как утверждал Ж. Пиаже, а требует специального обучения, в том числе обучения логическим правилам выполнения этого действия.


Л. Ф. Обухова под руководством П. Я. Гальперина провела большое исследование формирования у старших дошкольников принципа сохранения количества по различным параметрам физических величин. Для этого она с помощью методики поэтапного формирования умственных действий учила детей определять размер каждой из сравниваемых величин с помощью выбранной общей мерки и оценивать эти величины по результатам измерения.

В результате этих экспериментов Л. Ф. Обухова сделала вывод, что умение выделять в сравниваемых объектах разные их свойства и каждое из них измерять с помощью какой-то избранной мерки представляет собой необходимое и достаточное условие для формирования у детей полноценного знания о принципе сохранения.




22. Связи и отношения между числами натурального ряда. Методика обучения сравнению смежных чисел.


Теоретические основы формирования элементарных математических представлений у дошкольников включают детальное изучение лишь системы натуральных чисел. Поэтому, говоря «числа», мы имеем в виду натуральные числа.

В конце XIX в. была построена порядковая теория натуральных чисел, которая обычно связывается с именем итальянского математика Джузеппе Пеано (1858–1932), построившего эту теорию аксиоматической основе.

Натуральный ряд обладает следующими интуитивно ясными свойствами (принятыми Пеано в качестве аксиом, характеризующих эту структуру):

I. Единица непосредственно не следует ни за каким натураль­ным числом, т.е. не является «правым соседом» никакого другого натурального числа, это «первое» натуральное число.

II. Для любого натурального числа существует одно и только одно непосредственно следующее за ним натуральное число, т.е. любое натуральное число имеет только одного «правого соседа».

III. Любое натуральное число непосредственно следует не более чем за одним натуральным числом, т.е. единица не следует ни за каким, всякое другое натуральное число – точно за одним.

Всякое натуральное число, кроме единицы, является «правым соседом» одного и только одного натурального числа, его «левого соседа».

IV. Если какое-нибудь множество М натуральных чисел (M N) содержит 1 и вместе с некоторым натуральным числом х содержит и натуральное число х’, непосредственно следующее за х, то это множество совпадает с множеством всех натуральных чисел (M = N).

Предложение IV, хотя по своему содержанию более сложно, чем первые три, также выражает достаточно простое свойство: с помощью последовательного прибавления единицы, начиная с еди­ницы, можно получить все натуральные числа. Всякий раз, когда доходим до некоторого числа х, допускается возможность на­писания непосредственно следующего за ним числа х’.

Натуральный ряд в описанном представлении мыслится потенциально бесконечным. С этой точки зрения процесс его образования незавершаем, предполагается лишь, что после каждого шага процесса мы располагаем возможностью осуществления следующего шага.

Свойства IIV характеризуют структуру «натуральный ряд» только с точки зрения отношения, названного «непосредственно следует за». Но это построение можно дополнить свойствами, ха­рактеризующими операции сложения и умножения в множестве N.

Расширим теперь систему свойств IIV таким образом, чтобы получить характеристику структуры (N, 1, ‘, +, •).

Знак + обозначает операцию «сложение», сопоставляющую с каждой парой (х, у) натуральных чисел натуральное число х + у, называемое их суммой и обладающее следующими свойствами:

V. х + 1 = х’, т.е. сумма любого натурального числа х с числом 1 равна непосредственно следующему за х числу х’.

VI. х + у’ = (х + у)' т.е. сумма любого числа х с числом у’, непосредственно следующим за любым числом у, равна числу, непосредственно следующему за суммой х + у.

Знак • обозначает операцию умножения, сопоставляющую с каждой парой (х, у) натуральных чисел натуральное число ху, называемое их произведением и обладающее следующими я свойствами:

VII. х•1 = х, т.е. произведение любого натурального числа х и числа 1 равно числу х (умножение какого-нибудь числа на единицу не меняет это число).

VIII. х•(у’) = (ху) + х, т.е. произведение числа х на число, непосредственно следующее за числом у, равно произведению чисел х и у, сложенному с числом х.

Из свойств IVIII выводятся все остальные свойства порядка и операций сложения и умножения натуральных чисел.

Покажем в качестве примера, как, исходя из перечисленных свойств, можно получить таблицу сложения.

Будем исходить из знания того, что непосредственно следующее число за каждым однозначным числом уже получено:

1’ = 2; 2’ = 3; 3’ = 4; 4’ = 5; 5’ = 6; 6’ = 7; 7’ = 8; 8’ = 9; 9’ = 10.

Исходя из свойства V, получаем таблицу «прибавления единицы»:


Таблица «+1»

1 + 1 = 1’ = 2;

2 + 1 = 2’ = 3;

3 + 1 = 3’ = 4;

………………

9 + 1 = 9’ = 10.


Теперь, зная таблицу «+1» и используя свойство VI, можем вывести, например, чему равно 2 + 2:

2 + 2 = 2 + 1’ = (2 + 1)’ = 3’ = 4.


Аналогично 3 + 2 = 3 + 1’ = (3 + 1)’ = 4’ = 5 и т.д.


Сравнение последовательных чисел натурального ряда вводится с опорой на сравнение множеств.


СРАВНЕНИЕ СМЕЖНЫХ ЧИСЕЛ


Сравнивать смежные числа — значит определять, какое из них больше, а какое меньше.


С опорой на наглядный материал дети уже сравнивали смежные числа. На основе «сопоставления 2 совокупностей, в одной из которых на 1 предмет больше (меньше), чем в другой, их знакомили с приемами получения всех чисел до 10. Поэтому они имеют представление о связях между числами, т.е., какое из смежных чисел больше (меньше) какого.

Необходимо углубить эти представления. На конкретных примерах детям раскрывают постоянство связей между смежными числами (3 всегда больше 2, а 2 меньше 3, и т. д.). С самого начала подчеркивают, что понятия «больше», «меньше» относительные, каждое число (кроме единицы) больше или меньше другого в зависимости от того, с каким числом его сравнивают (3>2, но 3 < 4). Начинают формировать представление об определенной последовательности чисел.

Практическое установление разностных отношений между смежными числами позволяет подвести детей к пониманию взаимно-обратных отношений между ними (4 больше 3: если к 3 добавить 1, будет 4; 3 меньше 4: если от 4 отнять 1, будет 3). Отношения между смежными числами изучаются уже в подготовительной к школе группе.

Детей учат сравнивать все числа в пределах 10. Начинать работу целесообразно со сравнения чисел 2 и 3, а не 1 и 2.

Наглядной основой сравнения чисел служит сопоставление 2 совокупностей предметов. При сопоставлении 2 предметов с 3 более четко выступают количественные соотношения, чем при сопоставлении 1 предмета с 2. 1 предмет еще не воспринимается ребенком как множество, включающее 1 элемент. Ярко выраженные свойства предмета отвлекают детей от установления количественных соотношений совокупностей.


Показать постоянство связей между числами позволяет неоднократное сравнение одних и тех же смежных чисел с опорой на сопоставление совокупностей разных предметов.

Например, сопоставив 2 матрешек с 3 кубиками, выясняют, что матрешек меньше, чем кубиков, а кубиков больше, чем матрешек. Значит, 2 меньше 3, а 3 больше 2. Проверяют, всегда ли это так. Для этого 2—3 раза меняют счетный материал. Сопоставляют другие совокупности, состоящие из 2 и 3 предметов, и делают вывод, что 3 всегда больше 2, а 2 меньше 3.


Аналогичным образом сравнивают еще 2—3 пары смежных чисел. Работу детей организуют одновременно е разным счетным материалом. Одни дети сопоставляют, например, 4 елочки и 5 грибочков, другие — 4 утенка и 5 цыплят, третьи — 4 круга и 5 квадратов и т. д. Выясняют, что во всех случаях 5 больше 4, а 4 меньше 5.


Выяснение отношений «больше», «меньше» в связи друг с другом способствует формированию представления о взаимно-обратном характере отношений между числами.


Большое внимание уделяют упражнению детей в уравнивании совокупностей. Уравнивая совокупности, дети практически устанавливают разностные отношения между смежными числами. Полезно сопоставлять совокупности предметов разных размеров или занимающих разную площадь. Это позволит параллельно закреплять представления о независимости числа предметов от их пространственных свойств.


Сопоставление совокупностей предметов, отличающихся размерами, формой расположения и пр., позволяет акцентировать внимание детей на значении приемов поштучного соотнесения предметов (наложения, приложения и др.) для выяснения отношений «равно», «не равно», «больше», «меньше». Дети начинают пользоваться этими приемами как способами наглядного доказательства того, какое из 2 сравниваемых чисел больше или меньше.

Вариантами являются такие задания, в которых говорится о предметах, представленных условными знаками, моделями геометрических фигур (кружками, квадратами, точками и пр.). Дети, например, угадывают, кого в трамвае было больше: мальчиков или девочек, если мальчики представлены на доске большими кружками, а девочки — маленькими. Опыт показывает, что ребенок шестого года жизни легко принимает такую абстракцию. Появляется возможность использования «промежуточных» средств — меток, моделирования отношений величин.


Детей учат получать не только «равенство из неравенства», но и, наоборот, «из равенства неравенство», причем сравнение чисел производят на основе сопоставления совокупностей, воспринимаемых как зрительно, так и на слух, на ощупь, на основе мышечного чувства. Включение в активную работу разных анализаторов служит обобщению соответствующих представлений. Даются, например, такие задания: «Поднимите руку на 1 раз больше (меньше), чем было пуговиц на карточке у Саши. Сколько раз вы подняли руку? Почему?», «Сколько вы услышали звуков? Сколько надо отсчитать треугольников, чтобы их было на 1 больше (меньше), чем вы услышали звуков?» Дети сначала сравнивают числа, а затем производят соответствующие действия. Выполнив задание, ребенок должен не только сказать, сколько положил предметов или сколько выполнил движений, но и объяснить, почему именно столько, т. е. сравнить числа.


Сравнивая числа, некоторые дети называют только одно из них: «5 больше» или «4 меньше». Добиваясь точного ответа, педагог задает наводящие вопросы, например: «С каким числом мы сравнили число 5?», «Какого числа оно больше (меньше)?» Пользуясь возможностью подчеркнуть относительность выражений «больше», «меньше», воспитатель предлагает ребенку сравнить данное число с предшествующим или последующим. Он говорит, например: «Ты сказал, что 4 меньше. А если я назову числа 3 и 4, что ты скажешь про число 4?» Дети убеждаются, что одно и то же число может быть и больше, и меньше другого в зависимости от того, с каким числом его сравнивают. Поэтому надо называть оба сравниваемых числа и указывать, какое из них больше (меньше) какого. Иначе ответ будет неточным.


Показать относительность выражений «больше», «меньше» позволяет сравнение нескольких чисел, следующих друг за другом. Наглядной основой для такого сравнения служат совокупности однородных предметов (кружков, квадратов и др.), расположенных горизонтальными рядами точно друг под другом.


