Инфоурок Биология КонспектыМикробиология Предмет и задачи микробиологии

Микробиология Предмет и задачи микробиологии

Скачать материал

Микробиология

Предмет и задачи микробиологии

 

Микробиологией называется наука о малых (невидимых невооруженным глазом) организмах - микробах, об их строении и жизнедеятельности.

Микробиология изучает морфологию, систематику и физиологию микроорганизмов, исследует общие условия, выясняет роль, которую они играют в превращении различных веществ окружающей нас природы.

Многие микроорганизмы одноклеточные, но имеются и многоклеточные.

Они легко приспосабливаются к условиям существования, высокая выносливость к теплу, холоду, недостатку влаги, способность к быстрому размножению. Активно участвуют в различных превращениях веществ в природе.

С жизнедеятельностью микроорганизмов на планете связано образование каменного угля, нефти, некоторых руд, торфа.

Играют большую роль в почвообразовательных процессах, способствуют повышению урожайности сельскохозяйственных культур.

Многие микроорганизмы имеют и отрицательное значение. Они могут являться возбудителями болезней человека, животных и растений, вызывать порчу пищевых продуктов, нанося большой ущерб народному хозяйству.

Достижения современной микробиологии базируются на развитии физики, химии, биологии, биохимии.

Задачи современной микробиологии разнообразны, специфичны, что из нее выделился ряд специализированных дисциплин - медицинская, ветеринарная, сельскохозяйственная и промышленная.

Промышленная микробиология - это наука о важнейших микробиологических процессах и их практическом применении для получения индустриальным способом ценных продуктов жизнедеятельности микроорганизмов, их биомассы как важнейшего белкового продукта, о получении отдельных полезных веществ, используемых в различных отраслях н/х.

В основе этой науки лежит микробиологическая (биоценология) .

Биоценология рассматривает теоретически и практически проблемы, связанные с производством большого числа продуктов, которые образуются в результате микробиологического синтеза.

 

История развития микробиологии

С глубокой древности человечество использовало такие микробиологические процессы, как сбраживание виноградного сока, скисание молока, приготовление теста.

Микробиология является сравнительно молодой наукой. Начало развития относится к концу 17 века. Первым кто описал микроорганизмы был Анатолий Левенгук, который сам изготовил линзы (первый микроскоп).

 

Однако в связи со слабым развитием промышленности наука о микробах носила описательный характер и лишь в 19 веке когда произошел прогресс промышленности, возросло и практическое значение м/биологии. Появились более совершенные микроскопы. Начало нового направления в развитии микробиологии- физиологического периода связанного с работой французского ученого Луи Пастера. Он опроверг теорию Либаха о химической природе процесса брожения. Обнаружил бактерии которые могут развиваться и без кислорода, открыл природу заразных болезней человека и животных, изготовил вакцины против бешенства, сибирской язвы.

Другой микробиолог Роберт Кох ввел в микробиологическую практику плотные питательные Среды для выращивания м/организмов. Известны работы и отечественных ученых. И.И.Мечников впервые разработал фагоцитарную теорию иммунитета.

 

Общая характеристика микроорганизмов

 

Отличительный признак микроорганизмов - крайне малые размеры отдельной особи.

Диаметр б. бактерий не превышает 0,001 мм. В микробиологии пользуются единицей измерения - микрон, 1 мкм = 10-3 мм). Детали структуры микроорганизмов измеряют в нанометрах (1 нм = 10-3 мкм = 10-6 мм).

 Благодаря небольшим размерам микроорганизмы легко перемещаются с током воздуха, по воде. Быстро распространяются.

Одной из важнейших свойств микроорганизмов является их способностью к размножению. Возможности м/организмов к быстрому размножению намного превосходят животных и растения. Некоторые бактерии могут делится каждые 8-10 мин.  Так из одной клетки массой 2,5· 10-12 гр. за 2-4 сутки в благоприятных условиях могла бы образоваться биомасса порядка 1010 тонн.

Другой отличительной характеристикой м/организмов является разнообразие их физиологических и биохимических свойств .

Некоторые м/организмы могут расти в экстремальных условиях. Значительное число м/организмов могут жить при температуре - 1960С (температура жидкого азота). Другие виды м/организмов- термофильные м/организмы, рост которых наблюдается при 800С и выше.

Многие микроорганизмы устойчивы к высокому гидростатическому давлению (в глубинах морей и океанов; месторождениях нефти). Также многие м/организмы сохраняют жизнедеятельность в условиях глубокого вакуума. Некоторые м/организмы выдерживают высокие дозы ультрафиолетовой или ионизирующей радиации.

 

Положение микроорганизмов в природе

Различия во внешнем виде и строении животных и растений прослеживают четко. Эти различия вытекают из разницы в способе питания.

Животные относятся к гетеротрофам, питающимися готовыми органическими веществами. Растения относятся к автотрофам. Они используют в качестве источника энергии солнечный свет.

Другие различия между животными и растениями наличие клеточных стенок, способность к движению, к синтезу определенных веществ.

Для третьего царства животных существ Геккело предложил в 1866 г. собирательное название - протисты.

Большинство - одноклеточные.

По особенности строения клетки протисты делятся на 2 группы:

- Высшие протисты, клетки которых сходны с животными и растительными клетками - эукариоты (входят водоросли, грибы, простейшие)

- Низшие протисты - к ним относятся бактерии сине-зеленые водоросли - прокариоты.

По химическому составу все живое вещество практически сходны: важнейшим компонентом для всех организмов является ДНК ( дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота) и белок.

Основная физическая единица живого - клетка. Однако строение клеток между бактериями и сине-зелеными водорослями с одной стороны и животными и растениями с другой различны. Различия существенны и эти группы противопоставляют друг другу.

Прокариоты рассматриваются как реликтовые формы, сохранившиеся с давних времен, а появление эукариотов (развившихся из прокариотов) - гигантский скачок в эволюции организмов.

Морфологические прокариоты мало дифференцированы - либо сферической формы, либо прямые и изогнутые палочки.

Животные и растения зависят от кислорода то многие группы прокариотов способны жить в отсутствии воздуха, получая энергию за счет брожжения или анаэробного дыхания.

 

Классификация (таксономия) микроорганизмов.

Для обозначения микроорганизмов принята двойная (бинарная) номенклатура, которая включает названия рода и вида. Родовое название пишется с прописной буквы, видовое, даже происходящее от фамилии- со строчной. Пример: бациллу сибирской язвы называют Bacillus anthracis.

Основной  (низшей) таксономической единицей является вид. Виды объединяются в роды, роды- в семейства, семейства- в порядки, порядки в классы, классы- в отделы, отделы- в царства.

Вид- это совокупность популяций, имеющих общее происхождение и генотип, морфологические, физиологические и др.признаки, способные в определенных условиях вызывать одинаковые процессы.

Культура- м/организмы, полученные от животного, человека, растения или субстрата внешней среды и выращенные на питательной
среде. Чистые культуры состоят из особей одного вида, смешанные представляют собой скопления клеток разных видов

Штамм- это культура одного и того же вида, выделенная из разных сред и отличающаяся незначительными изменениями свойств. (чувствительность к лекарственным препаратам, неодинаковая биохимическая активность) . Например, кишечная палочка, выделенная  от человека, и такая же палочка, выделенная от свиней, могут быть разными штаммами.

Клон- культура микроорганизмов, выделенная из одной клетки. По Международному кодексу номенклатуры бактерий (1980) вид может быть разделен на подвиды и варианты. В названиях микробов, различающихся по некторым свойствам, вместо суффикса «тип» введен суффикс «вар» –фаговар.

 

Форма и размеры микробов

Микробы – это в основном одноклеточные бесхлорофилльные организмы прокариотического типа. По форме различают шаровидные, палочковидные и извитые микробы.  Между этими группами имеются многочисленные и часто незаметные переходы. Большая часть относится к группе бактерий.

Шаровидные микробы   - кокки в форме единичных шариков, или шариков, сцепленных между собой в цепочку - стрептокков, или шарики сцепленных по четыре - тетракокки; из 8 клеток расположенных в два яруса один над другим - сарцины; в виде гроздей винограда - стафилоккоки.

Палочковидные или цилиндрические формы принято делить на бактерии и бациллы. Все палочковидные формы, не образующие спор, называются бактериями, а образующие споры-бациллыами. Парные соединения клеток- диплобактерии или диплобациллы, соединенные в цепочки- стрептобактерии или стрептобациллы

Извитые или изогнутые, бактерии различаются по длине, толщине и степени изогнутости.

Палочки, изогнутые в виде запятой называют вибрионами. палочки с одним или несколькими завитками – спириллами, а с многочисленными завитками наподобие длинной спирали- спирохеты.

Размеры бактерий очень малы. В среднем диаметр тела б. бактерий 0,5 - 1 мкм. (микрон), а длина 1-5 мкм. Масса бактериальной клетки » 4 · 10-3 г.

Формы тела бактерий, как и размеры, может изменяться под влиянием условий развития.

 

Строение клетки бактерий

 

В качестве примера прокариотической клетки рассмотрим палочковидную бактерию.

Бактериальная клетка состоит из протопласта, окруженного наружной клеточной оболочкой, вакуолей, различных включений, имеющихся в составе протоплазмы.

Функцию ядра у бактерий выполняет циркулярно замкнутая и сильно скрученная компактно уложенная молекула ДНК. Такое неограниченное мембраной ядро называют нуклеотидом, а в генетике-геномом или хромосомой. Обычно в покоящихся бактериях содержится один нуклеотид. Разные формы бактерий имеет различный тип ядерного аппарата. У одних ядерное вещество находится в дисперсном состоянии обособлено от цитоплазмы. У других в протоплазме содержатся отдельные зерна хроматина, участвующие в образование некоторых структур клетки. Химическая природа ядерных веществ довольно сложная. Основное место занимает нуклеопротеидный комплекс и состоит из двух основных компонентов6 особого белка и тимонуклеиновой кислоты.

Клеточная оболочка плотная, бесцветная, обладает упругостью и эластичностью, служит защитой от неблагоприятных внешних воздействий, участвует в обмене веществ в клетке. Оболочка проницаема для воды и низкомолекулярных веществ, имеет слоистое строение. Толщина клеточной стенки 10-35 нм.

Химический состав оболочки неоднороден, резко отличен от оболочек высших растений. В ее состав входят специфические полимерные комплексы.  Главным компонентом клеточной стенки бактерии является особый только им присущий гетерополимер- пептидогликан. Этот полимер состоит из параллельно чередующихся полисахаридных цепей, которые скреплены пептидными связями. Количествееое содержание пептидогликана определяет характер окраски бактерий и других прокариот по Грамму. Те из них, котрые содержат в клеточной стенке большое количество (около90% пептидогликана) окрашиваются по Грамму в сине- фиолетовый цвет и их называют грамположительными, все другие, содержащие в оболочке 5-20% пептидогликана,- в розовый цвет и их называют грамотрицательными. Толщина слоя пептидогликана в клеточной стенке грамположительных бактерий в несколько раз больше, чем у грамотрицательных.

Из азотистых веществ в состав бактериальных  оболочек входят белковые вещества, аминокислоты. Соотношение веществ варьирует,  оболочка у некоторых  бактерий может подвергаться разбуханию и ослизнению . Слизистый слой, бывает очень тонким, но может достигать и значительной толщины, образуя капсулу. Размер капсулы может превышать величину бактериальной клетки. Капсулы легко обнаруживаются при окраске фуксином. Химический состав слизей различен у отдельных видов. В составе бактериальных слизей обнаружены полисахариды, азотсодержащие вещества. Интенсивность образования слизи  у капсул зависит от условий (питательная среда) окружающей среды.      

Ослезнению подвергаются мясо, колбасы, творог, рассолы квашеных овощей.

Цитоплазма –содержимое клетки, за исключением ядра. Цитоплазма имеет сложный изменяющийся химический состав. Основными химическими соединениями являются белки, нуклеиновые кислоты, липиды, Н2О. В цитоплазме содержатся рибосомы, мезосомы, включения (липиды, углеводы, сера и др.)

Поверхностный слой цитоплазмы более плотный, обладает полупроницаемостью - цитоплазмотическая мембрана. Выполняет важную роль в обмене веществ между клеткой и окружающей средой. Цитоплазмотическая мембрана состоит из трех слоев: одного липидного и двух, примыкающих к нему с обеих сторон, белковых. Содержит 60-65% белка и 35-40% липидов, локализовано ферменты. Цитоплазма пегомогенна. Помимо бесструктурной полужидкой массы колоидного состояния, она местами пронизана мембранами, в которой находятся различные по форме и величине частички - рибосомы. Рибосомы состоят на 60% из РНК и на 40% из белка. В одной бак. клетке содержится десятки тысяч рибосом. В рибосоме осуществляется

синтез белка. Кроме рибосом в цитоплазме имеются пластинчатые структуры – мезосомы, они образуются путем ответвления и впячивания в полость клетки цитоплазмотической мембраны. В мезосомах происходят процессы окисления органических веществ. Помимо этих образований в цитоплазме также содержатся разнообразные включения, являющиеся запасными питательными веществами: крупинки гликогена, капли жира, гранулы волютина.

Жгутики – это органы движения бактерий. Представляют собой вращающиеся полужесткие спирально изогнутые нити из белка флагеллина, который обладает способностью сокращаться. Длина жгутиков больше самих бактерий и колеблется от 5 до 10 мкм в длину. По типу расположения и числу жгутиков бактерии делят на четыре группы: монотрихи- имеют один жгутик на полюсе клетки; лофотрихи- с пучком жгутиков на одном из концов палочки; амфитрихи- с двумя пучками жгутиков на полюсах; перитрихи- с моножеством жгутиков вокруг бактерии. Жгутикование характерно, например, для кишечных бактерий, столбняка и ботулизма, холерного вибриона. Характер и скорость движения неодинаковы у отдельных видов бактерий. Подвижность бактерий может быть утрачена под влиянием неблагоприятных условий жизни, при старении клеток и при механических воздействий.

Спорообразование. Споры- это покоящиеся клетки, обладающие устойчивостью к  неблагоприятным факторам внешней среды, служащие для

сохранения вида.  Спорообразование происходит почти исключительно у палочковидных бактерий. В клетке бактерий образуется только одна спора.

Спорообразование обычно наступает при обеднении среды  питательными веществами или при накоплении в ней продуктов обмена. Перед спорообразованием в клетке накапливаются запасные питальные вещества (белки, липиды), образуются специфическое для спор вещество- дипиколиновая  кислота. Спора развивается из части протопласта (цитоплазмы с ядерным материалом) материнской вегетативной клетки. По мере развития и сзревания закладываются ее оболочки. Число и толщина котрых варьирует у разных бактерий. Поверхность наружной оболочки может быть гладкой либо с выростами. Процесс спорообразования происходит с течение нескольких часов.

Обычно споры имеют круглую или овальную форму., располагаются в центре клетки, ближе к концу и на самом конце клеткт. Диаметр спор может превыщать ширину клетки. После созревания споры материнская вегетативная клетка отмирает, оболочка ее разрушается и спора высвобождается. Плотная оболочка, малое содержание свободной воды, наличие дипиколиновой кислоты создают большую устойчивость спор к физико-химическим воздействиям. Так, ссоры некотрых бактерий выдерживают кипячение в течение нескольких часов, могут длительное время сохраняться (десятки и сотни лет) в сухом состоянии, более устойчивы по отношению к действию химических ядов, радиации и других факторов внешней среды.