Наиболее ценным приемом является построение числовой лесенки. Окрашенные с 2 сторон кружки (квадраты) синего и красного цвета раскладывают по 5 (10) шт. рядами. Количество кружков в ряду последовательно увеличивают на 1, причем «дополнительный» кружок повернут другой стороной. Числовая лесенка позволяет наглядно представить определенную конечную последовательность чисел натурального ряда.

Предлагая в каждом следующем ряду положить столько же кружков, сколько в данном, да еще 1, педагог напоминает детям способ получения последующего числа (n + 1).

Примечание. В старшей группе ограничиваются построением числовой лесенки в пределах первого пятка.

Убирая по одному кружку из каждого ряда, дети вспоминают способ получения каждого предыдущего числа (n— 1). Далее устанавливают связь между количеством кружков в ряду и его порядковым номером. Сначала числа сравнивают попарно, а потом каждое число с предыдущим и последующим. С опорой на наглядность дети ведут счет в прямом и обратном порядке.

Важно, чтобы, работая самостоятельно, они строили лесенку строго по порядку, т. е. увеличивали количество кружков каждого следующего ряда на 1.


Работу по сравнению смежных чисел сочетают с упражнениями в группировке геометрических фигур, с сопоставлением размеров предметов и др., разнообразя задания. Так у детей формируют представление об определенной последовательности чисел и подводят их к пониманию взаимно-обратных отношений между смежными числами.



23. Методика обучению порядковому счету в среднем и старшем дошкольном возрасте.


Одновременно с количественным счетом овладевают и порядковым. Эти два вида счета различаются.


Отличие порядкового счета от количественного:

- цель количественного счета – определение общего количества элементов множества, цель порядкового счета – определение места предмета среди других;

- при количественном счете используются количественные числительные (один, два и т.д.), при порядковом – порядковые (первый, второй и т.д.);

- при количественном счете отвечаем на вопрос «Сколько?», при порядковом – «Какой по счету?» или «Который?» или «На котором месте стоит этот предмет?»;

- при количественном счете направление не имеет значения, при порядковом – имеет значение;

- при количественном счете последнее названное числительное относится ко всей совокупности, при порядковом оно имеет два значения: относится ко всей совокупности, если перечислены таким образом все предметы, указывает место последнего предмета среди других, а если порядковый счет останавливается не на последнем предмете, то порядковое числительное указывает только его место.


В СРЕДНЕМ ДОШКОЛЬНОМ ВОЗРАСТЕ дети уже пользуются порядковыми числительными, но используют их неверно, подменяя ими количественные. На вопрос «Сколько?» считают «Первый, второй, третий – всего три елочки».


Раскрыть значение количественных и порядковых числительных помогает сравнение их.


Воспитатель должен разъяснить, что когда хотят узнать, сколько всего предметов, то считают «Один, два, три», а когда хотят узнать место предмета среди других (вопрос «Какой по счету?»), тоже считают, но по-другому: «Первый, второй, третий».


Воспитатель должен правильно использовать вопросительные слова и показать детям их отличие: сколько? какой? какой по счету? который?


Для организации упражнений берем предметы, отличающиеся признаками: разного цвета, формы, разного вида, но относящиеся к одному родовому понятию. Важно, чтобы предметы располагались линейно и указывалось направление счета.


Для организации ПЕРВОГО ЗАНЯТИЯ (средняя группа) берем 5 одинаковых коробочек, в одну из них прячем матрешку.

Цель занятия – показать детям значение порядкового счета и познакомить с его механизмом.


- Сколько коробочек?

- Все коробочки одинаковые. В одной из них спряталась матрешка. Можете вы сказать, в какой коробочке матрешка? (нет)

- Для этого надо знать место коробочки. Послушайте, как надо считать. Матрешка спряталась в третьей коробочке. Сначала узнаем, на каком по счету месте стоит последняя коробочка: первая, вторая, третья, четвертая, пятая – последняя коробочка пятая, она стоит на пятом месте. Найдем третью коробочку (считает) (механизм тот же, что и при количественном счете, только используются порядковые числительные, важно вовремя остановить счет).


Для лучшего осознания детьми значения порядкового счета его постоянно сопоставляют с количественным счетом, чередуя вопросы сколько? какой по счету?



Можно знакомство с порядковым счетом проводить в процессе драматизации сказки («Теремок», «Репка», «Колобок»).


Пример: сказка «Теремок».


Воспитатель выкладывает героев сказки. Выясняет сколько всего, предлагает детям сосчитать. Затем сам рассказывает, кто какой по счету пришел: первая – мышка, вторая - лягушка…. После этого задаются 2 вида вопросов:

- Кто пришел первым, вторым, третьим…?

- Каким по счету стоит мышка, ежик…? (указывается, что считать следует слева направо).


Воспитатель подводит детей к тому, что определить место предмета среди других можно лишь, если герои стоят в ряд.


На дальнейших занятиях воспитатель предлагает упражнения на выработку умения вести порядковый счет. Важно менять наглядность, задавать разные вопросы, чередовать задания.

Примеры заданий (в качестве наглядности используются разноцветные флажки):

  • Каким по счету стоит красный флажок?

  • Какого цвета флажок стоит на четвертом месте?

  • Расставьте флажки так, чтобы на первом месте был желтый, на втором – синий, на третьем – зеленый и т.д.

  • Поменяйте местами 2-ой и 5-ый (синий и красный) флажок, какое по счету место теперь они занимают?

  • Поставьте синий флажок пятым (между четвертым и шестым), порядковое место каких флажков изменилось (не изменилось)?

  • Поставь зеленый флажок так, чтобы синий стал пятым

  • Что нужно сделать, чтобы красный флажок стал вторым?


Для закрепления проводятся упражнения, в которых определяется: какой предмет каким по счету расположен. Например: в процессе ознакомления с геометрическими фигурами: «Как называется фигура, которая стоит на третьем месте?».


Можно использовать игру «Что изменилось?» (Выясняется, на каком месте расположена игрушка. Дается команда «Глазки спят». Затем воспитатель меняет место расположения игрушки. После слов «глазки открыли» предлагается тем, кто заметил изменения, поднять руку и ответить: какой по порядку эта игрушка стояла раньше, а какой стоит сейчас).


В СТАРШЕМ ДОШКОЛЬНОМ ВОЗРАСТЕ углубляется представление детей о порядковом счете. Важно показать, где, в каких ситуациях люди пользуются порядковыми числительными (через беседы).


Дети 6—7 лет полнее начинают осознавать значение порядкового счета и усваивают, что вопросы который? какой по счету? требуют особого пересчитывания. При этом каждый предмет получает свой номер в ряду, и для ответа на вопрос на котором месте? или который по порядку? существенное значение имеет направление счета. Дети узнают, что при определении порядкового номера принято считать слева направо, а в иных случаях — указывать, в каком направлении велся счет (четвертый сверху, пятый снизу, третий справа).


На специальном занятии показать зависимость результата порядкового счета от направления счета. Для этого на полоске бумаги нарисовать в ряд 8 одинаковых елочек (или выложить их на фланелеграфе, или расставить на полочке елочки-игрушки). Сделать так, чтобы под одной из елочек находилось изображение коробочки – клада.


Treehello_html_m3b191fc2.gifhello_html_m3b191fc2.gifhello_html_m3b191fc2.gifhello_html_m3b191fc2.gifhello_html_m3b191fc2.gifhello_html_m3b191fc2.gifhello_html_m3b191fc2.gif





- Ребята, к нам пришел Буратино. Он получил письмо, в котором написано, что под одной из елочек спрятан клад. Буратино, ты знаешь, под какой по счету елочкой спрятан клад? (нет). В письме сказано, что клад зарыт под шестой елочкой. Найди его. Буратино «считает», но делает это справа налево.

- Почему Буратино не нашел клад? Давайте ему поможем (считают слева направо, находят «клад»).

- Ребята, давайте посчитаем, сколько всего елочек (предложить считать в разных направлениях, с любой елочки).

- Когда хотим узнать, сколько всего предметов, то считать можно в любом направлении, а для того, чтобы узнать место предмета, то важно знать направление счета. Предложить узнать место какой-либо елочки, считая в разных направлениях.

- Чтобы определить место предмета, как правило, считают слева направо. Если направление места важно знать, то его специально указывают.


Для организации упражнений используют тот же наглядный материал. Предлагают определить место предмета с указанием направления и без. Задания даются с усложнением: который пропал? Что изменилось?

Воспитатель создает ситуации, в которых есть необходимость определения порядка следования: дети идут на прогулку, возвращаются с прогулки в другой последовательности; сопоставляя общее количество кукол и подарков для них, определяют, что получила в подарок шестая кукла, сколько всего подарков роздано, которая кукла получила в подарок конфету и т. д. В дальнейшем определяют порядок расположения рядов и столбцов в сериационном ряду, «числовой лесенке», порядок следования дней недели.


Для закрепления представлений о порядковом счете целесообразны игры с мячом. Дети выстраиваются шеренгой и пересчитываются. Тот, кому ведущий бросил мяч, называет свой порядковый номер. Порядковый номер может называть ведущий. Например, он говорит: «Шестой!» Ребенок, стоящий на шестом месте, делает шаг вперед, произносит: «Я шестой!» — и ловит мяч.


Находят место в строю, перестраиваются по указанию воспитателя. Например, воспитатель вызывает 4—5 детей, предлагает им встать друг за друга, пересчитаться, поднять руку, хлопнуть в ладоши, присесть. Детей, занимающих определенные порядковые места, просит поменяться местами, предлагает кому-либо из детей встать, например, между третьим и четвертым номерами. Одновременно ребята упражняются в выделении порядковых отношений, определяют, кто стоит перед Олей, за Олей, между Леной и Аней и т. п.


Дети рисуют предметы или геометрические фигуры, а также закрашивают их карандашами разных цветов в указанном порядке. («Синим карандашом раскрасьте второй, седьмой и восьмой кружки».)


Кроме упражнений важно создавать ситуации в повседневной жизни и играх, в которых дети видели бы отличия в использовании количественного и порядкового счета.


Например, в игре «Театр» уточняем, что обозначает цифра на билете: сколько всего мест или какое по счёту указанное место.


По мере освоения порядкового счета проводятся упражнения на однородном материале: «Какой по счету этот (воспитатель указывает) мишка? Покажи седьмого мишку. Надень шапку на пятого» и др.

Обучение порядковому счету основано на дифференцировке количественного и порядкового значения чисел и практического использования их, исходя из ситуации.



24. Методика ознакомления с количественным составом числа из отдельных единиц в старшем дошкольном возрасте.


Шестилетние дети понимают не только то, что множество состоит из отдельных элементов, но и объясняют отношения числа к единице, т. е. подчеркивают количество единиц в числе. При этом дети должны понимать, что все числа составляются из единиц, количество единиц в разных числах различно, оно соответствует различному количеству элементов множества (совокупности).


Например, количественный состав числа 5 из отдельных единиц:

5 - это один, еще один, еще один, еще один и еще один.


Изучение состава чисел из единиц.


ЗНАЧЕНИЕ: подготовка к освоению вычислительного приема – присчитывание и отсчитывание по единице.


СУТЬ РАБОТЫ: выяснение отношения числа к единице.

Дети должны понять:

  • все числа составляются из единиц,

  • количество единиц в разных числах различно,

  • количество единиц в числе соответствует количеству элементов в множестве.


НАГЛЯДНЫЙ МАТЕРИАЛ:

  • подбирают так, чтобы можно было сделать обобщение: всего 4 круга, всего пять овощей,

  • сначала используется однородное множество, каждый элемент которого отличается по величине,

  • затем берется разнородный материал,

  • потом предметы одного понятия (мебель, обувь, фрукты…).


ТРЕБОВАНИЯ:

  • начинать с чисел 2, 3, 4…

  • не спешить!!!

  • от анализа состава множества из элементов переходить к изучению состава числа из единиц

  • состав одного числа из единиц демонстрируется на 3-4 видах наглядного материала, делается обобщение



ПРИЕМЫ РАБОТЫ (для числа 4):


1hello_html_m200bc1c2.gif. Воспитатель выкладывает 4 палочки разной длины:


- Сколько всего палочек?

- Чем они отличаются?

- Как они расположены? (по порядку, от самой длинной до самой короткой)

- Покажите самую короткую (самую длинную).

- Сколько коротких палочек? Сколько длинных?

- По сколько взяли палочек разной длины, чтобы их получилось 4?

- Всего 4 палочки: 1, 1, 1 и еще 1.


2. Воспитатель выкладывает 4 круга:

hello_html_5eace5cc.gif


- Сколько кругов справа? Сколько слева? Поровну ли кругов?

- Чем отличаются круги справа от кругов слева?

- Как назвать их одним словом? (одноцветные, разноцветные)

- Сколько справа синих кругов? (белых, зеленых, желтых)?

- По сколько кругов разного цвета взяли, чтобы всего получилось 4?

- 1, 1, 1 да еще один – всего 4.


Таким образом, дети должны уметь ответить на два вопроса: сколько всего? по сколько каждого? Обобщить: всего 4 круга: 1 синий, один белый, один зеленый, один желтый. 1, 1, 1 да 1 – это 4; 4 – это 1, 1, 1 да 1.

3. Воспитатель выставляет 4 животных: волк, заяц, лиса, медведь. Кто это? Сколько всего? По сколько разных животных? Как получилось число 4?

4. Задание с раздаточным материалом: выложите на верхнюю полоску 4 круга, а на нижнюю столько же разных геометрических фигур. Сколько взяли разных фигур? По сколько взяли каждую фигуру? Как получилось число 4?

5. Составьте группу из 4 разных предметов мебели (овощей, обуви, транспорта). Подберите картинки по числу 4.

6. Нарисуйте 4 разных геометрических фигуры.

7. Раскрасьте 4 круга разными цветами.

8. Разделите деревья на группы. Сколько всего деревьев? (8) Сколько в каждой группе? (по 2) По сколько разных групп получилось? (одна группа – елки, одна – березы, одна – дубы, одна – клены, всего 4 группы).

9. Словесные упражнения: Мише подарили 1 собаку, 1 машинку, 1 вертолет, 1 мячик. Сколько всего игрушек подарили? По сколько разных игрушек подарили?

10. Вопросы типа: «Сколько ты возьмешь разных предметов, если я назову число 4?»

11. На каких инструмента я играла и сколько разных звуков вы услышали? (играть на 4 инструментах, по одному звуку). Сколько дырочек разной формы и по сколько каждой? (счет на ощупь).



25. Методика ознакомления с составом числа из двух меньших чисел и разложением числа на два меньших.



В плане подготовки детей к деятельности вычисления необходимо познакомить их с составом числа из 2 меньших чисел. Эта задача рассматривается как одна из наиболее важных в подготовке детей к вычислительной деятельности.

Детей знакомят не только с разложением числа на 2 меньших, но и с получением числа из 2 меньших чисел. Это способствует пониманию детьми особенностей суммы как условного объединения 2 слагаемых.

Детям показывают все варианты состава чисел в пределах пятка.

Число 2 — это 1 и 1,

3 — это 2 и 1, 1 и 2,

4 — это 3 и 1, 2 и 2, 1 и 3,

5 — это 4 и 1, 3 и 2, 2 и 3, 1 и 4.


ПОДГОТОВИТЕЛЬНАЯ РАБОТА: операции с множествами предметов, создание множества из подмножества, деление множеств на подмножества, сравнение их между собой.

ОСНОВНАЯ ЦЕЛЬ: осознание детьми того, как число может быть образовано из других чисел на основе анализа того, как множество может быть образовано из частей.

МАТЕРИАЛ: дискретные величины, геометрические фигуры, предметы.

ТРЕБОВАНИЯ:

  • постепенность (начинать с чисел 3, 4,5…),

  • не заучивать состав, а учить понимать способ действия,

  • использовать предметные, символические, вербальные и графические модели,

  • показать ВСЕ возможные варианты разложения числа на два меньших (по формуле n-1, где n – натуральное число).


ПРИЕМЫ РАБОТЫ

(для числа 3)

Воспитатель выкладывает на наборном полотне в ряд 3 кружка одного цвета, просит детей сказать, сколько всего кружков, и указывает, что в данном случае группа составлена из 3 кружков красного цвета: 1, 1 и еще 1. «Группу из 3 кружков можно составить и по-другому», — говорит воспитатель и поворачивает третий кружок обратной стороной. «Как теперь составлена группа?» — спрашивает педагог. Дети отвечают, что группа составлена из 2 кружков красного цвета и 1 кружка синего цвета, а всего — из 3 разноцветных кружков.

Воспитатель делает вывод, что число 3 можно составить из чисел 2 и 1, а 2 и 1 вместе составляют 3. Затем поворачивает обратной стороной второй кружок, и дети рассказывают, что теперь группа составлена из 1 красного и 2 синих кружков. Обобщая в заключение ответы детей, воспитатель подчеркивает, что число 3 можно составить по-разному: из 2 и 1, из 1 и 2. Данное упражнение наглядно выявляет состав числа, отношение целого и части, поэтому с него целесообразно начинать знакомство детей с составом чисел.

(для числа 5):

1. Воспитатель выкладывает 5 кругов одного цвета, с обратной стороны круги имеют другой цвет (например, красный и синий). Выяснить, сколько кругов, чем они похожи.


hello_html_m60023c2c.gifhello_html_m60023c2c.gifhello_html_m60023c2c.gifhello_html_m60023c2c.gifhello_html_m60023c2c.gif



Перевернуть первый круг, уточнить: сколько синих? сколько красных? сколько всего кругов? Сколько взяли синих и красных кругов, чтобы всего получилось 5? Выяснить, как получилось число 5:


hello_html_m25e092b2.gifhello_html_1bc691d2.gifhello_html_m60023c2c.gifhello_html_m60023c2c.gifhello_html_m60023c2c.gif

hello_html_m25e092b2.gifhello_html_1bc691d2.gifhello_html_md8ee95a.gifhello_html_m60023c2c.gifhello_html_m60023c2c.gifhello_html_m25e092b2.gifhello_html_md8ee95a.gifhello_html_m25e092b2.gifhello_html_m60023c2c.gifhello_html_m60023c2c.gifhello_html_m25e092b2.gifhello_html_md8ee95a.gifhello_html_m25e092b2.gifhello_html_m25e092b2.gifhello_html_m60023c2c.gifhello_html_m60023c2c.gif









1 да 4, 2 да 3, 3 да 2, 4 да 1


2. Медведица попросила медвежонка принести из леса 5 грибов. Это должны быть подосиновики и белые грибы. Покажи, как медвежонок может составить группу из этих грибов.


hello_html_m2dff263b.pnghello_html_1cd93944.pnghello_html_1cd93944.pnghello_html_1cd93944.pnghello_html_1cd93944.pnghello_html_m2dff263b.pnghello_html_m2dff263b.pnghello_html_1cd93944.pnghello_html_1cd93944.pnghello_html_1cd93944.png



hello_html_m2dff263b.pnghello_html_m2dff263b.pnghello_html_m2dff263b.pnghello_html_1cd93944.pnghello_html_1cd93944.pnghello_html_m2dff263b.pnghello_html_m2dff263b.pnghello_html_m2dff263b.pnghello_html_m2dff263b.pnghello_html_1cd93944.png



3. На 4 клумбах надо посадить по 5 цветов, причем на одной клумбе должны расти розы и тюльпаны. Как по-разному это можно сделать?


hello_html_m65f8e6a7.pnghello_html_m7cc70234.pnghello_html_m7cc70234.pnghello_html_m7cc70234.pnghello_html_m7cc70234.pnghello_html_m65f8e6a7.pnghello_html_m65f8e6a7.pnghello_html_m7cc70234.pnghello_html_m7cc70234.pnghello_html_m7cc70234.png


hello_html_m65f8e6a7.pnghello_html_m65f8e6a7.pnghello_html_m65f8e6a7.pnghello_html_m7cc70234.pnghello_html_m7cc70234.pnghello_html_m65f8e6a7.pnghello_html_m65f8e6a7.pnghello_html_m65f8e6a7.pnghello_html_m65f8e6a7.pnghello_html_m7cc70234.png


4. Расставь 5 пирамидок на двух полках. Как это можно сделать? (2,3; 3,2; 4,1; 1,4)


hello_html_m5500205e.pnghello_html_m5500205e.png hello_html_m5500205e.pnghello_html_m5500205e.pnghello_html_m5500205e.png

--------------------- -----------------------------

hello_html_m5500205e.pnghello_html_m5500205e.pnghello_html_m5500205e.png hello_html_m5500205e.pnghello_html_m5500205e.png

----------------------------- -------------------------------




hello_html_m5500205e.png hello_html_m5500205e.pnghello_html_m5500205e.pnghello_html_m5500205e.pnghello_html_m5500205e.png

------------------------------------ ----------------------------------------


hello_html_m5500205e.pnghello_html_m5500205e.pnghello_html_m5500205e.pnghello_html_m5500205e.png hello_html_m5500205e.png

-------------------------------------- -------------------------------------------


5. Разделить 5 карандашей между двумя детьми. Сколькими способами это можно сделать? (четырьмя)


6. У меня в двух руках 5 пуговиц. Сколько может быть пуговиц в каждой руке? Если в правой 3, то сколько в левой?(два) (данное задание дети выполняют исходя из отчетливых представлений о составе числа 5, в случае затруднения предложить воспользоваться предметной моделью, например, палочками, для того, чтобы восстановить вариант разложения: отсчитать 5 палочек, отложить в сторону 3, посмотреть, сколько осталось в другой группе).