В благоприятных условиях споры прорастают в вегетативные клетки. При этом они набухают вследствие поглощения воды, активизируются их ферменты, усиливаются биохимические процессы, приводящие к росту. Затем происходит растворение внешней оболочки и через образовавшееся отверстие молодая бактериальная клетка выходит наружу.

Спорообразующие бактерии аэробные и факультативно-анаэробные- бациллы, анаэробные- клостридии.

Помимо истинных бактерии имеются и другие более или менее отличающиеся от них. Это актиномицеты, нитчатые бактерии, спирохеты, риккетсии, микоплазмы, миксобактерии.

Актиномицеты

Актиномициты или лучистые грибы- это одноклеочные организмы, Имеющий вид небольших или длинных разветвленных тонких несептированных нитей.  На конце некотрых актиномицетов образуются одна или несколько экзоспор, являющиеся органами плодоношения. Оформленного ядра у них нет . Мицелевидные формы размножаются спорами, развивающимися на воздушных ветвях мицелия, что сближает их с грибами. Немицелевидные формы размножаются делением и перешнурованием клеток. Актиномицеты широко распространены в природе, встречаются они также на пищевых продуктах, вызывая их порчу. Многие актиномицеты вырабатывают

антибиотики. Есть среди них и патогенные формы (туберкулезные и дифтерийные бактерии)

Нитчатые бактерии

Эти бактерии представляют собой длинные нити диаметром от 1 до 7 мкм, состоящие из коротких цилиндрических клеток. Каждая нить окружена тонкой слизистой оболочкой. Размножаются эти бактерии с помощью особых клеток-гонидий, которые развиваются из концевых клеток нитей. Гонидии могут подвижными (со жгутиками).

Нитчатые бактерии обитают преимущественно в воде, встречаются и в почве.

 

 

Спирохеты

Спирохеты представляют собой гибкие спирально извитые клетки различной длины. Дифференцированное ядро и присущая истинным батериям оболочка отсутствует. Клетки покрыты тонокой цитоплазматической мембраной. Они подвижны, передвигаются волнообразным сокращением тела. Спор не образуют. Размножаются делением. Некотрые спирохеты вызывают заболевания человека (возвратный тиф, сифилис). Спирохеты занимают промежуточное положение между истинными спиральными бактериями и протистами.

Риккетсии

Риккетсии- это мелкие, длиной не более 1 мкм, неподвижные бактериоподобные  организмы, видимые в световой микроскоп. Они сочетают признаки истинных бактерий и вирусов и занимают промежуточное положение между ними. Форма риккетстй разнообразна: округлые, палочковидные;  одиночные, соединенные попарно или короткие цепочки. В клетках обнаруживаются зернистые включения хроматиновой природы. Риккетсии- внутриклеточные паразиты, в искусственных питальных средах они не растут. Заболевания человека и животных, вызываемые риккетсиями, называются риккетсиозами (спной тиф, ку-лихорадка).

Миксобактерии

Миксобактерии имеют палочковидную и вертенообразную форму. Они способны к образованию больших количеств слизи. Клеточная оболочка отсутствует. Размножаются делением или перешнурованием клетки. Некотрые в неблагоприятных условиях превращаются в покоющую стадию- в цисты. Микособактерии живут в почве, на различных растительных остатках.

Систематика бактерий

Распрознавание прокариот проводится по четырехтомному определителю Берги (1984-1990) , в котором царство Procsaryote подразделяются на четыре раздела:

1.     тонкостеночные – Gracilicutes 

2.     толстостеночные -Firmicutes

3.     лишенные стенок Tenericutes

4.     дефектные по клеточной стенке Mendosicutes

При этом в нем выделены три класса :

- Класс 1 актерии-хемоорганотрофы- используют химический источник энергии и органические вещества;

- Класс 2. Риккетсии- внутриклеточные бактерии-паразиты, котрые не растут на искусственных питательных средах;

- Класс 3 Микоплазмы, лишенные клеточной стенки.

Бактерии – хемоорганотрофы по морфологии и окраске по Грамму подразделяются на четыре морфо- и две хромогруппы. Среди морфогупп выделяют: 1. Палочки и кокки, образующие эндоспоры; 2. Спирохеты; 3. Спиралевидные и изогнутые бактерии (спириллы и вибрионы); 4. Актиномицеты и родственные им ветвистые бактерии. В составе хромогрупп выделяют грамположительные и грамотрицательные аэробные бактерии, размножающиеся при широком доступе кислорода, факультативно-анаэробные и анаэробные, развитие которых происходит в бескислородной среде.                                   

 

ВИРУСЫ и ФАГИ

Вирусы. Это особая группа организмов, значительно меньших размеров и более простого строения, чем бактерии. Они не имеют клеточной структуры ( нет ядра, цитоплазмы, оболочки), величина измеряется миллимикронами.

Вирусы различимы только с помощью электронного микроскопа. Вирусы были открыты в 1892 г. Д.И.Ивановским при изучении причин гибели табака от мозаичной болезни (светлая пятнистость листьев).

Являясь внутриклеточным паразитами, вирусы вызывают многие болезни человека( оспу, грипп, бешенство, корь, полиамелит и др), животных (ящур, чума крупно рогатого скота) и растений (мозаика).

Вирусы разнообразны по форме. Они бывают округлыми, палочковидными, спиралевидными, но чаще в виде многогранников. Размеры вирусов колеблются от десятых до сотых долей микрона, поэтому они хорошо проходят через мелкопористые бактериологические фильтры.

Вирусы неоднородны по химическому составу. Одни из них состоят только из белка и одной нуклеиновой кислоты- ДНК или РНК, другие содержат еще и липоиды, полисахариды. Нуклеиновая кислота (в виде спирали) находится внутри вируса. Снаружи она покрыта белковой оболочкой (капсидом), состоящей из отдельных белковых субъединиц. На искусственных питательных средах вирусы не растут, их выращивают обычно на культурах тканей.

Различные вирусы неодинаково устойчивы к внешним воздействиям. Так, многие инактивируются при 60оС в течение 30 мин, другие выдерживают температуру 90 оС до 10 мин. Вирусы легко переносят высушивание и низкие температуры, но малоустойчивы ко многим антисептикам, ультрафиолетовым лучам, радиактивным излучениям.

 

Бактериофаги.

Бактериофаги (греч. Phagos- пожирающий)- это вирусы, паразитирующие на бактериях.

В 1898 г. Выдающийся русский микробиолог Н.Ф.Гамалея обнаружил, что обычные видимые в микроскоп бактерии под влиянием каких либо факторов подвергаются распаду, или лизису. В 1917 г. Французскому ученому Де» Эррелю удалось установить, что этот лизис

вызывает особый «пожиратель бактерий «, получивший название бактериофага. Он установил подобное явление у бактерий дизентерии.

Обнаружены вирусы грибов – микрофаги, некоторых водорослей, так, цианофаги- паразиты сине-зеленых водорослей.

Большинство фагов имеет округлую или многранную головку и отросток. Головка имеет белковую оболочку; внутри головки заключена дезоксирибонуклеиновая или реже РНК. Размеры головки от 40 до 100 нм. Длина отростка 20-225 нм. Отросток представляет собой белковую трубочку-это полый стержень, окруженный сократительным чехлом из белка. Стержень оканчивается пластинкой с выростами и тонкими нитями. Фаги способны размножаться только в живых клетках.

Механизм проникновения фага в клетку:

Фаг пластинкой отростка прикасается к клетке, адсорбируется на ее поверхности и стержень как бы прокалывает оболочку бактерии. Разрыв оболочки обусловлен наличием в конце отростка фага специфических ферментов. Вслед за этим белковый чехол отростка сокращается и содержимое головки (нуклеиновая кислота) по каналу отростка переходит (впрыскивается) в бактериальную клетку. Белковые оболочки головки и отростка остаются на поверхности клетки. Фаговая ДНК вызывает перестройку обмена веществ пораженной клетки. Ситезируются уже не бактериальные ДНК и белок, а фаговые, что приводит к образованию в клетке новых фагов. Оболочка клетки лизируется и фаги освобождаются. Полный цикл развития фага продолжается 30-90 мин, в течение которых образуется 100-200 фаговых частиц.

Фаги, обуславливающие лизис микробов и формирование новых фаговых корпускул, называются вирулентными, Наряду с вирулентными в природе имеются умеренные фаги, взаимодействие которых с бактериями проявляется в двух формах: одни штаммы или клетки определенного вида бактерий они разрушают, в другие проникают но гибели не вызывают.

Фаги обнаруживаются во всех объектах окружающей среды, в которых обитают бактерии, актиномицеты, грибы. Найдены они и в воде, почве, молоке, в различных выделениях человека и животных.

ДРОЖЖИ

Общие сведения

Дрожжи являются одноклеточными неподвижными организ­мами, относящиеся к классу аскомицеты (Ascomycetes), широко распространенными в природе: они встречаются в почве, на плодах, особенно перезрелых, и листьях растений. Многие дрожжи применяют в хозяйстве и промышленности. С другой стороны, развитие дрожжей в пищевых продуктах мо­жет вызвать их порчу (вспучивание, изменение запаха и вкуса).

Техническое значение дрожжей основано на их способности превращать сахар в этиловый спирт и углекислый газ. В связи с этим издавна они получили общее название сахарных грибов, или сахаромицетов.

Дрожжи отличаются высоким содержанием белков и вита­минов (Bi, Вз, В6, никотиновой кислоты).

Форма и строение дрожжей. Форма клеток дрожжей чаще всего округлая, овально-яйцевидная или эллипсовидная. Встре­чаются дрожжи цилиндрические, лимонообразные и особой формы — серповидные, стреловидные, треугольные. Размеры дрожжевых клеток обычно не превышают 10— 15 мкм.



РИС

Схема строения дрожжевой клетки:

/ — оболочка; 2 — де­лящееся ядро; 3 —гликоген; 4 — цитоплазма; 5 — волютин;         6 — вакуоль;7 — митохондрии

Форма и размеры дрожжей могут заметно изменяться в за­висимости от условий среды, в которой они развиваются, а также от возраста клеток.

Клетки дрожжей состоят из протопласта и оболочки. В протопласте дрожжей различают цитоплазматическую мембрану, цитоплазму со структурными элементами (рибосо­мами, митохондриями) и дифференцированное ядро, окружен­ное мембраной. Имеются включения запасных питательных ве­ществ в виде капель жира, зерен гликогена и волютина (рис. 16). Некоторые дрожжи содержат пигменты. По мере роста дрожжевых клеток в них появляются вакуоли (водный раствор органических и минеральных веществ).

Оболочка клетки дрожжей состоит из -нескольких слоев. В состав ее входят полисахариды, липиды, азотсодержащие вещества. Оболочка клетки у некоторых дрожжей может в той или иной степени ослизняться, вследствие чего клетки склеиваются друг с другом и при развитии в жидких средах образуют оседающие на дно сосуда хлопья. Такие дрожжи называют  хлопьевидными в отличие от пылевидных, оболочки клеток которых не ослизняются; пылевидные дрожжи в жидкости находятся во взвешенном состоянии.

Размножение дрожжей

 Размножаются дрожжи почкова­нием, лишь немногие размножаются делением клетки.

Процесс почкования состоит в том, что на клетке появляется бугорок (иногда их несколько), который постепенно увеличивается в размерах. Этот бугорок называют почкой. По мере роста почки между ней и производящей клеткой образуется перетяжка. Канал, соединяющий вновь формирующуюся дочер­нюю клетку со старой, материнской, клеткой, постепенно сужа­ется и, наконец, молодая клетка отшнуровывается (отделяется). При благоприятных условиях этот процесс длится около двух часов.

Почкованию предшествует ряд последовательно протекаю­щих в клетке биохимических процессов; происходит деление ядра, и одно из образовавшихся ядер вместе с частью цито­плазмы и другими клеточными элементами переходит в моло­дую клетку.

После завершения процесса почкования молодая клетка часто не отделяется от материнской, а остается на ней. Поч­кующиеся клетки обычно образуют не одну, а несколько почек.

Вместе с этим может начаться почкование и молодых клеток. Так постепенно образуются скопления из многих соединенных между собой клеток, называемые сростками почкования. В некоторых случаях, особенно на поверхности жидких сред, где клетки дрожжей всегда бывают более вытянуты, такие сростки почкования напоминают мицелий плесневых грибов. Однако это ложный мицелий, представляющий собой тонкую пленку, которая легко разрушается при взбалтывании жидкости. Только отдельные дикие (обитающие в природных условиях) так называемые пленчатые дрожжи образуют на поверх­ности жидкостей более или менее толстые морщинистые пленки, прочно удерживающиеся при взбалтывании. Такие дрожжи не­редко вызывают порчу вина, пива, квашеных овощей.

При неблагоприятных условиях почкование дрожжей замедляется или совсем приостанавливается, а некоторые клетки пе­реходят в состояние покоя.

Покоящиеся клетки (артроспоры) отличаются толстой и плотной, большей частью двухслойной оболочкой, а также значительным содержанием запасных веществ, например жира и гликогена. Они более устойчивы, чем вегетативные клетки, к повышенной температуре и высушиванию.

Попадая в благоприятные условия развития, покоящиеся клетки почкуются, как и обычные вегетативные клетки.

Помимо почкования многие дрожжи размножаются также с помощью спор. Споры образуются внутри клетки и нахо­дятся в ней, как в сумке, что и позволяет относить их к сумчатым грибам (аскомицетам). Число спор в клетке разных видов дрожжей различно. Их может быть две, четыре, а иногда восемь и даже двенадцать.

Споры большинства дрожжей округлые или овальные, но у некоторых видов — игловидные, шляповидные, У многих на поверхности спор имеются различные образования типа выро­стов, бородавок, ободков и др.

Образование спор у дрожжей может происходить бесполым и половым путями. При бесполом образовании спор ядро клетки делится на столько частей, сколько образуется спор у данного вида дрожжей. Каждое новое ядро окружается цитоплазмой и покрывается оболочкой. Образованию спор половым путем предшествует слияние (копуляция) клеток. У некоторых дрож­жей копулируют прорастающие споры.

Споры дрожжей несколько более устойчивы к вредным воз­действиям, чем вегетативные дрожжевые клетки, но менее стойки по сравнению с бактериальными спорами. Попав в бла­гоприятные условия, споры прорастают в клетки.

У многих так называемых культурных дрожжей, т. е. культивируемых человеком для производственно-хозяйственных целей, способность к спорообразованию в значительной степени ослаблена, а иногда полностью утрачена (аспорогенные расы).

Такие дрожжи можно вернуть к спорообразованию только принудительным путем. Для этого молодую культуру дрожжей переводят из условий обильного питания в условия голодания. При благоприятной аэрации и температуре дрожжи образуют споры.

Дрожжи, способные к спорообразованию, нередко называют истинными дрожжами, а не образующие спор (аспоро-генные) — ложными дрожжами, или дрожжеподоб-ными организмами.

КЛАССИФИКАЦИЯ ДРОЖЖЕЙ

Классифицируют дрожжи по способам их вегетативного раз­множения (почкование, деление), способности к спорообразо­ванию, а также по физиологическим признакам.

Для пищевой промышленности наибольшее значение имеет род сахаромицес (Saccharomyces). В этот род входят как природные виды, так и виды, полученные путем селекции. Их называют расами дрожжей. Они различаются способностью сбраживать разные сахара, интенсивностью брожения, количеством образуемого спирта, оптимальной температурой брожения, образованием спор и др.

В пищевой промышленности наиболее широко используют два вида дрожжей рода Saccharomyces: Sacch. cerevisiae и Sacch. ellipsoi-deus, или Sacch. vini.

Сахаромицес церевизиа (Sacch. cerevisiae) имеют круглую или овальную форму клетки. Их используют для получения этилового спирта, а также в пивоварении, квасоварении, хлебопечении  Каждое производство использует свои специфические расы дрожжей, дающие возможность получить конечный продукт с за­данными свойствами.

Сахаромицес еллипсоидеус (Sacch. ellipsoideus, или Sacch. vini) имеет клетки эллиптической формы. Этот вид дрожжей использу­ется преимущественно в виноде­лии. Каждая марка вина произво­дится с использованием специфи­ческой расы дрожжей.

Все виды дрожжей рода саха­ромицес и некоторые природные дрожжи при спонтанном (само­произвольном) развитии на пище­вых продуктах, содержащих сахар, вызывают их порчу: брожение и прокисание.

Из других родов дрожжей наи­большее значение имеют два: торулопсис (Torulopsis) и кандида (Candida), которые широко распространены в природе, не спо­собны  вызвать спиртовое брожение, но вызывают порчу пищевых продуктов,  а дрожжи рода кандида имеют к тому же патогенные формы, вызывающие кандидозы слизистой оболочки полости рта, особенно у детей.

Дрожжи рода торулопсис имеют клетки округлой или овальной формы. Эти дрожжи вызывают лишь слабое спиртовое брожение. Отдельные виды этих дрожжей используют при производстве кумыса и кефира.

 Дрожжи рода Candida имеют имеют клетки вытянутой, цилиндрической формы, иногда образуют примитивный мицелий. Есть виды, которые могут окислять сахар и этиловый спирт в органические кислоты и являются вредителями при производстве вин, пива, пекарских дрожжей. Они вызывают также порчу квашеных овощей, безалко­гольных напитков и многих других пищевых продуктов.

Некоторые виды дрожжей рода кандида использовались в живот­новодстве и птицеводстве для производства кормового белка, бо­гатого витаминами.

                           

ФИЗИОЛОГИЯ МИКРООРАНИЗМОВ

Химический состав м/организмов

Химический состав м/организмов сходен с химическим составом тела животных и растений.

Важнейшими химическими элементами, преобладающими в составе клеток м/организмов, является углерод, кислород, Н2, N2, S, Р, К, Мg, Са и Fе.

Первые из 4 элементов составляют основу органических веществ - их называют органогенными элементами. Их соединения 90-97% на сухое вещество. Другие элементы называются зольными или минеральными, на их долю приходится 3-10%. Больше всего Р, который входит в состав многих веществ цитоплазмы. В крайне малых количествах в состав входят микроэлементы, но при этом выполняют важную роль в процессах жизнедеятельности (Cu, Mn, Zn, Mo). Соотношение элементов будет зависеть от вида и роста организмов.

Вода - H2O
        В составе микроорганизмов вода занимает 75-90% массы. В клетке протекает множество различных химических процессов. Одни сложные вещества разлагаются, другие образуются  из более простых соединений; вода же является ой необходимой средой, в которой только и могут осуществляться все эти химические реакции, с водой же удаляются из клетки продукты обмена.

Все вещества поступают в клетку только с водой и с ней же удаляются.

Часто вода в клетке находится в связанном (с белками, углеводами) состоянии и входит в состав клеточной структуры.

Вода в свободном состоянии служит дисперсной средой для коллоидов и растворителем р. органических и минеральных соединений, которые образуются в клетке в результате обмена веществ. Учувствует во многих хим.реакциях протекающих в клетке. Содержание свободной воды в клетках может изменяться в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста. Потеря свободной воды влечет за собой высыхание клетки, т.е. ее смерть.

Органические вещества

Сухое вещество тела микроорганизмов не превышает 15-25% и состоит преимущественно (до 95%) из органических соединений - белков, углеводов, жиров, лепидов и др. Минеральные соединения составляют не более 5-15% сухого вещества. Большая часть зольных элементов в клетке химически связана с органическими веществами и входит в их состав.

Содержание белковых веществ у бактерий достигает 40-80% сухого вещества, у дрожжей 60%, у грибов - 15-40%. В состав клеток микроорганизмов входят белки простые (протеины) и сложные (протеиды). Белки выполняют две основные функции: во-первых, входят в состав всех мембран клетки; во-вторых, играют роль ферментов-биохимических катлизаторов. Среди белков есть и такие, которые убивают жизнь,- токсины. Бактериальные токсины наиболее ядовитые. Благодаря тому, что микроорганизмы богаты белками возможно их пищевое и кормовое использование. Продуцентами могут быть дрожжи, бактерии и водоросли, особенно цианобактерии.

Также в состав клеток микроорганизмов входят в небелковые азотистые вещества - аминокислоты, пурины и др.

Углеводы в теле микроорганизмов используются для синтеза белков и жиров, построения клеточных оболочек и капсул, а также в качестве энергетического материала в дыхательных процессах. Углеводы как и белки могут откладываться в клетках в виде запасных питательных веществ. Содержание углеводов достигает 10-30% их сухой массы (бактерий); у грибов выше 40-60%.

В теле микроорганизмов углеводы встречаются в виде пентоз, гексоз, полисахаридов. полисахариды находятся и в связанном состоянии с белками и минералами.

Липиды (жиры, жироподобные вещества липоиды)

Обычное их содержание не превышает 3-10% сухой массы. В редких случаях у дрожжей и грибов может доходить до 40%. В клетках микроорганизмов жировые вещества находятся в свободном (как запасные вещества) и в связанном состоянии, в комплексе с белками и углеводами. Больше всего липидов сосредоточено в цитоплазматической мембране клеток.

В микроорганизмах имеются также кислоты и их соли, спирты, пигменты, витамины.

Пигменты (красящие вещества)

В значительной доли находятся в составе бактерий, дрожжей, грибов. Они содержатся главным образом в клеточном соке. Этим обуславливают окраску микроорганизмов. Пигменты могут выделяться из клеток в среду. У н. бактерий они выполняют роль хлорофила зеленых растений, учавствуя в ассимиляции углекислого газа. Они учавствуют в процессах дыхания, обладают антибиотической активностью.

Минеральные вещества

Минеральные вещества Встречаются такие минеральные вещества: сульфаты, карбонаты, фосфаты, хлориды. Они играют роль в регуляции внутриклеточного осмотического давления и коллоидного состояния цитоплазмы. Влияют на скорость и направление многих биохимических реакций, протекающих в клетке. Некоторые являются стимуляторами роста, активаторами ферментов.

     

Поступление питательных веществ в клетку

Поступление веществ в клетку и выделение продуктов обмена в окружающую среду происходит у микроорганизмов через всю поверхность тела путем осмоса или адсорбции. На интенсивность этих процессов оказывают различные факторы: разность концентрации питательных веществ в клетке и за ее пределами, а также проницаемость для них плоуменной оболочки.

Осмос представляет собой диффузию веществ в растворах через полупроницаемую мембрану. Возникает осмос под действием разности осмотических давлений в растворах по обе стороны полупроницаемой мембраны. Величина осмотического давления раствора зависит от молярной концентрации растворенных в нем веществ.

Оболочка клетки проницаема и задерживает лишь микромалекулы. Цитоплазматическая мембрана клетки обладает полупроницаемостью: она является осмотическим барьером, регулируя поступление в клетку и выход из нее растворенных веществ. Вещества не растворимые в воде, белки, не могут быть использованы клеткой. Они могут проникнуть в нее лишь после расщепления на более простые, что происходит с помощью  экзоферментов  микробов.

Таким образом, при осмотическом проникновении пит.веществ в клетку движущей силой служит разность осмотических давлений между средой и клеткой. Такой пассивный перенос веществ не требует затраты энергии и протекает до выравнивания концентрации с наружным раствором.

Поступившие в клетку вещества включаются в реакцию конструктивного и энергетического обмена, концентрация некоторых из них будет ниже, чем в среде, и поступление данных веществ возможно до полного исчерпания их из субстрата.

Если микроорганизм попадает в субстрат, осмотическое давление которого выше, чем в клетке, то цитоплазма отдает воду во внешнюю среду. Питательные вещества в клетку не поступают, содержимое клетки уменьшается в объеме и протопласт отстает от клеточной оболочки. Это явление называется плазмолизом  клетки.

При чрезмерном низком осмотическом давлении внешней среды может наступить плазмоптис клетки - явление обратное плазмолизу, когда вследствии высокой разности осмотических давлений цитоплазма переполняется водой и приводит к разрыву клеточной оболочки.

Второй путь поступления веществ в клетку - активный. Путем переноса их особыми, локализованными в цитоплазматической мембране веществами ферментной природы. Эти перегсчики, называемые пермеазами, обладают субстратной специфичностью.

Каждый транспортирует только определенное вещество. На внешней стороне цитоплазматической мембраны переносчик адсорбирует вещество вступает с ним во временную связь и отдает на внутренней стороне ее транспортируемое вещество в цитоплазму.

Углеродное и азотное  питание у  микроорганизмов

Микроорганизмы облигаются большим разнообразием типов питания.

Углеродное питание.

Углерод составляет 50% сухой массы клетки. По источнику углеродного питания микроорганизмы разделяются на две группы:

Автотрофные: способны в качестве единственного источника углерода для синтеза органических веществ тела использовать углекислоту и ее соли.

Одни виды автотрофных микроорганизмов ассимилируют СО2, используя солнечную энергию - фотосинтезирующие микроорганизмы.

Другие микроорганизмы используют энергию химических реакций окисления некоторых минеральных веществ - хемосинтезирующие.

К фотосинтезирующим микроорганизмам относятся водоросли, пигментные бактерии.

Бактериальный фотосинтез не сопровождается выделением О2, как у зеленых растений, а роль Н2О выполняет Н2S, при этом в клетках накапливается сера. Все фотосинтезирующие бактерии содержат пигменты - каротиноиды.

К хемосинтезирующим микроорганизмам относятся бактерии, окисляющие Н2 с образованием воды (водородные бактерии), аммиак в азотную кислоту (нитрифицирующие бактерии): сероводород до серной кислоты. Процесс хемосинтеза был открыт С.Н.виноградским.

Гетеротрофные микроорганизмы в качестве источника углерода используют органические соединения. К ним относятся бактерии, грибы, дрожжи.

Большинство гетеротрофных микроорганизмов живет за счет использования органических веществ различных субстратов животного и растительного происхождений - сапрофиты.

Некоторые гетеротрофы являются паразитами. Они способны развиваться в теле других организмов питаясь органическими веществами, входящих в состав этих оргаизмов.

Азотное питание

Источники азота - элемента необоходимого для синтеза белков, нуклеиновых кислот.

Паразиты развиваются за счет органических азотосодержащих веществ.

В зависимости от того, какими источниками азота микроорганизмы пользуются их подразделяют на 2 группы:

1. Аминоавтотрофные микроорганизмы, синтезирующие белковые вещества за счет минеральных источников азота или простейших форм органического азота типа мочевины.

2. Аминогетеротрофные микроорганизмы способные синтезировать ряд аминокислот из простейших источников азота, но неспособные самостоятельно синтезировать какую-нибудь одну аминокислоту.

Аминотрофные микроорганизмы при использовании азота из ряда минеральных источников предварительно переводят его в форму аммиака, а затем используют для синтеза аминокислот.

Усвоение микроорганизмами зольных элементов

Потребность микроорганизмов в зольных элементах невелика, но без зольных элементов рост микроорганизмов невозможен.

Сера- входит в состав белковых веществ и встречаются только в востановленном состоянии в виде групп - SH- и -S-S-.

Универсальным источником серы для большинства микроорганизмов служат сернокислые соли и используются при синтезе аминокислот.

Фосфор - входит в состав органических соединений протоплазмы. В отличие от среы, фосфор встречается в составе органических веществ живой клетки только в окислительном состоянии - P2O5 .

Соединения фосфора используются в живых клетках в качестве аккумуляторов энергии.

Наилучшим источником фосфора является соли ортофосфорной кислоты.

Магний - он входит в состав хлорофилла у зеленых и пурпурных серобактерий, является активатором ряда ферментов, образуя ферментными белками комплексные соединения. Наибольшее соединения магния наблюдаются в пленках грибов, выросших на нейтральных средах. Источниками магния являются сернокислые и другие соли магния.

Кальций - способствует более продуктивному течению процессов синтеза.

Источником кальция служат водорастворимые соли кальция.

 

Дыхание бактерии

Дыхание, или биологическое окисление, основано на окисли­тельно-восстановительных реакциях, идущих с образованием АТФ -универсального аккумулятора химической энергии. При дыхании происходят процессы окисления и восстановления: окисление - от­дача донорами (молекулами или атомами) водорода или электро­нов; восстановление - присоединение водорода или электронов к акцептору. Акцептором водорода или электронов может быть мо­лекулярный кислород - такое дыхание называется аэробным, а если акцептором служат нитрат, сульфат, фумарат, то дыхание называ­ется анаэробным (нитратным, сульфатным, фумаратным).

Если донорами и акцепторами водорода являются органиче­ские соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органиче­ских соединений (преимущественно углеводов) в анаэробных условиях. По конечному продукту расщепления углеводов разли­чают спиртовое, молочно-кислое, уксусно-кислое и другие виды брожения.

По отношению к молекулярному кислороду бактерии можно разделить на три основные группы: облигатные, т.е. обязательные аэробы, облигатные анаэробы и факультативные анаэробы. Обли­гатные аэробы могут расти только при наличии кислорода. Обли­гатные анаэробы (клостридии ботулизма, газовой гангрены, столб­няка, бактероиды) растут на среде без кислорода, который для них токсичен. Факультативные анаэробы могут расти как при на­личии кислорода, так и без него, поскольку они способны пере­ключаться с дыхания в присутствии молекулярного кислорода на брожение, если кислород отсутствует. Микроаэрофилы нуждают­ся в значительно меньшем количестве кислорода; высокая концен­трация кислорода, хотя и не убивает бактерии, но задерживает их рост. Некоторые микроорганизмы лучше растут при повышенном содержании СО2; иначе их обозначают термином «капнофильные микроорганизмы» (актиномицеты, лептоспиры, бруцеллы).

Для выращивания анаэробов используют анаэростаты - специ­альные емкости, в которых воздух заменяется газовыми смесями, не содержащими кислород.

 

РОСТ МИКРООРГАНИЗМОВ

 

Рост микробной клетки – это увеличение размера и массы одной особи между двумя делениями. В результате обменных процессов с окружающей  средой и внутриклеточного метаболизма происходит рост и развитие организма. Конечная цель развития м/организма - размножение. Под ростом подразумевается не только рост отдельной клетки, но и большее увеличение числа клеток в результате размножения, т.е. рост культуры микроорганизмов.

Культура представляет собой совокупность особей, которое занимает определенное жизненное пространство.

Культуру называют чистой, если она представлена м/организиами одного вида.

Культуру, в которой содержится более чем один вид микробов, называют смешанной или гетерогенной.