7. Работа с числовыми фигурами: всего на карточке 5 кругов, сколько вы видите? Сколько я закрыла?(три)



8. Разделите 5 треугольников на две группы разными способами: (1,4; 2,3; 3,2; 4,1)

hello_html_781836e5.gifhello_html_781836e5.gifhello_html_781836e5.gifhello_html_781836e5.gifhello_html_781836e5.gif





9. Заполни пустые кружочки, «домики»: (2 в кружочке и 1,4; 2,3 в таблице)


5

1





3



hello_html_m9c78900.gif

5

hello_html_6e78142d.gifhello_html_5587bc16.gif

hello_html_507dec8c.gifhello_html_m9c78900.gif





10. Обведите числа, из которых состоит число 5:

1, 4, 3, 4, 1, 5, 2, 4, 1, 3, 2


Образец:

hello_html_7f119320.gifhello_html_7f119320.gifhello_html_7f119320.gifhello_html_4d359dd2.gif

1, 4 3, 4, 1, 5, 2, 4, 1, 3, 2

hello_html_m4b55f07f.gif


Для закрепления знаний детей о составе числа из 2 меньших чисел используют разнообразные упражнения с предметами и моделями геометрических фигур.

Детям предлагают рассказы-задачи, например:

«На верхнем проводе сидели 3 ласточки, 1 ласточка пересела на нижний провод. Сколько всего ласточек? Как они теперь сидят? Как они еще могут сидеть?» (Ласточек на наборном полотне пересаживают с провода на провод.)

Или: «Вере подарили 4 карандаша. Она поделилась с Аней. Как она могла разделить карандаши?»


С этой же целью дают задания: одному ребенку взять 3 камешка (желудя) в обе руки, а остальным догадаться, сколько камешков у него в каждой руке; разделить группу из 3 (4, 5) игрушек между 2 детьми; нарисовать 2 разновидности фигур, например круги и квадраты, всего 4 фигуры; полезно рассмотреть с детьми числовые фигуры, на которых кружки расчленены на 2 группы.

Выполнив то или иное задание, дети каждый раз рассказывают о том, на какие 2 группы расчленена совокупность, сколько всего предметов в нее входит, и делают обобщение о составе числа из 2 меньших чисел. Например, ребенок говорит: «Я взяла 2 зеленые и 1 желтую ленточку, а всего 3 ленточки. Число 3 можно составить из 2 и 1; 2 и 1 вместе составляют 3».


Важно приучить детей по-разному строить ответы: идти как от частного к общему, так и от общего к частному: «Всего я нарисовал 4 фигуры: 3 квадрата и 1 фигуру овальной формы».

Не менее важно побуждать детей устанавливать отношение между целым и частями, т. е. делать вывод о составе числа: «Число 4 можно составить из 3 и 1; 3 и 1 вместе составляют 4».


Для подведения детей к обобщению им дают такие задания: педагог показывает карточку, на которой изображено от 3 до 5 предметов, но часть их он закрывает и говорит: «На карточке нарисованы 4 зайчика. Угадайте, сколько зайчиков я закрыла».

Педагог берет 2 числовые фигуры, одну из них, например с 3 кружками, показывает детям, а вторую поворачивает к ним обратной стороной и спрашивает: «Сколько кружков на перевернутой карточке, если на 2 карточках вместе 5 кружков? Как вы догадались?»

Можно побуждать детей находить в групповой комнате примеры разложения числа на 2 группы. Например, в групповой комнате может оказаться 2 шкафа с игрушками и 1 с пособиями, а всего 3 шкафа; 2 больших мишки и 3 маленьких, а всего 5 мишек и т. п.

Знакомство с составом числа из 2 меньших чисел обеспечивает переход к обучению детей вычислению.



26. Методика ознакомления с делением целого на равные части, установления отношений "целое" и "часть".


В старшей группе дети учатся делить целое (геометрические фигуры, предметы) на равные части. Это необходимо в качестве пропедевтики к усвоению долей и дробных чисел в школе, углубления понимания детьми элементарных математических отношений: «больше», «меньше», «равны».


Обучение строится на общих и функциональных зависимостях целого и части:

- часть всегда меньше целого, а целое больше части;

- равенство частей целого между собой;

- функциональная зависимость между количеством и размером частей: чем больше количество частей, на которое делится целое, тем меньше каждая часть, и, наоборот, чем больше часть, тем на меньшее количество частей разделено целое.


Деление целого на части осуществляется практически путем складывания с последующим разрезанием или путем разрезания.

Освоение детьми способов деления целого на равные части и отношения «целое — часть» способствует углублению понимания ими единицы. Слово один они относят к разным величинам: то к целому, то к его части, причем разного размера.


Обучение делению целого на части осуществляется с учетом особенностей понимания детьми отношения «целое — часть».


К старшему дошкольному возрасту у детей накапливается опыт деления целого на части (в играх, конструировании, быту). У них складывается бытовое понимание целого как неделимого и восприятие каждой части целого как нового, самостоятельного объекта.



Задачи обучения состоят в следующем:

научить детей делить предмет на две, четыре равные части путем разрезания или последовательного складывания плоских предметов пополам;

сформировать представление о зависимости целого и части, уметь воспринимать как целое не только неразделенный предмет, но и воссозданный из частей;

упражнять в способе сравнения частей, полученных при делении целого на равные части, путем наложения, уточнить значение слова равенство;

способствовать развитию самостоятельности мышления, сообразительности, упражнять детей в нахождении новых способов деления, выявления зависимостей.


В ходе обучения у детей формируется понимание половины как части целого, деленного на две равные части, четверти — на четыре равные части. Они учатся выражать в речи способ деления, складывания, соотношение частей.

Обучение делению предметов на равные части является основной задачей 3-4 занятий.


Вначале детей знакомят со способами деления целого на равные части (две и четыре) путем сгибания без разрезания, что дает возможность обнаружить части внутри целого, их количество и соотношение с целым, каждая из частей меньше целого, целое больше части. С этой целью берутся плоские предметы: круги, полоски бумаги, шнуры, тесьма и др.


Детям свойственно определять полученные в результате решения части, пользуясь названиями геометрических фигур (квадраты, треугольники), а не признаком формы. Они не выделяют форму частей: части квадратной, треугольной формы. Слово часть в своей речи они заменяют названиями геометрических фигур.

Предупреждению данной ошибки и упражнению в употреблении слов часть, часть целого, половина, четверть способствуют упражнения на деление таких предметов, когда в результате получаются части, не имеющие прямого сходства с геометрическими фигурами.


В процессе деления путем складывания дети убеждаются в том, что одноразовое перегибание листа бумаги ведет к получению двух равных частей, двухразовое — четырех.


В дальнейшем педагог упражняет детей в делении путем складывания с разрезанием и последующим склеиванием частей для воссоздания целого.


С целью уточнения зависимостей целого и частей используется прием деления на равные и неравные части и воссоздания целого из них. Педагог, указывая на часть, спрашивает детей, можно ли ее назвать частью целого: половиной, одной четвертой частью, предлагает использовать практические приемы для убеждения в этом: наложение частей, воссоздание целого.


Для обобщения знаний воспитатель использует вопросы-задачи. Например, «мне надо разделить ленту между 2 девочками. Какую часть ленты получит каждая девочка? А если эту ленту надо разделить между 4 девочками, что я должна сделать?» или «Вечером я пойду в булочную. Мне нужна половина буханки хлеба. Как продавец разрежет буханку хлеба и почему? А если мне будет достаточно четвертушки хлеба, то что сделает продавец и почему? Правильность действий проверяют соответствующими действиями.

Припоминая вместе с детьми факты деления предметов на части, которые им приходилось наблюдать у себя дома, в детском саду, в магазине и т.д. педагог обогащает и уточняет представления детей о делении предметов на части.


Дети, обучаясь делению предметов (яблока, пряника) в бытовых для них ситуациях на равные и неравные части путем разрезания, уточняют, что только при делении на равные части каждую из них можно назвать долей.

В игровой ситуации при соблюдении требований к делению каждый из участников получает предназначенную ему долю целого предмета.



27. Методика ознакомления с цифрами и арифметическими знаками.


Выполнение математических заданий уже с самого начала по любым действующим программам требует использования разных знаково-символических средств (цифры, буквы, схемы), которые нигде не выступают специальным объектом усвоения. Знаки и символы включаются в предметную деятельность детей 7-го года жизни, прежде всего, для решения задач, близких к жизненным, а затем уже математических. Это делает более понятной и мотивированной в дальнейшем математическую символику и задания, предполагающие выполнение кодирования/декодирования


Цифры (от ср.-лат. cifra (ifr) «пустой, нуль») — система знаков («буквы») для записи чисел («слов») (числовые знаки). Цифра- это способ графического обозначения числа.

Слово «цифра» без уточнения обычно означает один из следующих десяти («алфавит») знаков: 0 1 2 3 4 5 6 7 8 9 (т. н. «арабские цифры»). Сочетания этих цифр порождают дву-(и более) значные коды и числа.


После знакомства с образованием числа необходимо научить детей обозначать это число цифрой как печатной, так и прописной.


Цифры размещают под соответствующим множеством предметов, под картинкой с изображением предметов или рядом как общепринятый знак числа, сви­детельствующий о том, что предметов определенное количество.


Для ознакомления с цифрами можно выполнить следующие действия.


На стол положите одну фигуру, напомните, что это "один", а рядом положите цифру один, изображенную на карточке или из магнитного набора. И объясните детям, что для краткости и удобства число один обозначают цифрой «1».


Также происходит знакомство и с другими цифрами. На одном занятии детей не знакомят с несколькими циф­рами.

После ознакомления детей с несколькими цифрами необходимо познакомить их с цифрой 0 (ноль). Наличие предметов показы­вается соответствующей цифрой, отсутствие их — тоже цифрой 0. Запись числа 10 состоит из двух цифр: 1 и 0 (единицы и нуля).


Для закрепления понятия цифры и соответствующего ей множества можно использовать упражнения. Дошкольник тренируется в подборе цифр к нужному количеству фигур. И наоборот, подбирает нужное их количество около соответствующей цифры.


К заданному множеству предметов подобрать нужную цифру (4 зайчика, каждому дали по морковке. Всего 4 морковки. Показать цифрой, сколько морковок взято. Проверить, посчитать вместе хором, прикрепить цифру 4).

К цифре подобрать предметное множество, например, Незнайка показывает цифру 3, просит показать столько же мячей, картинок или других предметов. Дети показывают картинки с тремя мячами).

Используем игру «Найди нужные картинки». Учащиеся получают коробочки с набором картинок (5-6 картинок) и цифру. К цифре они должны подобрать все картинки с соответствующим числом предметов.

Игра «Каждой картинке цифру». Ученики получают набор картинок, на которых изображено различное количество предметов (1, 2, 3, 4 и т.д.) и цифры. К каждой картинке ученик должен подобрать нужную цифру.


Для закрепления записи цифр используются различные об­следовательские действия:

  • обведение пальцем,

  • написание цифр пальцем в воздухе,

  • «песчаные цифры,

  • выкладывание из счетных палочек, деталей конструктора, из ниток на бархатной бумаге,

  • лепка цифр из пластилина,

  • написание цифр пальцем на крупе,

  • штриховка контурных цифр,

  • чтение известных литературных произ­ведений.