Рост микроорганизмов зависит в первую очередь от наличия воды: грибы способны расти на субстрате, содержащий 12% воды, бактериям требуется для роста более 20%.

По потребности в воде для роста м/организмы подразделяются на три группы: гидрофиты-влаголюбивые, мезофиты-средневлаголюбивые и ксерофиты-минимально потребляющие воду. Большинство бактерий являются гидрофитами.

 В питательной среде должны присутствовать все элементы, из которых строится клетка, и в такой форме, которую микроорганизм способен усваивать. В больших количествах необходимы макроэлементы: сера, фосфор, кислород и микроэлементы: цинк, никель, молибден и др.

Для роста м/организмов требуется и ряд дополнительных условий. микроорганизмы нуждаются:

     в определенных концентрациях некоторых хим. веществ, особенно водородных ионов;

     в совершенно определенном соотношении разных ионов;

    в поддержании определенного окислительно-восстановительного потенциала среды.

Некоторые требовательные м/организмы и мутанты нуждаются кроме того, в отдельных соединениях, которые сами синтезировать не могут. Такие необходимые дополнительные вещества называют факторами роста, их роль могут играть аминокислоты, витамины, пурины.

 

Условия роста

При удовлетворении всех потребностей в питательных веществах рост м/организмов зависит от определенных условий:

    рН среды ;

    температуры;

    осмотического давления.

Решающее значение для роста м/организмов имеет РН Среды. Большинство м/организмов лучше растет, когда концентрации Н ОН одинаковы (РН - 7,0). Грибы предпочитают более низкие значения РН.

К температуре различные микроорганизмы относятся по-разному. Большинство почвенных и водных бактерий лучше растут от 20 до 45 С-мезофилы. А спорообразующие бактерии лучше растут при температуре выше 45 С- термофильные. Термофилы обитают в горячих источниках, гейзерах Камчатки, самонагревающихся скоплениях различных органических материалов ( в зерне, сене, навозе, кампосте), в продуктах прошедших тепловую обработку.   Другую крайность представляют психрофильные бактерии, которые растут при температуре ниже 20 С (железобактерии).

Психрофилы встечаются в полярных зонах, в северных морях, снегах Арктики, на охлажденных продуктах. Термотолерантными называют бактерии, которые могут расти в области средних температур, но могут переносить и более высокие температуры (мин-37 С, мах-50 С).

К осмотическому давлению питательной Среды большинство бактерий проявляет большую устойчивость. Многие бактерии могут расти на средах с содержанием солей от 0,1 до 10%.

Всем аэробным бактериям в качестве акцептора необходим кислород. Для бактерий, которые растут в тонких слоях жидкости в присутствии воздуха кислорода достаточно. В жидких средах при большом объеме жидкости аэробные бактерии могут расти только на поверхности. Для этого требуется аэрация. М/организмы способны использовать тоьлко растворенный кислород.

Для роста строго анаэробных бактерий исключается доступ кислорода воздуха. В технике применяют: прокипяченные, лишенные воздуха питательные Среды, закрытые без пузырьков сосуды, применение различных веществ, поглощающих кислород и др.

 

 

Рост бактерий в статической культуре. Кривая роста.

При внесении бактерий в питательную среду они обычно растут до тех пор, пока содержание какого-нибудь из необходимых им компонентов Среды не достигнет минимума, после чего рост прекращается. Если на протяжении всего времени не прибавлять питательных веществ и не удалять продуктов обмена, то получится статическая бактериальная культура.

Кривая, которая описывает зависимость логарифмов числа клеток от времени – называется кривой роста. Кривая роста имеет S-образную форму. Различают несколько фаз роста, которые сменяют друг друга в определенной последовательности.

 

 

              

 

    

Начальная фаза (лаг фаза) охватывает промежуток времени между началом роста и достижением максимальной скорости роста. Продолжительность этой фазы зависит от предварительного культивирования, от возраста м/организма, и на сколько пригодна для роста данная питательная среда. В этот период в бактериальных клетках содержание РНК увеличивается в 8-12 раз. Это указывает на участие РНК и рибосом в синтезе необходимых ферментных белков.

Экспоненциальная (логарифмическая_ фаза роста характеризуется постоянной  максимальной скоростью деления клеток. Эта скорость деления во время этой фазы зависит от вида бактерий и от Среды. Одни представители делятся через каждые 15 мин. при температуре 37 С, другие 6-150 мин., даже 5-10 часов. Величина клеток и содержание белка в клетках остаются постоянными.

В вязи с тем что в этой фазе скорость деления клеток относительно постоянна, эта фаза наиболее удобна для определения скорости деления бактерий и для изучения влияния факторов внешней среды на данный вид.

Стационарная фаза наступает тогда, когда число клеток перестает увеличиваться. Скорость роста зависит от концентрации субстрата. Поэтому при уменьшении этой концентрации Наблюдается снижение скорости роста, Переход от экспоненциальной к стационарной фазе роста происходит постепенно. Скорость роста может снижаться и за счет большой плотности бактериальной популяции или из-за накопления токсичных продуктов обмена. В стационарной фазе могут происходить такие процессы, как использование запасных веществ, синтез ферментов, быстро гибнут очень чувствительные клетки. Количество биомассы, достигнутое в стационарной фазе, называют выходом или урожаем.

 

Рост в непрерывной культуре.

В статической  культуре условия все время изменяются: плотность популяции бактерий увеличивается, а коцентрация субстрата уменьшается.

Для многих физиологических исследований представляется дать возможность клеткам длительное время находится в фазе экспоненциального роста при постоянной концентрации субстрата и неизменных прочих условиях.

Добиться того положения можно, многократно перенося клетки на новую питательную среду. Той же цели можно добиться, если  в сосуд, содержащий популяцию растущих клеток, непрерывно вводить новый питательный раствор и одновременно удалять из него соответствующее количество бактериальной суспензии. Такой метод положен в основу непрерывного культивирования в хемостатах и турбидостатах.

Хемостат состоит из сосуда-культиватора, в который из особого резервуара поступает с постоянной скоростью питательный раствор. Благодаря аэрации и механическому перемешиванию в культиваторе создаются оптимальные условия для снабжения кислородом и быстрого распределения питательных веществ. По мере поступления в сосуд питательного раствора из сосуда вытекает бактериальная суспензия.

Работа турбидостата основывается на поддержании постоянной плотности бактериальной суспензии или постоянной мутности. Фотоэлемент, который измеряет мутность, регулирует через систему реле поступление питательного раствора. В сосуде для культивирования все питательные вещества содержатся в избытке и скорость роста бактерий приближается к максимальной.

Основные различия между статической и непрерывной культурой.

1. Статическую культуру можно рассматривать как закрытую систему, которая в своем развитии проходит все фазы роста. Каждый из этих периодов характеризуется определенными условиями. Автоматическое регулирование в статической культуре невозможно.

2. Непрерывная культура представляет собой открытую систему, которая стремится к равновесию.

Задание : Факторы внешней среды:

1.Физические факторы: влажность, , концентрация растворенных веществ., температура, лучистая энергия.

2. Химические факторы: реакция среды РН, ядовитые вещества

3. Биологические факторы: антибиотики, фитонциды

 

ПИТАТЕЛЬНЫЕ СРЕДЫ

Выращивание (культивирование) микроорганизмов используется в лабораторных и производственных условиях для выделения, накопления и сохранения микроорганизмов.

Для культивирования микроорганизмов используют специальные питательные среды, которые должны содержать необходимые питательные вещества и являться оптимальной средой обитания микроорганизмов.

В состав питательной среды обязательно входят 5 основных элементов ( С, Н2, О2, N) и зольные элементы, микроэлементы, количество воды не менее 60%.

Универсальных сред, пригодных в равной степени для всех микроорганизмов, не существует. В закономерности от особенностей обменных процессов (фотосинтез, способы получения энергии) отдельным видам микроорганизмам требуются различные составы питательных веществ.

По составу питательные среды подразделяются на 2 группы:

- естественные

- искусственные.

Естественными называются среды, которые состоят из натуральных пищевых продуктов (молоко, яйца, мясо). Большинство из них применяют в виде экстратов или настоев. Эти среды имеют сложный, непостоянный химический состав и мало пригодны для изучения физиологии обмена веществ микроорганизмов. Они используются главным образом для поддержания культур микроорганизмов, накопления их биомассы и диагностических целей.

Примерами служат мясопептонный бульон, почвенная вытяжка, картофельная среда.

Искусственные среды (синтетические среды) - это среды, в состав которых входят только определенные, химически чистые соединения, взятые в точно указанных концентрациях. Синтетические среды удобны для использования обмена веществ микроорганизмов. Зная точный состав и количество входящих в среду компонентов, можно изучить их потребление и превращение.

Для разработки синтетических сред необходимо знать потребности микроорганизмов в источниках питания и основные особенности их обмена веществ.

В большинстве случаев синтетические среды готовят на водопроводной воде и микроэлементы не добавляют.

К ним можно отнести: гидролизат козеина, дрожжевой автолизат, кукурузный экстракт.

По назначению различают элективные и дифференциально-диагностические среды.

Элективные среды обеспечивают развитие одного вида или группы микроорганизмов и непригодны для развития других. Элективные среды применяют главным образом для выделения микроорганизмов из мест их естественного местообитания или для получения накопительных культур.

Дифференциально-диагностические (индикаторные) среды позволяют достаточно быстро отличить одни виды микроорганизмов  от других. Состав этих сред подбирают с таким расчетом, чтобы позволить четко выявить наиболее характерные свойства определенного вида.

Индикаторные среды применяются в клинической бактериологии, при генетических исследованиях.

По физическому состоянию  различают:  жидкие, плотные, сыпучие среды.

Жидкие среды широко применяют для выяснения физиолого-биохимических особенностей микроорганизмов, для накопления биомассы.

Плотные среды используют для выделения чистых культур (получение изолированных колоний) для хранения культур, количественного учета микроорганизмов.

Сыпучие среды применяют в промышленной микробиологии. К ним относятся: отруби, кварцевый песок, разваренное пшено.

Для уплотнения сред применяют агар-агар, желатину и кремнекислый гель.

Агар-агар - сложный полисахарид, получаемый из морских водорослей. Агар-агар удобен тем, что большинство микроорганизмов не использует его в качестве питательного субстрата. в воде агар-агар образует гели которые плавятся при 1000С, а затвердевает при 400С. Поэтому на агаризованных средах можно культивировать микроорганизмы при любой подходящей для их роста температуре. 

 

      Выделение чистых культур м/организмов. Количественный учет м/организмов

   Чистой культурой м/организмов называют культуру одного вида, выращенного как потомство одной клетки. Методы выделения чистых культур м/организмов основаны на изоляции одной микробной клетки от массы  м/организмов и последующем выращивании потомства этой клетки на питательных средах изолированно от других видов.

Наиболее распространенным способом выделения чистых культур является посев смеси микробов на плотные питательные смеси с целью получения отдельных колоний культур, которые считают результатом развития одной клетки. Для посева чаще используют агаризованные Среды в чашках Петри. Основной задачей метода является разведении концентрации м/организмов в исследуемом материале  с таким расчетом , чтобы при посеве его на питательную среду выросли изолированные колонии. Существуют два основных метода разведения исследуемого материала: 1) на поверхности плотной питательной Среды; 2) предварительное разведение материала в физиологическом растворе.

Метод на поверхности плотной Среды используется для выделения чистых культур аэробныхи факультативно анаэробных м/организмов. С этой целью для посева берут ряд чашек Петри с плотной средой. В первую чашку наносят мсследуемый материал и распределяют его по поверности шпателем. Затем производят посев последовательно на поверхность Среды в остальных чашках. Количество материала,внесенного в среду, при этом последовательно убывает. Метод предварительного разведения используется для выделения чистых культур м/организмов как аэробных, так и анаэробных. Готовят разведение материалав 10-100 раз и более и производят посев разведений, пользуясь поверхностным или глубинным методом.

Выделение чистых культур строгих анаэробов требует условий выращивания без доступа кислорода.

1. Морфологические свойства – форма клеток, размеры, подвижность, способность к образованию спор, возраст культуры и др.

2. Культурные свойства м/организмов устанавливают по особенностям роста на питательных средах. на жидкихпитательных средах отмечают: характер распределения культуры в жидкости (равномерное, придонное или поверхностное), мутность сред, вид плеки, осадка. На плотных питательных средах исследуют характер колоний. Различают поверхностные и глубинные колонии. Отмечают форму, профиль, блеск и цвет.         

3. Физиологические свойства м/организмов обусловлены ферментативной активностью: отношение к кислороду (тип дыхания), тип роста ( рост у дна пробирки, рост шляпкой вверх, рост равномерный по всей длине укола).

4. Протеалитические свойства (способность расщеплять белковые вещества) определяют по выделению из питательной Среды газо-продуктов расщепления белка.

Чтобы определить общее количество м/организмов в различных субстратах, выявить и учесть численность представителей отдельных групп и видов м/организмов применяют методы:

  1) прямой подсчет клеток под микроскопом (в счетных камерах, на фиксированных окрашенных мазках)

2) выделение и учет высевом на плотные среды

3) выделение и учет высевом на жидкие Среды (метод пред-ых разведений)

Методы прямого подсчета клеток под микроскопом дают возможность учесть численность м/организмов в субстрате полностью. Но при этом определяются всеживые и мертвые клетки. И подсчет может быть не точным. Этот метод не дает представления какие процессы происходят в субстрате. Методами высева на плотные и жидкие Среды учитываются только жизнеспособные клетки м/организмов.

ГЕНЕТИКА МИКРООРГАНИЗМОВ

 

Строение и репликация генома бактерий

Наследственную функцию бактерий выполняет ДНК, молекула которой состоит из двух полинуклеотидных цепочек (нитей).

Фридрих Мишер, швецарский  врач, еще в конце 1868 г. Выделил из лейкоцитов, содержащихся в гное, ранее неизвестное вещество, которое назвал нуклеином. В 1889 г. Немецкий ученый химик Рихард Альтман назвал нуклеиновой кислотой. Лишь в 1953 г. была построена модель ДНК.


 Схематическое изображение двойной спирали ДНК:

а —по Уотсону и Крику; б —А-форма ДНК; в—В-форма ДНК; с — остаток дезоксирибозы; р — остаток фосфорной кислоты

 

 Каж­дый нуклеотид состоит из азотистого основания, сахара дезоксири бозы и фосфатной группы Азотистые основания пред­ставлены пуринами (аденин - А, гуанин - Г) и пиримидинами (тимин - Т, цитозин - Ц). Каждый нуклеотид обладает полярностью: у него имеются дезоксирибозный З'-конец и фосфатный 5'-конец.' Нуклеотиды образуют полинуклеотидную цепочку. Со­единение между двумя цепочками обеспечивается водородными связями азотистых оснований: аденина с тимином, гуанина с цитозином . Размеры двунитевой ДНК определяются числом пар нуклеотидов.

Наследственная информация у бактерий хранится в форме последовательности нуклеотидов ДНК, которые задают после­довательность аминокислотных остатков при синтезе молекул белка. Каждому белку соответствует свой ген, т. е. дискретный участок на ДНК, отличающийся числом и специфичностью по­следовательности нуклеотидов.

Совокупность всех генов назы­вается геномом (генотипом), а внешнее проявление генома - фено­типом.

Бактериальная хромосома представлена одной двунитевой мо­лекулой ДНК кольцевой формы, имеющей гаплоидный набор ге­нов (всего до 5000 генов), которые кодируют жизненно важные для клетки функции.

Плазмиды бактерий - это двунитевые молекулы ДНК, распо­ложенные изолированно от бактериального генома. С плазми-дами связаны функции, не являющиеся основными для жизне­деятельности бактериальной клетки, но дающие бактерии пре­имущества при попадании в неблагоприятные условия сущест­вования. Фенотипическими признаками, сообщаемыми плазми-дами бактериальной клетке, являются, например, устойчивость к антибиотикам, расщепление сложных органических веществ, выработка факторов бактериоциногенности, продукция факторов патогенности.

 

Формы изменчивости микроорганизмов.

Изменения и их форма в мире микроорганизмов могут быть разными и зависят от многих причин. Фенотипические изменения связаны с условиями среды, не наследуются, хотя и могут сохраняться длительное вре­мя. Генотипические изменения наследуются.

Фенотипические изменения.

К фенотипическим изменениям относят адаптацию и модификацию.

Адаптация — приспособление микроорганизмов к условиям среды.

В настоящее время это явление объясняется не изменением в микробной клетке, а развитием ранее измененных особей и ги­белью неприспособленных, что установлено при действии на мик­робы антибиотиков. Приспособленные клетки размножаются, а остальные — погибают, т. е. происходит естественный отбор.

Модификацияизменение микроорганизмов под влиянием ус­ловий среды. Изменяются только фенотипические (внешние) признаки (форма, размеры, цвет колоний). Так, добав­ление в среду хлорида кальция приводит к укорочению клеток ки­шечной палочки. Если из среды удалить это вещество, они вновь принимают исходную форму. Добавление в среду глицерина и аланина вызывает полиморфизм у холерного вибриона. Модифи­кация наблюдается в нормальных условиях жизни, это реакция на внешние раздражения, не связанные с нарушением физиологи­ческих процессов в организме. При длительных и сильных воздей­ствиях на микробную клетку могут быть и более глубокие измене­ния: палочки принимают округлую форму и даже проходят через пористые фильтры.

Генотипические изменения.

Мутации- наследуемые изменения в последовательности отдельных нуклеотидов, которые приводят к появлению микробов с новыми свойствами. Такой ген кодирует белок, отличаю­щийся от исходного по свойствам и функциям.

Термин мутация введен голландским ученым Хуго де Фризом, 1901) свойственны всем живым существам, в том числе и микроорганизмам.

Спонтанные мутации (без направленного воздействия) очень редки: примерно одна на 100 тыс. Они характеризуются измене­нием какого-нибудь одного признака и обычно стабильны.

Индуцированные, или мутагенные, мутации возникают вслед­ствие воздействия факторов среды. Они встречаются сравнительно часто. Мутагены подразделяются на физические, химические и биологические. К физическим относят различного рода излуче­ния: ультрафиолетовые, рентгеновские, радиоактивные. Они вы­зывают повреждение генетического аппарата, изменение призна­ков, свойств микробов; к химическим — сильнодействующие ве­щества: отравляющие (иприт), лекарственные (йод, пероксид во­дорода), кислоты (азотистая) и др. Примером биологических мутагенов может быть ДНК. Так, при введении в клетки эмбриона дрозофилы некоторых видов онковирусов взрослые особи приоб­ретают новые признаки: на голове возникают необычные выросты или углубления, иногда исчезают глаза. Отрезок вирусной ДНК, который встраивается в одну из хромосом дрозофилы, вызывает дифференцирование клеток, и, как результат, появляются морфо­логические и другие изменения.

Существуют крупные и мелкие (точечные) мутации. К крупным относятся мутации, которые характеризуются выпадением большого участка гена. Точечная мутация происходит внутри гена и представляет собой замену, вставку (дупликация), выпадение (делеция) одной пары азотистых оснований ДНК. В результате точечных мутаций происходит наследственное изменение каких-либо свойств микробной клетки, которая, как правило, остается жизнеспособной.

Доказано мутагенное действие вирусов и живых вирусных вак­цин на млекопитающих. Они повреждают наследственный аппа­рат не только соматических, но и половых клеток. Мутагенное действие вирусов особенно активно проявляется во время эпизоо­тии и эпидемий. Численность мутаций возрастает также при нару­шении метаболизма и старении организма.

Для получения полезных признаков у микроорганизмов при­меняют самые различные мутагены. Таким методом выделены вы­сокоактивные штаммы продуцентов антибиотиков и других ве­ществ. После облучения продуцента пенициллина получены штаммы, которые по своей активности в десятки—сотни раз пре­восходят исходные. В сочетании с другими факторами и при со­здании оптимальных условий роста биосинтез повышался: пени­циллина в 10 тыс. раз, витамина В2 (рибофлавина) в 20 тыс., вита­мина Bi2 (цианкобаламина) в 50 тыс. раз .

Необходимо отметить, что после мутагенеза появляются не только полезные, но и вредные признаки. Микробов с полезными признаками бывает очень мало, а самое главное — для их опреде­ления приходится проделывать огромную работу: не только выде­лять тысячи штаммов в чистую культуру, но и изучать их свойства. Так, длительным и кропотливым трудом удалось во много раз по­высить выход незаменимых аминокислот (лизин, глутаминовая). Действие радиоактивных веществ вызывает глубокие изменения в генетическом аппарате, но среди микробов появляются расы, ус­тойчивые к ним.

Комбинативные изменения.

 Комбинативные из­менения появляются в результате трансформации, трансдукции и конъюгации.

Трансформация — это процесс переноса участка генетического материала ДНК, содержащего одну пару нуклеотидов, от клетки-донора к клетке-реципиенту. Впервые это явление установлено в 1928 г. английским микробиологом Ф Гриффитом.

Процесс трансформации может самопроизвольно происходить в природе у некоторых видов бактерий, чаще грамположительных, когда ДНК из погибших клеток захватывается реципиентными клетками.

Опыт Ф.Гриффита

Мышам одновременно были введены две культуры пневмококков: непатоген­ная, лишенная капсулы (R-штамм) и патогенная культура с капсу­лой (S-штамм), убитая нагреванием. Все мыши погибли от пнев­монии (воспаления легких). Из органов павших животных была выделена капсульная, вирулентная культура пневмококка. Почему так произошло, ни автор, ни другие исследователи в то время не могли объяснить. Культура убитого нагреванием капсульного пневмококка вызывала в организме трансформацию живых бескапсульных мик­робов, в результате чего у них появилась способность к образова­нию капсулы, что и обусловило патогенность.

В процессе трансформации различают пять стадий: первая -адсорбция трансформирующей ДНК на поверхности микробной клетки; вторая — проникновение ДНК в клетку-реципиент; тре­тья — спаривание внедрившейся ДНК с хромосомными структу­рами клетки; четвертая — включение участка ДНК клетки-донора в хромосомные структуры клетки-реципиента; пятая — дальней­шее изменение нуклеотида в ходе последующих делений.

Трансформироваться могут устойчивость и чувствительность к антибиотикам, способность к синтезу ферментов и т. д. Трансфор­мация признаков ДНК происходит только при определенных ус­ловиях и физиологических состояниях клетки, получивших назва­ние «состояние готовности». Оптимальная температура трансфор­мации 29—32 °С. Высокая температура (80—100 °С), химические вещества (азотистая кислота), ультрафиолетовые излучения, фер­мент ДНК-аза приостанавливают трансформирующее действие ДНК. Таким образом, нуклеиновые кислоты — носители наслед­ственной информации.

В настоящее время трансформация является основным методи­ческим приемом в генной инженерии, используемым при конст­руировании рекомбинантных штаммов с заданным геномом.

Конъюгация - передача генетического материала от клетки-донора в клетку-реципиент при непосредственном половом кон­такте клеток. Необходимым условием конъюгации является нали­чие в клетке-доноре трансмиссивной F-плазмиды (фертильности, плодовитости). Эта плазмида способна передаваться от донора к реципиенту, она кодирует синтез половых пилей, образующих конъюгационный мостик между клеткой-донором и клеткой-реци­пиентом, по которому происходит передача плазмидной и клеточ­ной ДНК. В результате такого переноса клетка-реципиент получает донорские свойства.

Трансдукция - передача бактериальной ДНК посредством бак­териофага. В процессе репликации фага внутри бактерий фраг-мент бактериальной ДНК проникает в фаговую частицу и перено­сится в бактерию-реципиент во время фаговой инфекции.

Существуют два типа трансдукции: общая и специфическая. Общая трансдукция (неспецифическая} - перенос бактериофагом фрагмента любой части бактериальной хромосомы. Специфиче­ская трансдукция - перенос в клетку-реципиент строго определен­ного участка бактериальной ДНК донора.

 

СПИРТОВОЕ БРОЖЕНИЕ

Спиртовым   брожением   называется   процесс   расщепления   сахара микроорганизмами с образованием этилового спирта и углекислого газа.

С6Н12О6 - 2СН3СН2ОН+2СО2

Возбудителями спиртового брожения являются дрожи сахаромицеты, некоторые мицеальные грибы. Даже растения и грибы в анаэробных условиях способны накапливать этиловый спирт.

 Процесс проходит 2 стадии

1. Окислительная - превращение глюкозы до пировиноградной кислоты (пируват) и отнятие двух  пар водорода.

С6Н12О6--2СН3СОСООН= “НАД (кофермент) Н2О

 2. Далее  пируват декарбоксилируется  пируваткарбоксилазой при участии тиаминпирофрсфата до ацетальдегида, а затем ацетальдегид  восстанавливается алкогольдегидрогеназой в этанол при участии кофермента НАД.

Во второй стадии- восстановительный кофермент НАД Н2 передает водород конечному акцептору

Характерной физиологической особенностью большинства дрожжей является их способность переключать обмен с одного типа (анаэробный) на другой (аэробный). Недостаточность выделяющейся при брожении энергии дрожжи возмещают переработкой большого количества сахара, чем при дыхании. Наряду с главными продуктами брожения в небольшом количестве образуются и побочные продукты: глицерин, уксусный альдегид, сивушные масла. В состав сивушных масел входят пропанол, 2-бутанол, амиловый , изоамиловый спирты.

Высшие спирты участвуют  в формировании аромата и вкуса напитков спиртового брожения.

Дрожжи способны сбраживать помимо глюкозы и пировиноградную кислоту. В качестве промежуточного продукта при сбраживании пирувата образуется ацетальдегид; если к дрожжам сбраживающим глюкозу добавить бисульфит, то появится новый продукт-глицерин, при снизится выход этилового спирта.

 

УСЛОВИЯ СПИРТОВОГО БРОЖЕНИЯ

На развитие дрожжей и ход брожения влияют: химический состав сбраживаемой среды, концентрация и кислотность среды, содержание спирта, температура, наличие посторонних микроорганизмов.

Большинство дрожжей способны сбраживать моносахариды, а из дисахаридов-сахарозу и мальтозу. Дрожжи не могут сбраживать крахмал, так как они не образуют амилолитических ферментов.

Наиболее благоприятная концентрация сахара- от 10 до 15%. При повышении концентрации сахара энергия брожения снижается, а при 30-35% сахара брожение прекращается. Хорошим источником азота для большинства дрожжей являются аммонийные соли, но дрожжи могут использовать также аминокислоты и пептиды.

Нормальное брожение протекает в кислой среде, при рН 4-5. В щелочной среде в результате брожения образуется глицерин. Наибольшая скорость брожения при температуре 30 С. При температуре 45-50оС брожение прекращается в результате гибели клеток дрожжей. Снижение температуры замедляет ход брожения, но полностью оно не прекращается даже при температуре ниже ОоС.

С энергетической точки зрения брожение — процесс малоэф­фективный. Так, если при окислении 1 граммолекулы глюкозы до СО2 и Н2О в процессе аэробного дыхания синтезируется 36 моль АТФ, то в процессе спиртового брожения — всего 2 моль АТФ.

Дрожжи могут переключать один тип обмена веществ (аэроб­ный) на другой (анаэробный).

По характеру брожения дрожжи подразделяют на верховые и низовые. Брожение, вызываемое верховыми дрожжими, протекает быстро и бурно при температуре 20-28 С. На поверхности бродящей жидкости образуется много пены и под действием выделяющегося углекислого газа дрожжи выносятся в верхние слои субстрата. По окончании брожения дрожжи оседают на дно бродильных сосудов рыхлым слоем.

Брожение, которое вызывают низовые дрожжи протекает медленно при темературе 5-10 С. Газ выделяется постепенно, пены образуется меньше, дрожжи быстро оседают на дно бродильных емкостей.

Этиловый спирт, образующийся в процессе брожения, неблагоприятно влияет на дрожжи. Накопление дрожжами спирта в концентрации 2-5% действует на них угнетающе. В большинстве случаев брожение прекращается при накоплении дрожжами 12-14% (объемных) спирта.

В настоящее время выделены расы дрожжей, устойчивые к накоплению даже 20% спирта.

ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ СПИРТОВОГО БРОЖЕНИЯ

Процесс спиртового брожения лежит в основе получения этилового спирта, кормовых и пищевых дрожжей, пивоварения, хлебопечения, производства глицерина. Совместно с молочнокислым брожением используется при получении кисломолочных продуктов (кумуса, кефира).

Для получения этилового спирта используют разное сырье трех основных групп: содержащее сахар (сахарная свекла, кормовая патока, или меласса, сахарный тростник, фруктовые соки); со­держащее крахмал (картофель, земляная груша, кукуруза, ячмень, овес, рожь, пшеница); содержащее целлюлозу (древесина и суль­фитные щелока). Сырье используют в зависимости от хозяйственных возможностей; оно должно быть дешевым и в достаточном количестве.

Крахмалсодержащее сырье разваривают и подвергают осахариванию. Источником амилолитических ферментов служит солодовое  молоко, изготовляемое из проросших зерен ячменя, или ферментный препарат из грибов рода Aspergillus.

 Вносят и дополни:льные источники питания. Это делается всегда по рецепту сред для каждого данного производства.

В полученное сусло вносят дрожжи, чаще всего применяют расы Saccharomyces cerevisiae, которые быстро размножаются, с устойчивы, обладают высокой энергией брожения. Есть и промышленно важные расы дрожжей.

По окончании брожения дрожжи отделяют от сброженных  заторов, а спирт отгоняют на специальных перегонных аппарата. Получается спирт-сырец и остается отход производства — барда которую используют для получения кормовых дрожжей. Отработанные дрожжи тоже используются в виде жидких и сухих кормо­вых дрожжей.

Спирт-сырец используют как для технических целей, так и для дальнейшей очистки — ректификации.

 

Молочнокислое брожение

Молочнокислое брожение- это анаэробное превращение сахара молочнокислыми бактериями с образованием молочной кислоты.

По характеру брожения различают 2 группы молочнокислых бактерий: гомоферментативные и гетероферментативные.

Гомоферментативные бактерии образуют в основном (не менее 85-90%) молочную кислоту и очень мало побочных продуктов. Гетероферментативные бактерии менее активные кислотообразователи. Наряду с молочной кислотой они образуют значительное количество других веществ-этиловый спирт, углекислый газ, ацетон, кислоты.

Химизм молочнокислого брожения.