Дети легко и с интересом усваивают цифры. Однако нередко у них возникают трудности в различении цифр, похожих по начертанию: 1 и 4; 2 и 5; 6 и 9. Поэтому при изучении цифры ее внимательно рассматривают, выделяют ее элементы, подыскивают предметы, с которыми можно сравнить цифру. Это нужно для того, чтобы дети лучше запомнили образ цифры, не смешивали ее с другими образами цифр.


Например, при изучении цифры 4 нужно, рассмотрев ее начертание, предложить вспомнить, на какую знакомую цифру она похожа (на цифру 1), сравнить их по начертанию, выделить общее и то, чем они отличаются. Дети сами сравнивают 2 и 5; а в старшей группе — 3 и 8; 6 и 9.


При сравнении цифр 2 и 5 детям предлагают посчитать сначала одну группу предметов на столе у воспитателя и поднять соответствующую цифру, потом посчитать вторую группу и также соотнести количество игрушек с определенной цифрой. Начертания этих цифр анализируют и сравнивают между собой. Обращают внимание на то, что в цифре 2 неполный круг вверху, а в цифре 5 — он внизу справа; короткая линия слева направо в цифре 2 — внизу, а в цифре 5 — вверху.


Своевременное ознакомление детей с цифрами способствует ос­мыслению ими числа как показателя количества, абстрагированию его от конкретного содержания, расширению возможностей при­менения чисел в практической деятельности.


МЕТОДИКА ОЗНАКОМЛЕНИЯ С ЦИФРАМИ, предложенная Даниловой Еленой, воспитателем со стажем детского сада «Дошкольник» г.Караганды.


Необходимо придерживаться принципа: одно занятие — одна цифра.


Цифры рисуем на плотной бумаге, цветные. Карточка с цифрой размером в пол-листа школьной тетради.

Показывая, называем: «один». Берем куклу: «одна кукла», «воспитатель один» и т. д.

«Пошла Красная Шапочка к бабушке. И сколько их было, Красных Шапочек? Очень много! Да?».

Дети смеются. Им весело представлять, что много Красных Шапочек пошли ко многим Бабушкам. Но все-таки говорят, что она была одна.

Затем вы спрашиваете: сколько у детей голов, ртов, носов? И они вам отвечают: один.

Затем вы вывешиваете цифру «1» на стенку: пусть она остается в поле зрения ребенка. И изредка спрашиваете: «Где у нас цифра «1»?».


Следующее занятие начинается с повторения. После этого берете карточку с цифрой в руку и двигаете ее по столу так, как будто она идет к ребенку. Спрашиваете детским (писклявым) голосом: «Здравствуй, Катя! Знаешь, как меня зовут? Я пришла в гости. И привела свою подружку (или сестру). Вот она». Показываете новую карточку с цифрой «2». Говорите своим голосом. «Два».


Затем ребенку показываем руки: «Две руки. Одна (левая) и еще одна (правая). Один и один. Получается два. А сколько у Кати ног? Две. Одна и еще одна. Две. А сколько глаз?» и т. д.

То же самое — с ложками, игрушками, тарелками: «Кате одну тарелку и маме одну тарелку. Сколько тарелок па столе?». И дальше играете в том же духе.

Цифру «2» на карточке вывешиваете рядом с цифрой «1» после занятия.


И дальше таким же образом, пока не изучены все цифры: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.


Когда уже изучено несколько цифр, берем любую цифру и спрашиваем: «Какая это цифра?», и в обратную: разложите все изученные уже цифры в ряд и спрашивайте у ребенка: «Где цифра «5»?».

Потом рассказываем дошкольнику о понятиях «больше» и «меньше», чтобы он мог сравнивать цифры по величине.


УПРАЖНЕНИЯ НА ЗНАКОМСТВО СО ЗНАКАМИ ДЕЙСТВИЙ


После того как ребенок научится правильно понимать на слух и моделировать все означенные виды предметных действий, познакомился с цифрами его можно знакомить со знаками действий. Знаки действий, как и любая другая математическая символика, являются условными соглашениями, поэтому детям просто сообщается, в каких ситуациях используется знак сложения, а в каких — знак вычитания.


В качестве примера приведем взаимосвязанную серию заданий, показывающих, как может выглядеть такое знакомство на занятии в старшей группе.


Упражнение 1

Цель. Учить ребенка составлять условную предметную модель словесно заданной ситуации.

Материалы. Фланелеграф, карточки с рисунками, карточки с цифрами и знаками действий, «Дидактический набор».

Способ выполнения. Педагог использует сюжетную ситуацию:


Сейчас я расскажу вам одну историю. Жил-был во дворе воробей. (Педагог выставляет изображение птички на фланелеграфе по ходу рассказа) Он любил по утрам сидеть на рябине и ждать, когда дети выйдут на прогулку и принесут ему крошки. Однажды прилетел он утром на рябину и видит: сидят там вот такие гости. (Педагог выставляет на фланелеграф карточки с изображением снегирей — на каждой карточке один снегирь.) Кто это? (Снегири.)

Прилетели из леса и клюют рябину. Рассердился воробей: «Вы чего мою рябину едите?» А снегири говорят: «Не гони нас, воробей. Голодно в лесу, холодно, всю рябину уже съели, позволь здесь покормиться, а то мы погибнем». Не стал воробей жадничать. «Ладно, ешьте, — говорит, — а мне дети из садика крошек хлебных принесут, накормят». Так и остались они на рябине.


Сколько воробьев? (1) Сколько снегирей? (3) Откройте коробочки «дидактический набор» и положите на столе фигурки, обозначающие птиц, чтобы сразу было видно, что у вас 1 воробей и 3 снегиря.

Дети должны самостоятельно выложить группу разных фигурок: одна и три.

Педагог у каждого спрашивает: «Где у тебя воробей? Где видно, что три снегиря?»

Когда дети справятся с заданием, группу-заместитель выкладываем на фланелеграфе с объяснением: воробей отличается от снегирей, значит, фигурка должна быть другая.

А как назвать одним словом воробья и снегирей? (Птицы.)


Упражнение 2

Цель. Знакомить СО ЗНАКОМ СЛОЖЕНИЯ.

Способ выполнения. Воспитатель продолжает беседу:

Теперь обозначим количество птиц математически с помощью чисел. Какие числа надо взять? (1 и 3) А теперь я вам покажу, как обозначить, что они дружно сидят на дереве. Математики используют такой знак: «+» (плюс). Действие, которое обозначается этим знаком, называется «сложение». Такая запись «1+3» говорит, что мы собрали их вместе и сосчитали. Математики говорят «сложили». А всего сколько у нас птиц? (4)


Упражнение 3

Цель. Учить соотнесению математического выражения и сюжетного рассказа.

Задание. Воспитатель предлагает детям составить рассказ по такой записи: 2 + 1. Хотите опять про птиц, хотите про что-нибудь другое.

Педагог помогает детям составить рассказ вида: «У Маши было 2 конфеты, ей дали еще одну».

У вас нет цифр, обозначьте то, о чем говорится в рассказе, фигурками: ООП

(Фигурки дети выбирают сами.)


Упражнение 4

Цель. Учить детей переводу символической модели в предметную, а затем в словесную.

Задание.

Я буду составлять на фланелеграфе запись, а вы — обозначать числа в этой же записи фигурками у себя на столе.

Педагог составляет из карточек на фланелеграфе выражения (по одному)


2 + 3; 3+1; 4 + 2; 3 + 3; 4+1.


Каждое выражение дети моделируют на фигурках и составляют соответствующий рассказ.


При выполнении задания, обратного данному, т. е. при переводе словесно заданной ситуации на язык математической символики, последовательность указаний педагога такова:

а) обозначьте то, о чем говорится в задании, кружками (палочками и т. п.);

б) обозначьте указанное число кружков (палочек и т. п.) цифрами;

в) поставьте между ними нужный знак действия.


Например: в вазе 4 тюльпана белых и 3 розовых. Обозначьте число белых тюльпанов цифрой; число розовых тюльпанов цифрой. Какой знак нужно поставить в записи, чтобы показать, что все тюльпаны стоят в одной вазе?

Составляется запись: 4 + 3.

Такую запись называют «математическое выражение». Она показывает количественные характеристики ситуации и взаимоотношения рассматриваемых совокупностей.

Не стоит сразу ориентировать ребенка на получение значения выражения:


3 + 4 = 7 значение выражения


Вся запись целиком называется «равенство». Этот термин имеет смысл вводить тогда, когда дети познакомятся со ЗНАКОМ «РАВНО».


Когда педагог убедится, что дети хорошо справляются со всеми этими видами заданий, правильно соотнося все ситуации, связанные со сложением, с соответствующими выражениями, можно знакомить их с действием вычитания и знаком вычитания.

Психологически понимание смысла вычитания и соотнесение его с математической записью сложнее, чем понимание смысла сложения. Это объясняется тем, что в процессе моделирования ситуации вычитания множество, соответствующее вычитаемому, убирается из поля зрения ребенка и перед ним остается множество, соответствующее остатку, а для составления правильной записи необходимо помнить первоначальное количество и удаляемое количество, которых перед глазами ребенка уже нет.

В этой связи наблюдаются так называемые типичные ошибки усвоения вычитания. Например, педагог выставляет на фланелеграфе 6 фигурок, затем 2 убирает. Дети безошибочно опознают действие — вычитание, но при составлении записи могут написать: 6-4. Это обусловлено тем, что 4 фигурки они непосредственно наблюдают после совершения предметного действия.


ЗНАКОМСТВО С ДЕЙСТВИЕМ ВЫЧИТАНИЯ И ЗНАКОМ ВЫЧИТАНИЯ в старшей группе происходит с помощью серии заданий.


Упражнение 1

Цель. Уметь сосредотачивать внимание детей на изменениях количественных характеристик ситуаций.

Материалы. Фланелеграф, модели фигур.

Способ выполнения. Педагог выставляет на фланелеграф несколько любых фигур (или изображений). По его просьбе дети закрывают глаза, а он в этот момент убирает или добавляет фигуры на фланелеграфе. Затем дети должны сказать, что изменилось: убрали или добавили, больше стало или меньше. Фигурки надо брать одинаковые или похожие. Например, яблоки, треугольники и т. д. Каждый раз педагог просит детей объяснить, почему они так думают. (Было 5 яблок. Теперь стало 3. Стало меньше, значит, яблоки убрали.)


Упражнение 2

Цель. Соотносить предметную ситуацию с записью действия.

Задание.

Теперь будем составлять запись изменений. (Педагог ставит 3 яблока.) Каким числом обозначим количество яблок? Закройте глаза. (Педагог добавил 3 яблока.) Что я сделала? Что изменилось? (Яблок стало больше, значит, добавили 3 яблока.) Каким числом обозначим те яблоки, что я добавила? Какой математический знак надо использовать, чтобы записать то, что я сделала? (Плюс.) Составляем запись на фланелеграфе: 3 + 3. Прочитайте запись. (К трем прибавить три.) А всего яблок? (6)


Упражнение 3

Цель. Соотносить предметную ситуацию с записью действия, знакомить с действием вычитания и ЗНАКОМ ВЫЧИТАНИЯ.