Процесс  превращения  глюкозы  до   пировиноградной  кислоты  у гомоферментатавных молочнокислых бактерий протекает как и у дрожей при спиртовом   брожении.   Далее   ввиду   отсутствия   у   этих   бактерий пируватдекарбоксилазы, пировиноградная кислота не подвергается расщеплению, она является в этом брожении конечным акцептором водорода. Пировиноградная кислота вступает во взаимодействие с восстановленным НАД Н2 (кофермент) - образуется молочная кислота.                                -..

СНзСОСООН + НАД Н2- СНзСНОНСООН

Превращение глюкозы гетероферментативными бактериями происходит по-иному. Отсутствие у них фермента адьдолазы меняет начальный путь превращения глюкозы. После фосфорилирования гексоза окисляется (отщепляется водород) и декарбоксилируется (отщепляется углекислый газ), превращаясь в пентозофосфат. Пентозофосфат при участии фермента фосфокеталазы расщепляется на фосфоглицериновый альдегид. Фосфорглицериновый альдегид превращается в пировиноградную кислоту, которая восстанавливается в молочную.

Гексоза ----пентофасфат----фосфоглицериновый альдегид----пируват---молочная кислота

Возбудители молочнокислого брожения- молочнокислые бактерии имеют круглую палочковидную форму. Все молочнокислые бактерии неподвижны, не образую спор, грамположительные факультативные анаэробы. Они требовательны к составу питательный среды и хорошо развиваются только при наличии полного набора аминокислот и витаминов В1, В6, РР. По отношению к температуре молочнокислые бактерии разделяются на мезофильные- с мах температурой роста-25-35 С и термофильные с оптимум около 4-45 С. Некоторые бактерии способны к слезообразованию.   В питательной среде они снижают рН  ниже 5 и тем самым подавляют рост других анаэробных бактерий, которые не могут развиваться в кислой среде.                                            

В природных условиях молочнокислые бактерии встречаются                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      на различных растениях, в почве, на пищевых продуктах, в кишечнике человека.

Наиболее важными в техническом отношении из молочнокислых бактерий являются:

1. Молочнокислый стрептококк ( Streptococcus lactis) , относится к гомоферментативным молочнокислым бактериям, находится почти во всех молочных продуктах, является основной частью микрофлоры простокваш. Является факультативным анаэробом, имеет овальную форму, окрашивается по Грамму положительно, спор и капсул не образует.   соединен попарно, развивается при температуре 30-35 С, свертывается через 10-12 часов. Широко используют для изготовления кисломолочных продуктов, масла, сыра. Молочнокислый стрептококк обладает антимикробным действием, образует антибиотики-низины, устойчивые к высокой температуре и задерживающие рост многих грамположительных микробов, в том числе и патогенных.

2. Сливочный стрептококк  (Str. Cremoris) представляет собой  длинные цепочки сферических клеток. Оптимальная температура роста 25 С, минимальная- до 10 С. Используется в заквасках вместе с молочнокислым стрептококком для изготовления сметаны, масла, сыров.

3. Ацидофильная палочка (Lactobact. Acidophilus)  термофильная бактерия. Температурный оптимум роста 37-40 С. В молоке способна накапливать до 2,2% кислоты. Вырабатывает антибиотические свойства, активна к возбудителям кишечных заболеваний. Является постоянным обитателем желудочно-кишечного тракта животных. Впервые она была обнаружена в фекалиях ребенка.э

4. К гетероферментативным молочнокислым бактериям относятся молочнокислые стрептококки.

Ароматобразующие ( Str. Citrovorus, Str. Diacetilactis) придают кисло- молочным продуктам приятные вкус и аромат. Для приготовления кисло-молочных продуктов ароматобразующие стрептоккоки соединяют с гомоферментативными-молочнокислым и сливочным.

Использование молочнокислого брожения

Молочнокислое брожение находится в основе силосования кормов, для этого применяют листья сахарной свеклы, кукурузу, люцерну. Растительную массу прессуют, добавляют к ней мелассу, чтобы повысить соотношение С/N и какую нибудь органическую кислоту.  Большое значение малочнокислые бактерии имеют при квашения овощей, плодов ягод. Эти процессы протекают за счет естественных микроорганизмов, находящихся в заквашиваемом объекте. В мелко нарезанной, посыпанной солью и спрессованной белокачанной капусте при исключении доступа воздуха начинается спонтанное молочнокислое брожение.

Молочную кислоту используют в консервной, кондитерской промышленности, при изготовлении безалкогольных напитков.

 

Получение органических кислот ( маслянокислое брожение)

Маслянокислое брожение - это процесс превращения сахара маслянокислыми бактериями в анаэробных условиях с образованием масляной кислоты, углекислого газа и водорода.                    .

С Н О - СН СН СН СООН +2СО2 + 2Н

Кроме основных продуктов брожения получаются и побочные продукты - бутиловый спирт, ацетон, этиловый спирт.

Как и при спиртовом брожении маслянокислое брожение претерпевает те же превращения до образования пировиноградной кислоты. Затем пировиноградная кислота декарбоксилируется с образованием углекислого газа и уксусного альдегида. Далее в отличии от спиртовового брожения под действием фермента карболигазы уксусный альдегид конденсируется и из 2 молекул уксусного альдегида образуется - ацетальдоль

СН СНОНСН СНО - СН СН СН СООН

Возбудители брожения- маслянокислые бактерии относятся к роду Clostridium  семейству Bacillaceae . Крупные, подвижные палочки, которые образуют споры,  грамположительные,. Споры термоустойчивы. Бактерии строго анаэробны. Оптимальная температура развития бактерий 30-40С. Очень чувствительны к кислотности среды, оптимум рН 6,9-7,3. При рН ниже 4,9 прекращают развиваться.  Многие маслянокислые бактерии способны сбраживать не только простые сахара, но и более сложные углеводы. Постоянным местообитанием их является почва, илистые отложения на дне водоемов.

В народном хозяйстве маслянокислое брожение часто приносит значительный ущерб, вызывая массовую гибель овощей, вспучивание сыра, порчу консервов, прогоркание молока.

Маслянокислое брожение применяют для производства масляной кислоты. При биохимическом производстве масляной кислоты сырьем служат дешевые сахаро или хроммолокосодержащие вещества. Брожение ведут при 40 С в присутствии мела для нейтрализации.

Масляная кислота- бесцветная жидкость, с неприятным резким запахом. В слабых растворах обладает спец. сырным запахом.

Ацетонобутиловое брожение

Близким к маслянокислым брожению является ацетонобутиловое брожение, в процессе которого образуется больше количество бутилового спирта и ацетона, чем при обычном маслянокислом брожении. При этом образуются этиловый спирт, масляная и уксусная кислота, выделяются водород и углекислый газ.

Ацетонобутиловое брожение протекает в две фазы:

• кислотная, во время которой усиленно размножаются бактерии и в среде накапливается масляная и уксусная кислоты.

• ацетонобутиловая, в течение которой кислотность уменьшается и происходит усиленное накопление ацетона, бутилового и этилового спиртов.

И в зависимости от условий ведения процесса можно подавлять то первую, то вторую фазу брожения. Возбудители ацетонобутилового брожения представляют собой подвижные палочки, соединенные попарно. Они анаэробы, образуют споры, сбраживают крахмал, но не сбраживают клетчатку. В промышленности для производства ацетона и бутилового спирта применяют крахмалистое сырье. После отгона ацетона и спиртов из отстающего отхода (барда) используют для извлечения витамина В2, который продуцирует ацетонобутиловые бактерии. Барда используется и для выращивания метановых бактерий, которые синтезируют витамин В 12. Маслянокислые бактерии в природе принимают участие в разрушение органические веществ (углеводов, спиртов). В почве маслянокислое брожение происходит постоянно.

Получение пропионовой кислоты.

Пропионовокислое брожение характерно для пропионовых бактерий, которые культивируются в средах, где глюкоза является источником углерода. Из 3 молекул глюкозы образуется 4 молекулы пропионовой кислоты, 2 молекулы уксусной кислоты. 2 молекулы диоксида углерода и 2 молекулы воды:

С Н О - СН СН СООН + 2СН СОСН + 2СО + 2Н О

Пропионовые бактерии представляют собой грамположительные, бесспоровые, неподвижные палочки, подразделяемые на “кожные” и “классические”. Кожные обитают на кожных покровах человека и в желудке жвачных животных- они могут быть причиной  определенных патологических процессов.  Классические пропионовые бактерии обитают в молоке и молочных продуктах. Температура для них 37 С, анаэробы, но образуют каталазу, перексидазу, фиксируют углекислый газ, молекулярный азот, нуждаются в витаминах. Биосинтез кислоты проводят на достаточно простых средах, такого состава: углевод-1, аммония сульфат, гидрофосфат калия, кобальта хлорид, тиамин. Эти бактерии помимо сахаров и молочной кислоты способны, сбраживать пировиноградную кислоту, глицерин. Они разлагают аминокислоты, при этом выделяются жирные кислоты.

 

АЭРОБНЫЕ ПРОЦЕССЫ

К окислительным (аэробным) относятся вызываемые микро­организмами биохимические процессы, протекающие с участием кислорода воздуха.

Большинство аэробных микроорганизмов окисляют органи­ческие вещества в процессе дыхания до С02 и Н2О. Однако некоторые окисляют их лишь частично. Конечными продуктами такого неполного окисления чаще являются кислоты. Поскольку эти продукты сходны с теми, которые образуются при брожениях, некоторые процессы неполного окисления условно называют окислительными брожениями.

Некоторые из этих окислительных процессов используют в промышленности.

Уксуснокислое брожение

Уксуснокислое брожение — это окисление бактериями эти­лового спирта в уксусную кислоту:

СН3СН2ОН + О2'=СН3СООН + Н2О.

Такое брожение было известно еще в глубокой древности. В оставленном на воздухе сосуде с виноградным вином или пивом через день-два на поверхности напитков появлялась серо­ватая пленка, они мутнели и прокисали.

Химизм уксуснокислого брожения.

При уксуснокислом бро­жении реакция окисления этилового спирта протекает в две стадии: сначала образуется уксусный альдегид, который затем окисляется в уксусную кислоту:

2СН8СН2ОН + О2 -> 2СН3СНО + 2Н2О; 2СН8СНО + 02 -* 2СН8СООН.

Возбудителем  уксуснокислого брожения является уксусный гриб (Mycoderma aceti)

Уксуснокислые бак­терии представляют собой грамотрицательные, палочковидные, бесспоровые, строго аэробные организмы. Среди них есть под­вижные и неподвижные бактерии. Оyи кислотоустойчивы, и не­которые могут развиваться при рН среды до 3,2.

Уксуснокислые бактерии имеют родовое название Acetobacter.

В настоящее время описано около 20 видов этих бактерий, важнейшими из них являются: A. aceti, A. pasteurianum, А. огleanense, A. xylinum, A. schutzenbachii. Эти бактерии разли­чаются размерами клеток, устойчивостью к спирту, способ­ностью накапливать в среде большее или меньшее количество уксусной кислоты и другими признаками. Например, A aceti накапливает в среде до 6% уксусной кислоты, A. orleanense — до 9,5%, A schutzenbachii — до 11,5%, a A xylinum — до 4,5%. A. aceti и A schutzenbachii выдерживают довольно высокую концентрацию спирта —до 9—11%, a A. xylinum — лишь 5—7%.

Оптимальная температура роста для различных уксуснокис­лых бактерий 20—35° С. Некоторые из них способны синтезиро­вать витамины Вь В2, Bi2, однако многие сами нуждаются в ви­таминах и прежде всего в пантотеновой кислоте. Уксуснокислые бактерии часто встречаются в виде длинных нитей и многие образуют пленки на поверхности субстрата. Например, для A. pasteurianum характерна пленка сухая морщинистая, для A. xylinum— мощная, хрящевидная. Некоторые бактерии сплош­ной пленки не образуют, а дают только островки ее на поверх­ности жидкости или «кольцо» около стенок сосуда. Появление пленок связано с ослизнением клеточных оболочек.

Уксуснокислым бактериям свойственна изменчивость формы клеток. В неблагоприятных условиях развития бактерии приоб­ретают необычную форму — толстые длинные нити, иногда раз­дутые, уродливые клетки/

Уксуснокислые бактерии широко распространены в природе, они встречаются на зрелых плодах, ягодах, в квашеных овощах, вине, пиве, квасе.

Практическое использование уксуснокислого брожения.

На уксуснокислом брожении основано промышленное получение

уксуса для пищевых целей. До настоящего времени еще сохра­нился старинный «медленный» способ производства уксуса из вина. Подкисленное уксусом и разбавленное водой вино нали­вают в открытые чаны (бочки) и вносят кусочки пленки уксус­нокислых бактерий A orleanense- Бактерии развиваются на поверхности вина, окисляют спирт, и вино превращается в уксус. Процесс идет очень медленно. Готовый уксус частично сливают из-под пленки и добавляют новую порцию вина. Так одну и ту же пленку используют длительное время.

В промышленности для производства уксуса обычно приме­няют быстрый способ.

Окисление других спиртов и сахара уксуснокислыми бакте­риями. Уксуснокислые бактерии могут окислять не только эти­ловый, но и другие одноатомные спирты, например пропиловый в пропионовую кислоту, бутиловый — в масляную. Метило­вый спирт и высшие одноатомные спирты эти бактерии не окисляют.

Некоторые уксуснокислые бактерии окисляют до соответ­ствующих кислот сахара альдозы, например глюкозу в глюко-новую кислоту:

2СН2ОН (СНОН)4 СНО + О2 -> 2СН2ОН (СНОН)4СООН,

Превращение глюкозы в глюконовую кислоту известно как глюко.новокислое брожение. Глюконовая кислота при­меняется в медицине и ветеринарии.

В качестве возбудителей этого брожения используют уксус­нокислые бактерии, устойчивые к повышенному содержанию глюкозы и глюконовой кислоты. Кроме уксуснокислых бактерий, глюконовую кислоту в глюкозосодержащих субстратах образуют некоторые флуоресцирующие бактерии (например, Ps. fluores-cens) и некоторые плесневые грибы из родов Aspergillus и Реnicillium, которые также используются в промышленности.

Лимоннокислое брожение

Плесени в процессе дыхания также окисляют углеводы не­редко не до СО2 и Н2О, поэтому в среде накапливаются про­дукты неполного окисления — различные органические кислоты (щавелевая, янтарная, яблочная, лимонная и др.). Образование грибами лимонной кислоты применяют в промышленности.

Лимоннокислым брожением называется окисление глюкозы грибами в лимонную кислоту. Конечный результат брожения можно представить следующим суммарным уравнением:

6Н1206 +302 -> 2С6Н807 + 4Н20.

Химизм образования лимонной кислоты из сахара до настоя­щего времени окончательно не установлен. Большинство иссле­дователей считает, что это брожение до образования пировино-градной кислоты протекает, как и другие брожения. Далее пре­вращение пировиноградной кислоты в лимонную через ряд кислот (уксусную, янтарную, фумаровую, яблочную, щевелево-уксусную) сходно с превращениями в цикле Кребса.

Раньше лимонная кислота добывалась из цитрусовых пло­дов — лимонов и апельсинов. Этот способ очень невыгоден, так как плоды содержат только 7—9% лимонной кислоты.

В настоящее время ее получают главным образом путем бро­жения 1. Технические приемы биохимического получения лимон­ной кислоты в СССР были разработаны В. С. Буткевичем и С. П. Костычевым.

Возбудителем брожения является гриб Aspergillus niger.