Задание.

Запомните, сколько яблок. (Запись убирается.) Закройте глаза. (Педагог убирает 2 яблока.) Что я сделала? (Убрала 2 яблока.) Изменилось ли количество? (Да. Стало меньше.) Давайте составим запись того, что я сделала. Сколько было яблок сначала? (6) Сколько я убрала? (2) Ставим числа 6 и 2. Можно ли поставить между ними знак «+»? (Нет. Этот знак ставят, когда добавляют, а вы убрали.) Верно. В этом случае используют другой знак: «-» (минус). Он означает, что первоначальное количество уменьшилось. Запись читают так: «От шести отнять два». Это значит, что мы убрали 2. Сколько же осталось? (4)


Упражнение 4

Цель. Соотносить предметную ситуацию на вычитание с записью действия.

Задание.

Попробуем еще раз. (Педагог меняет фигурки.) На лугу росли 4 ромашки. Закройте глаза. (Педагог добавляет 1.) Что я сделала? Кто может составить запись? (Дети составляют запись и объясняют употребление знака «+».) А всего их сколько? (5)

Меняем фигурки. На столе 4 апельсина. Закройте глаза. (Убирает 3.) Что я сделала? Кто может составить запись? (Дети составляют запись и объясняют употребление знака «-».) А сколько их осталось? (1)

Ответ во всех случаях получен пересчетом.


После того как дети научатся правильно выбирать знак действия и объяснять свой выбор (обязательно!), можно перейти к составлению равенства и фиксированию результата действия.


Поскольку обучение дошкольника специальным приемам вычислительных действий не предусмотрено программой, ребенок получает результат либо пересчетом, либо присчитыванием (отсчитывааием), но может опираться и на знание состава числа (шесть это два и четыре, значит, шесть без двух это четыре).


В подготовительной к школе группе возможно и целесообразно введение символики для обозначения отношений «больше», «мень­ше», «равно» (>, <, =). Освоение детьми элементов символики способствует осмыслению ими количественных отношений в натуральном ряду чисел.

Дети обозначают знаками отношения между двумя числами (1<2, 2>1), затем несколькими (5<6<7, 7>6>5), всеми чис­лами ряда в пределах 10.


28. Методика ознакомления с монетами.


Чтобы познакомить детей с деньгами можно провести беседу, используя книгу А.Д. Шатовой «Деньги».

Рассказать детям как появились деньги, что такое монета и купюра, об их достоинстве, о том какую роль играют деньги в жизни людей, о труде людей и оплате их работы деньгами (зарплата), о семейном бюджете и др.


Для формирования представлений о деньгах, как мере стоимости у детей старшего дошкольного возраста можно провести занятия на тему: «Деньги. Купюра. Монета», «Достоинство монет и купюр», «Цена. Товар. Качество товара», «Наличная сумма. Цена. Сдача. Стоимость» «Размен денег»


В качестве примера рассмотрим проведение занятия по ознакомлению с деньгами.


Тема: «Деньги. Купюра. Монета»


Цель:

- раскрыть сущность понятий «деньги», «монета», «купюра»;

- закрепить знания детей о внешнем виде современных денег;

- учить находить отличительные и сходные признаки между монетой и купюрой, между купюрами разного достоинства;

- учить понятию достоинство монет;

- помочь детям осознать роль денег в жизни людей;


Материал:

Копилка с набором разных монет и купюр; таблички со схематическим изображением купюр (квадратные таблички) и монет (круглые таблички).


Предварительная работа:

На занятиях по трудовому воспитанию или в свободное для деятельности время изготовить таблички со схематичным изображением купюр и монет. Можно квадратные таблички изобразить зеленым цветом, а круглые таблички – желтым цветом. Собрать набор монет и купюр разного достоинства. Так же следует предложить рассмотреть детям до занятия купюры и монеты, чтобы в последующем дети могли свободно называть отличительные и сходные черты между монетой и купюрой.


Ход занятия:


  1. Теоретическая часть.

- Ребята, я шла утром сегодня к вам в садик и по дороге нашла интересный предмет (демонстрирую копилку).

- Что это такое?

- Для чего же нужна эта копилка?

- Правильно, чтобы копить деньги. Но мне очень интересно узнать, а зачем людям копить деньги? Что на них можно купить?

- Хорошо. Давайте сыграем в игру «Для чего нам нужны деньги?». Я называю, для чего нам нужны деньги, а вы продолжаете. Итак, деньги нам нужны, чтобы:

- Для покупки продуктов питания;

- Для оплаты бытовых услуг;

- Для оплаты развлечений (воспитатель уточняет у детей, для каких развлечений нам нужны деньги?)

- Для оплаты услуг. Каких?

- Для оплаты проезда на транспорте;

- Для покупки подарков;

- Помощь бедным (воспитатель уточняет, что такая деятельность называется благотворительностью) и т.д.

Воспитатель опрашивает всех детей по очереди. Если дети указывают не все значение денег можно предложить решение данного вопроса в виде проблемных ситуаций: Если мы едем на автобусе, мы платим? Если мы захотели кушать и пошли в магазин, за что мы платим? и т.д.





2. Практическая часть


- Молодцы, ребята, хорошо справились с заданием. А вам интересно узнать, что же лежит в копилке, какие деньги там есть? Давайте посмотрим.

Рассматриваем монеты.

- Это что такое? Правильно, монеты. Какая монета?

Если дети не называют все признаки, то воспитатель помогает им.

- Круглая, металлическая, звенит (можно взять в руку несколько монет и позвенеть ими и дети сами смогут после этого назвать данный признак).

- Какие монеты вы знаете? Дети называют монеты разного достоинства, воспитатель демонстрирует данную монету всем детям и, хором проговариваем вместе с детьми.

- Смотрите, у нас в копилке еще что-то осталось. Давайте достанем (достаем купюры). Как можно назвать эти деньги?

- Правильно, купюры. А какие они?

- Бумажные, прямоугольные, шуршат (можно продемонстрировать шуршание купюрой).

- Какие купюры вы знаете? Дети называют купюры, воспитатель демонстрирует их детям, и затем проговариваем хором.

- Итак, ребята, сейчас мы с вами поиграем в игру, которая называется «Дополни». Я называю вам признак монеты, а вы мне называете противоположный признак купюры и наоборот.


Монета круглая, а купюра…

Купюра бумажная, а монета…

Монета звенит, а купюра…

Монета металлическая, а купюра…


- Хорошо, справились и с этим трудным заданием.

Ребята, мы сравнивали с вами монету и купюру, а можно сравнить между собой две монеты? Они будут отличаться между собой?

- Если сравнивать две одинаковые монеты, например, 5 копеек, они отличаются между собой? Нет, так как монеты в 5 копеек одинакового достоинства (показываю монеты по 5 копеек).

- Какие здесь лежат еще монеты одинакового достоинства? Маша, покажи.

- Саша, есть еще монеты одинакового достоинства? Покажи.

Рассматриваем монеты одинакового достоинства. Добиваемся произнесения детьми полного предложения: «Монеты в 5 копеек одинакового достоинства».

- Сейчас мы с вами рассматривали монеты одинакового достоинства, а покажите мне монеты разного достоинства. Саша?

- Кто еще мне покажет монеты разного достоинства? Почему вы так решили, что эти монеты разного достоинства?

- Посмотрите, монеты 5 копеек и 5 рублей разного достоинства? Чем они отличаются между собой?

- Правильно, 5 рублей больше монета, чем 5 копеек. Возьмите в одну руку монету в 5 копеек, а в другую монету в 5 рублей. Какая монета тяжелее?

- Что можно купить на 5 копеек? А на 5 рублей?

- Правильно, на 5 рублей можно больше купить продуктов, товара, чем на 5 копеек. Сейчас на 5 копеек, наверное, ничего не купишь. А чтобы люди различали монеты по достоинству их и делают разными. Возьмите в руку 1 рубль и 5 рублей, что большего достоинства? Как вы узнали?


3. Заключение.

Итак, ребята, покажите мне:

- Монету

- Купюру

- Монету в 5 копеек

- Монету в 1 копейку

- Монету в 10 копеек.

- Монету в 1 рубль

- Монету в 5 рублей

- Монету в 10 рублей.


Молодцы, все правильно показали. Ну вот мы и познакомились с деньгами - монетами и купюрами. Узнали их достоинство и для чего они нужны.

29. Методика обучения решению и составлению арифметических задач: виды, этапы работы, различные подходы к методике обучения решению и составлению арифметических задач.



Обучение сложению и вычитанию - одна из основных задач математической работы в первом классе. В детском саду проводят главным образом подготовительную работу.

Дети осваивают вычисление, составляя и решая арифметические задачи. Работа эта позволяет понять смысл арифметических действий и сознательно к ним прибегать, устанавливать взаимосвязи между величинами.


Дошкольники решают простые задачи в одно действие, главным образом прямые, т. е. такие, где арифметическое действие (прибавить, вычесть) прямо вытекает из практического действия с предметами (добавили - стало больше, убавили - стало меньше).

Это задачи на нахождение суммы и остатка. Детей знакомят со случаями сложения, когда к большему числу прибавляют меньшее, учат прибавлять и вычитать сначала число 1, потом число 2, а затем число 3. (Числовой материал используют в объеме первого десятка.)


Этапы обучения решению задач. Обучение вычислительной деятельности и знакомство дошкольников с задачами осуществляют поэтапно, давая детям знания небольшими дозами.


А.М Леушина определяет три последовательных этапа обучения детей арифметическим действиям при решении задач:

1. Показать детям практически, как составляется задача.

2. Научить детей не только решать задачу, давая ответ на поставленный вопрос, но и формулировать арифметическое действие, осознавая его смысл.

3. Научить детей пользоваться приемами присчитывания и отсчитывания (по одному), прибавляя и отнимая числа два и три.


На первом этапе необходимо научить детей составлять задачи и помочь им осознать, что в содержании задач находит отражение окружающая жизнь.

Они усваивают структуру задачи, выделяют условие и вопрос, осознают особое значение числовых данных. Помимо этого, они учатся решать задачи, сознательно выбирать и формулировать действие сложения или вычитания, вникать в смысл того, к каким количественным изменениям приводят практические действия с предметами, о которых говорится в задаче (больше или меньше стало или осталось).


Дети учатся давать полный, развернутый ответ на вопрос задачи. Числовой материал в этот период либо ограничивают первым пятком, либо в пределах второго пятка прибавляют или вычитают 1.


На втором этапе дети учатся не только обоснованно выбирать действие сложения или вычитания, но и правильно пользоваться приемами присчитывания и отсчитывания по 1, прибавляя или вычитая сначала число 2, а позже 3.