Основным сырьем служит меласса — черная патока. Раствор ее, содержащий около 15% сахара, в который добавляют необ­ходимые для гриба питательные ^вещества (в виде различных минеральных солей), наливают 'невысоким (8—12см) слоем в плоские открытые сосуды (кюветы) и засевают спорами гриба. Кюветы помещают в бродильные камеры, которые хорошо аэри-

1 Лимонную кислоту для технических целей получают путем переработки отходов табака и махорки.

руются. Процесс продолжается 6—8 дней при температуре около 30° С. Гриб развивается на поверхности сбраживаемой жидкости. Выход лимонной кислоты достигает 60—70% израсхо­дованного сахара. По окончании брожения раствор из-под пленки гриба сливают. Лимонную кислоту выделяют из рас­твора и подвергают очистке и кристаллизации. При отсутствии в растворе сахара эта кислота может быть окислена грибом до более простых продуктов — щавелевой и уксусной кислот, углекислого газа и воды.

Описанный «поверхностный метод» (гриб развивается на поверхности сбраживаемого субстрата) получения лимонной кислоты заменяется в настоящее время «глубинным методом», при котором мицелий гриба растет в закрытых чанах (фермен­таторах) в толще высокого слоя сбраживаемой жидкости, не­прерывно перемешиваемой и аэрируемой стерильным воздухом. Этот способ повышает производительность труда, позволяет из­бежать заражения сбраживаемого субстрата посторонними микроорганизмами, его легче автоматизировать и механизи­ровать.

Лимонная кислота используется в кондитерской промышлен­ности, производстве безалкогольных напитков, сиропов, кулина­рии и медицине.

ПРЕВРАЩЕНИЯ  АЗОТСОДЕРЖАЩИХ  ВЕЩЕСТВ

Гнилостные процессы

В метаболизме микроорганизмов азотсодержащие вещества подвергаются разнообразным превращениям. По внешнему сходству разные виды порчи пищевых продуктов нередко назы­вают гниением. Однако гниение — это процесс глубокого разложения белковых веществ микроорганизмами.

Способность разрушать в той или иной степени белковые ве­щества свойственна многим микроорганизмам. Некоторые раз­лагают непосредственно белки, другие могут воздействовать только на более или менее простые продукты распада белковой молекулы, например на пептиды, аминокислоты и др.

Разложение белков микроорганизмами связано с использо­ванием их для синтеза веществ тела, а также в качестве энер­гетического материала. Одни микроорганизмы вызывают неглу­бокое расщепление белка, другие ведут более глубокий распад его и образуют при этом более разнообразные продукты.

Химизм разложения белковых веществ. Гниение — сложный, многоступенчатый биохимический процесс, характер которого и конечный результат зависят от строения и состава разлагае­мых белков, условий процесса и видов вызывающих его микро­организмов.

Белковые вещества не могут непосредственно поступать в клетки микроорганизмов, поэтому использовать белки могут только те из них, которые обладают протеолитическими фермен­тами экзопротеазами, выделяемыми клетками в окружающую среду.

Процесс распада белков начинается с их гидролиза. Первич­ными продуктами гидролиза являются пептоны и пептиды. Они расщепляются до аминокислот, которые являются конечными продуктами гидролиза.

Такие белки, как нуклеопротеиды, под действием гнилост­ных микробов расщепляются на белковый комплекс и нуклеино­вые кислоты.  Белки затем разлагаются аналогично тому, как описано выше, а нуклеиновые кислоты распадаются на фосфор­ную кислоту, углеводы и смесь азотсодержащих оснований.

Образующиеся в процессе распада белков различные амино­кислоты используются микроорганизмами или подвергаются ими дальнейшим изменениям, например дезаминированию, в резуль­тате чего образуются аммиакi и разнообразные органические соединения в соответствии с характером самих аминокислот и ферментов микроорганизмов. Процесс дезаминирования может происходить различными путями.  Различают дезаминирование гидролитическое, окислительное и восстановительное.

Гидролитическое дезаминирование сопровождается об­разованием оксикислот и аммиака. Если при этом происходит и декарбоксилирование аминокислоты, то образуются спирт, ам­миак и углекислый газ:

RCHNH2COOH + Н20 ~> RCHOHCOOH + NH3;

RCHNH2COOH + H20 -+ RCH2OH + NH3 +CO2.

При окислительном дезаминировании образуются кетокислоты и аммиак:

RCHNH2COOH +1/2 О2 = RCOCOOH + NH3.

При восстановительном дезаминировании образуются карбоновые кислоты и аммиак:

RCHNH2COOH + 2H =RCH2COOH + NH3.

Из приведенных уравнений видно, что среди продуктов раз­ложения аминокислот в зависимости от строения их радикала (R) обнаруживаются различные органические кислоты и спирты. Так, при разложении аминокислот жирного ряда могут накап­ливаться муравьиная, уксусная, пропионовая, масляная и другие кислоты, пропиловый, бутиловый, амиловый и другие спирты. При разложении аминокислот ароматического ряда промежуточ­ными продуктами являются характерные продукты гниения: фе­нол, крезол, скатол, индол — вещества, обладающие очень не­приятным запахом. При распаде аминокислот, содержащих серу, получается сероводород или его производные — меркаптаны (на­пример, метилмеркаптан CH3SH). Меркаптаны обладают запа­хом тухлых яиц, который ощущается даже при ничтожно ма­лых их концентрациях.

Возбудители гниения.

 Среди множества микроорганизмов, способных в той или иной мере разлагать белки, особое значе­ние имеют микроорганизмы, которые вызывают глубокий распад белков — собственно гниение. Такие микроорганизмы принято называть гнилостными. Из них наибольшее значение имеют бактерии. Гнилостные бактерии могут быть спорообразующими и бесспоровыми, аэробными и анаэробными. Многие из них мезофилы, но есть холодоустойчивые и термостойкие. Большинство чувствительны к кислотности среды и повышенному содержанию в ней NaCl. Многие способны к сбраживанию углеводов.

Наиболее распространенными и активными возбудителями гнилостных процессов являются следующие: Вас. subtilis (сен­ная палочка) и Вас. mesentericus (картофельная палочка) — аэробные, подвижные, спорообразующие бактерии

Клетки сенной палочки объединяются в более или менее длинные цепочки. Споры этих бактерий отличаются высокой термоустойчивостью. Температурный оптимум развития сенной палочки 37—50° С, максимум роста — около 60° С. Температур­ный оптимум роста картофельной палочки 36—45°С, а максимум — около 50—55° С. При рН 4,5—5 развитие этих бактерий прекращается. Вас. mesentericus обладает более высокой амилоитической и протеолитической активностью, но менее энергично, чем Вас. subtilis, сбраживает сахара.

Сенная и картофельная палочки помимо продуктов, богатых белками, портят пищу, содержащую углеводы (кондитерские из­делия, сахарные сиропы и др.), поражают хлеб (преимущест­венно пшеничный), клубни картофеля. Вас. mesentericus вызы­вает побурение мякоти ко­сточковых плодов (абрикосов, персиков). Оба вида широко распространены в природе и способны вырабатывать анти­биотические вещества, подав­ляющие развитие многих бо­лезнетворных и сапрофитных бактерий.

Нитрификация

Процесс последовательного окисления аммиака до азотистой и азотной кислот называется нитрификацией, а вызывающие его бактерии — нит­рифицирующими. Сущность этого процесса была раскрыта и изучена С. Н. Виноградским.

Работами С. Н. Виноградского установлено, что процесс нитрификации происходит в две фазы, каждая из которых обусловлена деятельностью спе­цифических аэробных бактерий. Возбудители первой фазы — нитрозные бактерии — окисляют аммиак до солей азотистой кислоты (нитритов). Возбудители второй фазы — нитратные бактерии — окисляют соли азотистой кислоты в соли азотной кислоты (нитраты

Процесс нитрификации представляет собой яркий пример метабиоза, когда одни микроорганизмы начинают развиваться после других на продук­тах жизнедеятельности первых.

Нитрифицирующие бактерии относятся к типичным хемосинтезирующим автотрофам; они очень чувствительны к наличию в среде органических соеди­нений. Эти бактерии живут в почве, природных водах.

Очень важное значение имеют нитрификаторы в сельском хозяйстве. Образующийся в почве при разложении белков аммиак, хотя и усваивается растениями в виде аммонийных солей, но лучшим источником азотистого пи­тания для растений являются нитраты, которые и накапливаются в почве в результате деятельности нитрифицирующих бактерий. Часто эти бактерии встречаются в условиях, где жизнь на первый взгляд кажется невозможной, например на гранитах и голых скалах. Здесь они участвуют в выветривании горных пород благодаря разрушающему действию образуемой ими азотной кислоты. Развиваясь на кирпичных стенах зданий, нитрифицирующие бакте­рии могут разрушать кирпичную кладку. Немалая роль принадлежит им, по-видимому, и в разрушении подводных частей бетонных сооружений.

Денитрификация

Процесс восстановления нитратов до молекулярного азота называется денитрификацией, а бактерии, осуществляющие его, — денитри­фицирующими.

Эти бактерии являются факультативными анаэробами. Нитраты они вос­станавливают в анаэробных условиях, когда в процессе дыхания при окис­лении органических веществ используют кислород нитратов в качестве акцеп­тора водорода. В аэробных условиях денитрификаторы обычно не восстанав­ливают нитраты, так как в процессе дыхания используют свободный кисло­род. Большинство денитрифицирующих бактерий имеют палочковидную форму, спор не образуют, но есть и спороносные палочки, а также микро­кокки.

Денитрифицирующие бактерии широко распространены в природе, они встречаются в почве, природных водах, навозе и т. д. Деятельность денитри­фицирующих бактерий может нанести большой ущерб плодородию почвы, особенно при плохой аэрации, так как под их влиянием азот нитратов, ус­ваиваемый растениями, переходит в неиспользуемый ими свободный азот.

Известны и другие процессы восстановления нитратов. Многие сапрофит­ные микроорганизмы (различные бактерии и грибы) обладают способностью восстанавливать нитраты лишь до нитритов.

В пищевой промышленности восстановление микробами нитратов до нит­ритов может происходить при изготовлении колбас, сосисок, ветчины. Розовая окраска таких продуктов получается вследствие соединения нитрита с крася­щим веществом мяса миоглобином. Для придания продукту розово-красного цвета в рассол добавляют нитриты или нитраты. Нитраты сначала восста­навливаются находящимися в продукте бактериями в нитриты, а последние вступают во взаимодействие с миоглобином мясопродуктов.

Фиксация молекулярного азота

Некоторые бактерии способны фиксировать атмосферный (молекуляр­ный) азот, т. е. переводить его в связанное состояние. Они восстанавливают азот до аммиака; часть его используется самими микроорганизмами, а часть выделяется в окружающую среду.

Одни азотфиксирующие (азотусваивающие) бактерии живут свободно в почве и воде; другие — в симбиотическом сожительстве с растениями, пре­имущественно бобовыми. Бактерии поселяются в бородавчатых вздутиях — клубеньках корней этих растений. Отсюда произошло и название этих бак­терий — клубеньковые. Энергию, необходимую для фиксации бактерии получают в процессе окисления безазотистых органических соеди­нений, которые они берут из клеток корней растений.

Величина и форма клубеньковых бактерий значительно изменяются в за­висимости от их возраста и условий жизни. Молодые клетки — мелкие под­вижные палочки —не образуют спор. По мере развития клетки теряют жгу­тики, становятся искривленными, утолщенными или ветвистыми; эти формы клубеньковых бактерий называются бактероидами.

Среди свободно живущих азотфиксирующих бактерий наибольшее значе­ние имеет аэробная бактерия Azotobacter chroocaccum, имеющая форму слегка приплюснутых кокков, часто объединенных попарно; клетки имеют слизистую

капсулу.

Из анаэробных свободно живущих азотусваивающих бактерии следует отметить бактерию, открытую С. Н. Виноградским (1893 г.), — Clostndium pasteurianum. Это подвижные спорообразующие палочки, способные сбражи­вать углеводы по типу маслянокислого брожения, которое и служит бакте­риям источником энергии для связывания молекулярного азота.

Азотфиксирующие бактерии имеют важное значение для сельского хо­зяйства. За счет их деятельности постоянно пополняются азотистые запасы почвы, что способствует ее плодородию.

В  практике сельского хозяйства препараты из  азотфиксирующих ( рий   используются   в качестве   бактериального   удобрения:   азотобактерин-из культур  азотобактера,  нитрагин —из культур клубеньковых  бактерий

ПРЕДМЕТ, ЦЕЛИ И ЗАДАЧИ, ИСТОРИЯ РАЗВИТИЯ БИОТЕХНОЛОГИИ

Биотехнология - это наука об использовании биотехнологических процессов в технике и промышленном производстве.

К числу биологических процессов относят те, в которых применяют биологические объекты различной природы (микробной, растительной или животной). Биотехнология как наука формировалась и развивалась по мере развития человеческого общества.  Возникновение и развитие биотехнологии можно подразделить на 4 периода:

эмпирический;

этиологический;

биотехнический;                                                                                                                                                        

генотехнический.

Эмпирический (доисторический период) - самый длительный, который охватывает около 600 млн. лет до н.э. н около 2000 лет н.э. Древние породы интуитивно использовали приемы и способы изготовления хлеба, пива и других продуктов которые сейчас относим к биотехнологическим процессам. Переходы после охотничьего кризиса к оседланному образу жизни привели к изобретению техники земледелия. Стали формироваться первичные цивилизации Лесопотамии, Египта, Индии и Китая. Они выпекали хлеб из кислого теста, владели искусством готовить пиво. Уже в 14 веке - начали приготавливать уксус "Орлеанским способом", водку из хлебных злаков получили в 16 веке, шампанское известно с 18 века. Абсолютный этанол впервые удалось получить в 14 веке испанцу Раймунду, благодаря перегонке вина с негашеной известью. Продукты питания растительного и животного происхождения использовались не только в пищу, но и для лечебных целей. Так в ассирийской столице еще в 8-7- веке до н.э. царская библиотека насчитывала более 30 000 табличек клинических из которых в 33 имелись сведения о лекарственных средствах и их рецептуре.

К этому периоду относятся: получение кисломолочных продуктов, квашенной капусты, силосование кормов. К этому периоду также относятся большое накопление фактов в области микологии (о грибах), которая стала самостоятельной наукой.

Второй период (этиологический) охватывает период с 1856-5933 гг. Связан с исследованиями фр. ученого Луи Пастера.

Его достижения в биотехнологии: - открыл микробную природу брожжений; предложил метод стерилизации; создал научные основы вакцинопрофилактики; приготовил в 1859 г. первую жидкую питательную среду.

В этот период были обнаружены ряд вирусов:

- вирус мозаичной болезни табака (Ивановский Д.И.). И.П.Фрош открыл вирус ящура, были открыты вирус желтой лихорадки, вирусы бактерий (бактериофаги).

В этот период удалось доказать индивидуальность микробов и получить их в чистых культурах. Было начато изготовление прессованных пищевых дрожжей, и некоторых продуктов обмена (метаболизма) - ацетона, бутанола, лимоновой и молочной кислот. Во Франции приступили к созданию биоустановок для микробиологической очистки сточных вод.