Обучение детей составлению задач


Для того чтобы дети научились выделять числовые данные задачи, практические действия и понимать смысл количественных изменений, к которым они приводят, необходима полная предметная наглядность. На первом занятии воспитатель дает детям общее представление о задаче, учит практически составлять условие и ставить вопрос к ней. Основное внимание уделяют пониманию детьми смысла количественных изменений, к которым приводят те или иные действия с предметами. Соединили 2 группы предметов: к одной группе добавили другую - становится больше предметов, чем было. Отделили столько-то предметов, убавили - предметов стало меньше, чем было.


Первые 1-2 задачи составляет воспитатель, описывая в них те действия, которые дети выполнили по его указанию: "Сережа поставил на стол 3 матрешки. Вера принесла еще 1 матрешку. Сколько всего матрешек принесли Вера и Сережа?"


Важно сразу привлечь внимание детей к количественным отношениям между числовыми данными задачи: "Сколько матрешек Сережа поставил на стол? Сколько матрешек принесла Вера? Больше или меньше стало матрешек после того, как Вера принесла еще 1? Сколько всего матрешек принесли Вера и Сережа? Больше или меньше у нас получилось матрешек, чем поставил Сережа? Почему?"


Воспитатель говорит: "Я составила задачу, а вы ее решили. Теперь мы будем учиться составлять и решать задачи". Вспоминают задачу, которую дети только что решили. Воспитатель объясняет, как составлена задача: "Сначала рассказано о том, сколько матрешек поставил на стол Сережа и сколько матрешек принесла Вера, а затем поставлен вопрос, сколько всего матрешек принесли Сережа и Вера. Вы ответили, что Сережа и Вера принесли 4 матрешки. Решив задачу, вы правильно ответили на вопрос".


Аналогичным образом составляют еще одну задачу. Важно подчеркнуть необходимость давать точный, развернутый ответ на вопрос задачи. Если ребенок упускает что-либо, например говорит лишь о количестве предметов ("4 матрешки"), воспитатель замечает, что непонятно, о каких матрешках идет речь.


Полезно давать задания одновременно всем детям, предлагать придумать задачу о том, что они сделали. Это создает лучшие условия для установления количественных отношений между числовыми данными. Воспитатель предлагает: "На верхнюю полоску карточки положите 5 кружков, а на нижнюю - 1 кружок. Расскажите о том, что вы сделали" Воспитатель следит за тем, чтобы рассказ получился кратким, связным, конкретным. Он указывает, что такой рассказ - еще не задача: "Это то, что мы знаем. А что можно узнать? О чем спросить?" Как правило, дети не чувствуют необходимости в постановке вопроса и часто сразу дают ответ: "Всего я сложил 6 кружков". Воспитатель напоминает, что нужно было просто рассказать, что сделали, и подумать, какой вопрос задать.


Можно использовать и такой прием. Воспитатель предлагает детям, сидящим с правой стороны, выполнить какое-нибудь действие, например к 6 кружкам придвинуть 1. Детей, сидящих слева, просит подумать, какой вопрос можно задать товарищу, находящемуся рядом. Каждый раз педагог выделяет числовые данные, привлекает внимание детей к тем количественным изменениям, которые произошли в результате практических действий, описанных в условии задачи.


Побуждая детей устанавливать связи и отношения между числами, их учат предвосхищать результат. После того как дети дадут ответ на вопрос задачи, воспитатель спрашивает: "Больше или меньше стало?" Сравнивает числовые данные условия задачи с числом, полученным в результате действия.


На первых двух занятиях дети должны научиться элементарно анализировать задачи.


Знакомство со структурой задачи


Со структурой задачи дети знакомятся на втором или третьем занятии: они узнают, что в задаче есть условие и вопрос, особо подчеркивается наличие в условии задачи не менее 2 чисел.


Воспитатель, обращаясь к детям, говорит: "Я сейчас расскажу вам, о чем задача, а вы будете показывать все то, о чем я буду сообщать. Слева на карточку дети положили 6 флажков, а справа - 1 флажок. Сколько всего флажков положили на карточку? Мы составили задачу. Давайте повторим ее и отделим то, что мы знаем, от того, что мы не знаем. Что же мы знаем?" Ребята отвечают, что 6 флажков у них лежат слева и 1 флажок справа. "Это мы знаем. Это условие задачи,- объясняет педагог.- Что же в задаче спрашивается?" "Сколько всего флажков на карточке", - отвечают дети. "Этого мы не знаем. Это то, что надо узнать. Это вопрос задачи. В каждой задаче есть условие и вопрос. О каких числах говорится в нашей задаче? Какой вопрос вы поставили? Повторим нашу задачу". Воспитатель предлагает одному ребенку повторить условие задачи, а другому - поставить вопрос, уточняет, из каких 2 частей состоит задача. Так составляют 2-3 задачи. Каждый раз воспитатель предлагает расчленить задачу на условие и вопрос. Иногда он сам сообщает детям условие и спрашивает, все ли сказано в задаче, чего не хватает. Можно повторить задачу по ролям: один ребенок рассказывает условие, другой ставит вопрос, третий дает ответ на вопрос задачи.


Педагог, участвуя в этой игре, меняется ролями с детьми: одни дети придумывают условие задачи, другие ставят вопрос, а воспитатель дает ответ на вопрос задачи, и наоборот.


Важно раскрыть арифметическое значение вопроса задачи. С этой целью, рассматривая очередную задачу, воспитатель специально сосредоточивает внимание ребят на характере вопроса. Например, дети рассказали условие задачи: "У Оли было 4 шара, а Дима подарил ей еще 1 шар. Это условие задачи, это то, что мы знаем. А что нового можно узнать о шарах? Оказывается, можно узнать много: и какого цвета шары, большие они или маленькие. Но главное, надо узнать общее их количество. Так какой вопрос надо поставить к задаче?" Дети ставят вопрос об общем количестве шаров. Вопрос задачи обычно начинается с вопроса сколько? Педагог иногда умышленно спрашивает о цвете, размере, местоположении предмета. Дети замечают ошибку и поправляют воспитателя.


Необходимо подчеркнуть значение числовых данных задачи. С этой целью рекомендуется такой прием: рассказывая об условии задачи, воспитатель опускает одно из чисел или оба числа и спрашивает: "Можно ли решить задачу?" Дети практически убеждаются в том, что в условии задачи должно быть не менее 2 чисел.


После того как дети научатся составлять задачи без наглядного материала, для закрепления знаний о структуре задачи полезно сравнить ее с рассказом и загадкой: "Папа подарил Тане несколько красивых камешков, и брат поделился с ней своими камешками. Что я вам рассказала? Есть ли здесь числа? Есть ли здесь вопрос?" "Папа подарил Тане 8 камешков, а брат дал ей еще 1 камешек. Сколько всего камешков подарили Тане? Что это? Как вы теперь догадались, это задача. Чем отличается она от рассказа?"


Дети объясняют: "В рассказе не сказано, сколько камешков папа подарил Тане и сколько камешков ей дал брат. А в задаче сказано, что папа подарил Тане 8 камешков, а брат дал ей еще 1 камешек. В задаче есть 2 числа. В рассказе нет ни одного числа и нет вопроса. В задаче есть вопрос". - "Можем ли мы решить эту задачу? Что мы знаем?" Хорошо сравнить задачи с загадками. Подбирают загадки, в которых указаны числа: Один говорит, двое глядят, а двое слушают (рот, глаза, уши); Четыре братца под одной крышей живут (стол). Вместе с детьми педагог обсуждает, какие вопросы здесь можно поставить: "Что это такое? Сколько ножек у стола?" И т. п. Выясняют, что в загадке надо догадаться, о каком предмете говорится, а в задаче хотят узнать о количестве, сколько получится или останется предметов.


Сравнение задачи с загадкой позволяет подчеркнуть арифметический смысл вопроса задачи. Полезно научить детей пользоваться общим способом, с помощью которого можно отличить задачу от рассказа, загадки. Провести анализ текста можно по следующему плану: "Есть ли здесь числа? Сколько здесь чисел? Есть ли здесь вопрос?"


В заключение детям предлагают преобразовать загадку, рассказ и т. д. в задачу, подумать, что для этого надо сделать.


На данном этапе обучения на первом занятии дети решают задачи на сложение, а на последующих - на сложение и вычитание, причем задачи на сложение и вычитание чередуют. Ответ находят, опираясь на понимание связей и отношений между смежными числами.


В зависимости от того, какой наглядный материал используется, различаются следующие виды задач: задачи-драматизации (описание действий детей), задачи-иллюстрации использование игрушек, картинок, пособий, приготовленных воспитателем, зарисовка задач детьми), устные задачи, решаемые без опоры на наглядный материал.



Задачи-драматизации. Большое внимание уделяют задачам-драматизациям. В них отражаются действия, которые дети наблюдают, а чаще всего непосредственно сами производят. Важно, чтобы здесь наглядно были представлены числовые данные, а не ответ на вопрос.


Первоклассники подчас не могут решить задачу лишь потому, что не понимают смысла слов, обозначающих то или иное действие: истратил, поделился, подарил и др. Поэтому в подготовительной к школе группе следует специально уделить внимание раскрытию смыслового значения слов, обозначающих те или иные действия. С этой целью необходимо учитывать, какие практические действия кладут в основу задачи. При этом целесообразно сопоставлять задачи на нахождение суммы и остатка, предполагающие действия противоположного значения: пришел - ушел, подошли - отошли, взял - отдал, подняли - опустили, принесли - унесли, прилетели - улетели.


Наиболее важно сопоставлять однокоренные слова противоположного значения, смысл которых детям трудно уловить: дал (он) - дали (ему), подарил (он) - подарили (ему), взял (он) - взяли (у него). В ходе драматизации действия называют.


От занятия к занятию знания детей о действиях с предметами расширяются и уточняются, накапливается представление о том, что в задачах всегда отражается то, что происходит в жизни.


Задачи-иллюстрации. Дальнейшему развитию самостоятельности и накоплению опыта установления количественных отношений в различных жизненных ситуациях служат задачи-иллюстрации по картинкам и по игрушкам.


Вначале детям демонстрируют картинки, на, которых представлены и тема, и сюжет, и числовые данные. Первую задачу по картинке воспитатель составляет сам. Он учит детей рассматривать рисунок, выделять числовые данные и те жизненные действия, которые привели к изменению количественных отношений. Например, на картинке нарисован мальчик с 5 шарами, 1 шар он отдает девочке. Рассматривая картинку, воспитатель спрашивает: "Что здесь нарисовано? Что держит мальчик? Сколько у него шаров? Что он делает? Если он отдаст шар девочке, больше или меньше у него останется шаров? Что мы знаем? Сопоставьте условие задачи. О чем можно спросить?"


Вначале педагог помогает детям наводящими вопросами, затем дает им лишь план: "Что нарисовано? Сколько? Что изменилось? Больше или меньше станет?" И дальнейшем дети самостоятельно рассматривают картинки и составляют задачи.


Для составления задач можно использовать рисунки, на которых представлены общий фон (лес, река) или такие предметы, как ваза, корзина, ель, яблоня. На рисунках сделаны разрезы, в которые вставляют плоские цветные изображения предметов: шишек, яблок, шаров, груш, огурцов, лодок, домов, деревьев и пр. Воспитатель вставляет в разрезы изображения предметов так, чтобы наглядно были представлены числовые данные.


Таким образом, в данном случае заранее обусловлены лишь тема и числовые данные задачи, сюжет ее дети могут варьировать.


Меняя числовые данные, воспитатель побуждает детей придумывать задачи на нахождение суммы и остатка разного содержания на одну и ту же тему, составлять задачи по любой сюжетной картинке, используемой для обучения рассказыванию.


Еще больший простор для развития воображения и самостоятельности дает составление задач об игрушках. Воспитатель побуждает детей припоминать разные факты из жизни, которые они видели или о которых им читали. Он дает образец - придумывает несколько вариантов задач на одну тему. При этом следит за тем, чтобы дети составляли задачи разнообразного содержания на одну тему (не похожие одна на другую) и достоверно передавали жизненные факты, поощряет самостоятельность, творчество. Дети выбирают наиболее интересные задачи и решают их. Материалом для составления задач могут быть окружающая обстановка, знакомые предметы. Например: "В групповой комнате 6 столов стоят посередине, а 1 стол - у стены. Сколько столов в группе?", "Дежурные поставили на детские столы 8 банок с водой, а 1 банку - на стол воспитателя. Сколько всего банок поставили дежурные?"


Устные задачи. Предшествующая работа создает условия для перехода к составлению задач без опоры на наглядный материал (устные задачи). Спешить с составлением устных задач не следует. Дети, как правило, легко схватывая схему задачи, начинают ей подражать и подчас искажают правду жизни, не понимая логики количественных отношений, которые являются основой задачи.


После того как будет хорошо освоен смысл действий, которые надо произвести, ребята смогут решать и такие задачи, которые основаны на их опыте. Задачи разнообразного содержания позволяют уточнить и закрепить знания об окружающем, учат их устанавливать связи и отношения, т. е. воспринимать явления в их взаимосвязях и взаимозависимостях.


Первые устные задачи дает детям воспитатель: "В графине было 5 стаканов воды, Сережа выпил 1 стакан. Сколько воды осталось в графине?", "К празднику строители сдали 5 домов на одной стороне улицы и 1 дом на другой. Сколько домов сдали строители к празднику?", "Пионеры посадили у школы 6 яблонь и 1 грушу. Сколько всего фруктовых деревьев посадили пионеры?" В отдельных случаях в качестве переходной ступеньки к решению устных задач может быть использован такой прием: воспитатель рассказывает детям задачу и предлагает им изобразить условие с помощью кружков, квадратов или отложить косточки на счетах.


Детей надо учить запоминать задачу с первого раза и повторять ее, не ожидая дополнительных вопросов. Обучая детей составлению задач, воспитатель обусловливает объем числового материала. Необходимо следить за тем, чтобы в задачах дети правильно отражали жизненные связи, зависимости. Каждый раз следует обсуждать, бывает ли так на самом деле, как придумал кто-либо из детей.



30. Особенности формирования количественных представлений в вариативных программах и методических системах


Сравнительный анализ программных задач альтернативных программ по разделам «Количество и счёт»

Возрастная группа

«Программа воспитания и обучения в детском саду»

«Детство»

«Радуга»

2 младшая

Различать «много» и «один», понимать вопрос «сколько?», при ответе пользоваться словами один, много, ни одного

Различать один/много, много/мало, один/мало. Иметь первичное представление о соответствии 2 (3,4) предметов по количеству (столько же).

Дети должны распознавать количество в пределах 5 на глаз, без пересчета, понимать слова мало/много, пустой/полный, различать 1-2 предмета.

Средняя группа

Учить количественному счету в пределах 5, называть числа по порядку, указывая на предметы, расположенные в ряд, относить последнее число ко всем пересчитанным предметам (например 1,2,3 – всего 3 кружка). Отвечать на вопросы: Сколько всего? Который (какой) по счету? Учить сравнивать 2 группы предметов и формировать на основе счета представления о равенстве (неравенстве).

Обозначать количество числом и цифрой в пределах 5-10. иметь представление о количественном и порядковом назначении числа. Обобщать группы предметов, звуков, движений по числу; связи между числом, цифрой, количеством: чем больше, тем большим числом они обозначаются.

Считать наизусть до 10.

Пересчитывать и отсчитывать в пределах 10.

Отмеривать произвольной меркой заданное количество.

Различать цифры.

Старшая группа

Знакомство с образованием чисел 5-10.

Учить количественному и порядковому счету в пределах 10. правильно пользоваться колич. и поряд. числительными, отвечать на вопросы: Сколько? Который? (Какой по счету?).

Учить сравнивать рядом стоящие числа в пределах 10.

Получать равенство из неравенства и наоборот, добавляя к меньшему количеству один предмет или убирая из большего количества один предмет.

Учить понимать отношение рядом стоящих числе: пять меньше шести на один.

Учить составлять равные группы по заданному числу (по 8, по 9, по 10 предметов и др.)

Познакомить детей с составом числа из единиц в пределах 5 (на конкретном материале): 5 – это 1,1,1,1 и еще 1.

Количественное и порядковое значение числа, получаемого в результате сосчитывания элементов частей (долей), измерения длины, массы и объема, календарного и числового времени. Цифры от 0 до 9.

Связи и зависимости между числами, отношения числе (меньше, больше на 1,2).

Состав числе из единиц. Различение и использование в играх монет.

I. 1. Счет наизусть до 20.

I. 2.Обратный счет в пределах 10.

I. 3. Пересчет в пределах 10 (закрепление).

I. 4. Отсчет в пределах 10. (закрепление)

I. 5. Порядковый счет в пределах 10.

I. 6. Сравнение по количеству (дискретные объекты).

Использование понятий: равно/не равно, больше/меньше.

II. Понимание и использование соответствующих знаков.

II. 7. Сравнение по количеству (непрерывные величины). Практические способы сравнения (приложение, переливание и т.д.); сравнение с помощью условной мерки (опосредованно).

II. 8. представление о преобразованиях, измеряющих и сохраняющих количество.

I. 9. Представление о действии сложения «+»

10. Представление о действии вычитании «-»

III. Отрицательные числа.

11. Представление о действии деления.

Равные и неравные части.

Деление на две равные части пополам. Половина. Деление на 3,4,6,8 равных частей.

III. Дробные числа.

III. 12. Представление о действии умножения.

13. Запись цифрами чисел 10-20.

Подготови-тельная к школе группа

Совершенствовать навыки счета с пределах 10, учить называть числа в прямом и обратном порядке. Познакомить детей с цифрами 0-9. закреплять понимание отношений между числами натурального ряда (7 больше 6 на 1, а 6 меньше 7 на 1), умение увеличивать и уменьшать каждое из чисел на 1 в пределах 10.

Учить называть последующее и предыдущее число к названному или обозначенному цифрой, определять пропущенное число.

Познакомить с составом чисел второго пятка из единиц.

Учить раскладывать число на два меньших в пределах 10 на наглядной основе и составлять из двух меньших большее. Познакомить с монетами достоинством 1, 5,10 копеек. Учить на наглядной основе составлять и решать простые задачи на сложение (когда к большему прибавляется меньшее) и на вычитание (когда вычитаемое меньше остатка). При решении задач учить пользоваться знаками действий с цифрами: плюс +, минус -, равно =.

Количественные представления в натуральном ряду чисел в прямом и обратном порядке.

Место числа среди других числе ряда.

Состав чисел из двух (нескольких) меньших чисел.

Использование цифр, монет; знание строения циферблата часов.

Сложение и вычитание чисел (приемы пересчитывания и отсчитывания по одному) при решении арифметических задач, примеров.

Умение находить следующее, предыдущее число для каждого числа от 0 до 10.

Неизменяемость числа, величины при условии различий в суммировании: 4 = 3+1, 4=2+2, деления на равные группы: 6=3 и 3, 6=2+2+2.

Изменение числа и величины в зависимости от увеличения и уменьшения.

Выполнение действий по знаковым обозначениям, определение последовательности действий в компьютерных играх, учебных программах.

«Чтение» схемы, способа и пути выполнения действий.

Отражение в речи связей и зависимостей последовательных действий.

Оперирование знаками +, -,= при вычислениях.

Целью данной программы является не только развитие познавательных способностей, но и творческих.

Имеет классическое математическое содержание: доматематические (сравненение, уравнение, комплектование) и математические виды деятельности (счет, измерение, вычисление).

  1. Формировать представление о числе как о точке числовой прямой.

  2. Формировать навыки счета.

I

Счет наизусть с пределах 20.

II-III

Счет наизусть в пределах 100.

I-III

Обратный счет; отсчет; пересчет; порядковый счет в этих пределах; «соседи» числа. Сравнение по количеству: понимание и правильное употребление понятий больше, меньше, равно.

II-III

Употребление соответствующих знаков. Решение неравенств на числовой прямой.

I-III

Состав чисел первого десятка. Чтение и запись двузначных чисел.

II-III

Разложение их на разрядные слагаемые.








Обучение математике происходит в атмосфере доброжелательности, поддержки ребенка, даже если он совершил ошибку, поощряется стремление высказать свое мнение; дети не только познают математику, но осваивают навыки учебной деятельности: определяют задачу, направление поисков, оценивают результаты.



31. Свойства величины, особенности восприятия дошкольниками.


Термин “величина” обычно употребляется в двояком смысле: как понятие, определяющее математическую величину, и как понятие, означающее пространственный признак предмета.


Говоря о проблеме развития представлений о величине предметов у дошкольников, мы сужаем понятие “величина” и характеризуем им размер предметов.


Для правильной и полной характеристики любого предмета оценка величины имеет не меньшую значимость, чем оценка других его признаков.

Умение выделить величину как свойство предмета и дать ей название необходимо не только для познания каждого предмета в отдельности, но и для понимания отношений между ними. Это оказывает существенное влияние на формирование у детей более полных знаний об окружающей действительности.



Осознание величины предметов положительно влияет на умственное развитие ребенка, так как связано с развитием способности отождествления, распознания, сравнения, обобщения, подводит к пониманию величины как математического понятия и готовит к усвоению в школе соответствующего раздела математики.


Величина предмета - это его относительная характеристика, подчеркивающая протяженность отдельных частей и определяющая его место среди предметов однородных.

Величина является свойством предмета.


Величина конкретного предмета характеризуется такими свойствами: сравнимость, изменчивость и относительность.

Основным свойством величины является сравнимость. Только в результате сравнения может быть получена количественная характеристика любой величины.


Величина характеризуется также изменчивостью и относительностью. Один и тот же предмет может быть определен нами как больший или меньший в зависимости от того, с каким по размерам предметом он сравнивается.


Свойство величины - изменчивость. Пример: изменение длины стола изменяет лишь его величину, но не меняет его содержания и качества, стол остаётся столом.


Третье свойство величины – относительность. Величина любого предмета относительна, она зависит от того, относительно какой другой величины она рассматривается. В самом деле, один и тот же предмет может быть опре