Третий период (биотехнологический) начался с 1933 г. С опубликования работы Клюйвера и Перкина "Методы изучения обмена веществ у плесневых грибов", в которой изложили основные технические приемы. С этого периода   началось   внедрение   в   биотехнологию   крупномасштабного герметизированного оборудования, которое обеспечивало проведение процессов в стерильных  условиях.  Мощный  толчок  в  развитии  промышленного биотехнологнческого оборудования был отмечен в период развития производства антибиотиков.

В 1950 г. Ж.Моно (Франция) разработал теоретические основы непрерывного управляемого культивирования микробов. Примерно за 40 лет этого периода были решены основные задачи по созданию и внедрению в практику необходимого оборудования - биореакторов.

Четвертый период (генотехнический) начался с 1972 г. В этом году П.Берг со своими сотрудниками в США создали первую рекомбинантную молекулу ДНК.

В !982 г. поступил в продажу человеческий инсулин, выработанный кишечными палочками, которые несут в себе искусственно встроенную генетическую информацию об этом гормоне. Зная строение аппарата наследовательности у разных организмов, удается манипулировать как нуклеиновыми кислотами, так и целыми хромосомами (клеточная инженерия) и клетками (клеточная инженерия). Для этого периода характерны: создание необычных организмов, ранее не существовавших в природе (неклубеньковых растений, несущих гены азотобактерий, ответственные за способность фиксировать молекулярный азот из воздуха); разработка и внедрение экологически чистых, безотходных технологий, разработка и внедрение в практику спец. аппаратуры и др.

Отрасли биотехнологии:

• медицинская биотехнология;

• иммунобиотехнология;

• инженерная энцимология;

• биогеотехнология.

К медицинской биотехнологии относятся ее производственные процессы, которые завершаются созданием с помощью биообъектов средств или веществ медицинского назначения - антибиотики, ферменты, коферменты.

 Иммуно-биотехнология - объединяет производства вакцин, иммуноглобулинов крови, иммуномодуляторов, иммуномедиаторов.

Биогеотехнология - сущность ее сводится к использованию микроорганизмов для добычи полезных ископаемых (цветная руда, нефти и др.).

Инженерная энцимология - базируется на использовании каталитических функций ферментов в изолированном состоянии или в составе живых клеток для получения целевых продуктов.

Объекты и методы биотехнологии                      

Объектами биотехнологии являются вирусы, бактерии, грибы, клетки растений, животных и человека, биогенные вещества. Диапазоны распространяются от вирусов до человека. Для реализации биотехнологических процессов важными параметрами биообъектов являются: чистка, скорость размножения клеток и репродукции вирусных частиц, активность и стабильность биомолекул. Следует учитывать, что при создании благоприятных условий для избранного биообъекта биотехнологии эти же условия могут оказаться благоприятными и для микробов-контаминтантов   или   загрязнений.   Представителями   контаминирующей микрофлоры оказываются вирусы, бактерии, грибы, которые находятся в культурах растительных и животных клеток. Здесь микробы-контаминанты выступают вредителями производств в биотехнологии. Так при использовании ферментов в качестве биокатализаторов возникает необходимость предохранения их в изолированном состоянии от сапрофитной микрофлоры, которая может проникнуть  в  сферу  биотехнологического  процесса  извне,   следствие негерметичности. Независимо от систематического положения биообъекта, на практике используют либо природные организованные частицы (фаги, вирусы) и клетки с естественной генетической информацией, либо клетки с искусственно заданной генетической информацией.

В биотехнологии существуют свои специфические методы:

•  крупномасштабное   глубинное  культивирование   биообъектов   в периодическом непрерывном режиме.

•  выращивание клеток растительных и животных тканей в особых условиях.

Биотехнологические методы культивирования биообъектов выполняются в специальных оборудованиях-ферментаторах.

Биотехнологические процессы отличаются от химических процессов: во-первых, главными компонентами являются какой-либо биообъект (вирус, бактерии, грибы). Такие объекты отсутствуют в хим. технологии. Высокие температуры неприемлемы в биотехнологии, давление. Биотехнологические процессы подразделяются на биологические, биохимические, биоаналогичные. К первым относят те из них, которые основываются на использовании акариот, прокариот, вторые - на использовании ферментов, третьи - на химическом синтезе.

Многие процессы биологической технологии являются общими (показательно на аппаратурном направлении, на выборе биореакторов).

Специальные - которые имеют свои специфические особенности (т.к. выращивание пеницилина, культивирование вирусов гриппа на куриных эмбрионах). С учетом этого все биотехнологические процессы делятся на микробиологические, фито- зообиотехнология.

Процессы в биотехнологии.                      -

Биотехнологические процессы условно подразделяются на биологические, биохимические, биоаналогичные.

К биологическим относят те, которые основываются на использовании прокариот и эукариот, акориоты (аблигатные паразиты, которые развиваются лишь в живых клетках и тканях - бактериофаги, вирусы растений, млекопитающих).

Вторые- на использовании ферментов.

Третьи - на химическом синтезе или полусинтезе веществ, которые функционально близки к процессам живых организмов (получение пеницилина, нуклеиновых кислот).

По условиям проведения процесса различают нестерильные (крупнотонажное производство кормовых дрожжей) и стерильные (получение антибиотиков, витаминов): аэробные и анаэробные.

Процессы проводят в одном из 3 режимов:

• периодическое

• полунепрерывное;

• непрерывное.

При периодическом режиме процесс проводят от начала до конца по регламенту, после завершения всех операций его повторяют.

При полунепрерывном режиме осуществляется отливно-доливной процесс, когда на "пике" биосинтеза какого-либо антибиотика отбирают 30-70% культуральной жидкости и одновременно (однократно) добавляют свежей питательной среды.

При непрерывном режиме процессы рассчитаны на непрерывный отбор культуральной жидкости и непрерывное добавление свежей питательной среды. Применительно к фазовому состоянию ингридиентов на биотехнологических производствах различают твердофазные процессы (получение грубых кормов или производство сыра из белков молока) и газофазные процессы, которые основаны на использовании газа (метана для получения микробного белка).

По условиям проведения процессов выделяют:

1) одноступенчатые;

2) двухступенчатые:

3) многоступенчатые.

Одноступенчатые  процессы  базируются  на  использовании  клеток, находящихся в одном фазном состоянии.

Двухфазном - в разном фазном состояниях.

Многоступенчатые - присуще генетической инженерии.

 

АППАРАТУРНОЕ    ОСНАЩЕНИЕ МИКРОБИОЛОГИЧЕСКИХ

ПРОИЗВОДСТВ

Для выращивания микроорганизмов были предложены типы биореакторов: конструкции у них в основном были сходны. Их можно подразделить на 2 типа: без подводки стерильного воздуха (для анаэробов) и с подводкой его (для аэробов).


Аэрируемые биореакторы могут быть с мешалками и без них. При конструировании биореакторов учитывается время протекания различных биологических процессов у представителей различных групп организмов.

Размеры ферментаторов определяются соотношением внешнего диаметра к высоте и составляет 1:2 до 1:6. Универсальными являются ферментаторы для анаэробных и аэробных процессов. Эти ферментаторы классифицируют по способу ввода в аппарат энергии для перемешивания:

• газовой фазой (ФГ)

• жидкой фазой (ФЖ)

• газовой и жидкой фазами (ФЖГ)

Примером аппарата группы газовой фазой может быть ферментатор с эрлифтом

В аппарате отсутствует механическое перемешивание, здесь проще поддерживать асептические условия. Воздух для аэрации подается по трубе который расположен вертикально в ферментаторе. Аэратор, который обеспечивает движение выходящего воздуха, расположен в нижней части диффузора и насыщает питательную среду воздухом. Газожидкостная смесь поднимается по диффузору и перемешивается через верхние края. Часть воздуха уходит из аппарата, а более плотная среда опускается вниз в кольцевом пространстве между корпусами ферментатора и диффузором.Так происходит многократная циркуляция среды в ферментаторе. Для отвода биологического тепла внутри ферментатора установлен змеевик, аппарат также снабжен секционной рубашкой. В производстве кормового белка    широкое    распространение    получили    ферментаторы    с самовосстанавливающими мешалками из группы ФЖ -жидкой фазой. Ферментатор представляет собой вертикальный цилиндрический аппарат, снабженный циркуляционными,   теплообменными   и   аэрирующими   устройствами. Теплообменные устройства выполняют в виде трубок, которые установлены в трубных решетках.

Ферментаторы периодического действия из групп (ФЖГ) - газовой и жидкой фазы применяются для получения антибиотиков, витаминов. Конструкция этого ферментатора обеспечивает стерильность ферментации длительное время. Это цилиндрический вертикальный аппарат со сферическим днищем, имеющий аэрирующий, перемешивающий и теплопередающий устройства. Воздух для аэрации поступает в ферментатор через барботер. Отверстия в барботере направлены вниз, барботер должен соответствовать диаметру мешалки. Эффективность   работы   ферментатора   определяется   интенсивностью перемешивания. Перемешивающие устройства служат для сохранения температуры во всем объеме аппарата, своевременному подводу продуктов питания к клеткам и вывода продуктов метаболизма. Для культуральных жидкостей с высокой степенью вязкости эффективными являются открытые турбинные мешалки с шестью лопастями.

Важным элементом в ферментаторах являются теплообменные устройства. Применение концентрированных питательных сред, высокий удельный расход мощности на перемешивание - все это сказывается на возрастании тепловыделений и для отвода тепла в ферментаторе устанавливают наружные и внутренние теплообменные устройства. Промышленные ферментаторы имеют секционные рубашки снаружи, а внутри аппарата - четыре змеевика. Общая продуктивность процесса в биореакторе определяется количеством целевого продукта в ЕД активности или в кг, получаемого с 1м3 ферментационной емкости в час. Расчет ведут отдельно - для периодического и непрерывного процесса. Общую продуктивность для непрерывных процессов определяют в установившемся режиме, а для периодических процессов и полунепрерывных - с учетом времени на подготовку ферментатора к работе.

Объемная продуктивность процесса - это количество целевого продукта в ЕД активности или в кг, получаемое с 1м3 питательной среды в час.

Выход продукта от субстрата - это количество целевого продукта в ЕД активности или в кг, полученное из 1 кг компонента ферментационной среды, являющегося энергоносителем.

 

ЗНАЧЕНИЕ АСЕПТИКИ В БИОТЕХНОЛОГИЧЕСКИХ ПРОЦЕССАХ

 

Биотехнологические процессы в основном проводят в асептических условиях. Асептика - это комплекс мероприятий, направленных на предотвращение попадания в среду посторонних веществ.

Использование асептики в биотехнологии предполагает использование биообъекта (может быть и микробы) и полное исключение попадания других микроорганизмов.

Асептика включает в себя:

- влажную уборку помещений; обработку антисептическими веществами, ультрафиолетовое облучение, использование стерильных инструментов; подача стерильного воздуха в ферментаторы и др.                      

Существует механическая, физическая и химическая защита биообъекгов. К механической защите относятся: удаление механических примесей (например, из воздуха культиваторов с помощью фильтров).

К  физической  -  обработка  воздуха  и  поверхностей  приборов ультрафиолетовыми лучами, кипячение, стерилизация, обработка ультразвуком.

К химической - обработка поверхностей химическими антисептиками.

В производстве источниками микробов - контаминантов могут быть почва, вода, воздух, человек. Из почвы микробы - контаминтанты такие как актиномиценты, палочки - бациллы попадают в биотехнологические процессы. С пылью они могут попасть в воздух.

Люди, которые заняты в биотехнологическом производстве, могут быть источником контаминирующей микрофлоры. Но на поверхности кожи в среднем сосредоточено до 10'° микробных клеток. Наиболее загрязненными являются кисти рук, подошвы, локти, шея. Многочислена микрофлора ротовой полоста:

бактериальные коковые формы, вибрионы. Здоробый человек за одно чихание выделяет до 20000 микробных клеток, которые распространяются до 1,5 м.

Источником микробов - контамининтов могут быть и компоненты питательных сред (фаги, дрожжи). Микробы контаминанты не только могут подавать развитие и функции био-объекта, но и дезорганизовать какую-либо ткань. Они способны продуцировать токсические вещества.

 

Борьба с микробами - контаминантами в биотехнологических

 производствах

Рассмотрим виды защиты биотехнологических, процессов от микробов-загрязнителей.

I. Защита с помощью различных фильтров (мембранных фильтров).

Промышленные фильтры начались выпускаться в 40 годах прошлого столетия. Распространенными процессами фильтрации являются:

• обычная фильтрация;

• микрофильтрация;

• диализ (обратный осмос).

Для м.. обычной фильтрации применяются обычные бумажные или стеклянные фильтры. Отделяемые частицы находятся в пределах от 1 до 103 мкм. Для остальных   типов   используют   нитроцеллюлозные,   ацетиллцелюлозные, поливинильные, полиамидные мембраны с толщиной менее 0,1 мкм, с высокой степенью пористости.

Для микрофильтрации отделяемые частицы размерами 2×10-3 -10 мкм,

Для ультрафильтрации размеры отделяющихся частиц находятся в пределах от 0,001 до 0,02 мкм. При диолизе размеры отдельных частиц должны быть равными с молекулами растворителя (10 -3 мкм и менее - до 1 нм.).

При стерилизации растворов фильтрованием они должны содержатся перед разливом и при последующем разливе в антисептических условиях. И время между началом приготовления раствора и его стерилизацией должно быть минимальным.

2. Метод защиты - стерилизация.

Питательная среда перед засевом каким-то биообъектом должна быть стерильной.

В биотехнологии используют методы периодической и непрерывной стерилизации.

Периодическая стерилизация осуществляется в аппаратах малой емкости непосредственно в ферментаторах или паром под давлением в течение 30-40 мин при температуре 134°С после удаления воздуха из аппарата при нагреве до 100°С. Затем среду охлаждают водой через змеевик и засевают биообъектами.

Метод непрерывной стерилизации основан на том, что концентрат питательной среды подают насосом через систему конструкций (который включает нагреватель, выдерживатель (соо6ственно стерилизатор) и теплообменник (где происходит охлаждение). В некоторых условиях стерилизацию питательных сред осуществляют в автоклавах. Стерилизацию проводят паром под давлением.

Кроме тепловой стерилизации используют еще холодную химическую стерилизацию, (это когда материалы не могут подвергаться тепловой стерилизации) или газовую стерилизацию этиленоксидом (температура кипения +12, +12,5С).

ОБЩАЯ СХЕМА БИОТЕХНОЛОГИЧЕСКОГО

ПРОИЗВОДСТВА

Все биотехнологические производства по их направленности делятся на две группы. Первая преследует цель получения мак­симально возможных количеств биомассы, а вторая - максимум выхода продуктов жизнедеятельности клеток (метаболитов). В первом случае -это могут быть живые клетки (например, хлебопекарные дрожжи), био­масса нежизнеспособных клеток как источник кормового белка, витами­нов, споры с токсинами (препараты для защиты растений от вредителей). Во втором -органические кислоты, ферменты, аминокислоты, антибиоти­ки. При этом клетки продуцента являются отходом производства, тре­бующим утилизации.

Несмотря на различные цели, общая схема биотехнологического произ­водства в обоих случаях может быть представлена в виде пяти основных стадий:

- подготовка питательной среды для культивирования промышленного
микроорганизма;

- получение чистой культуры для внесения в основной аппарат - фермен­
тер;

- основная ферментация;

- выделение и очистка конечного продукта;

- получение товарных форм препарата.

1.1.  Подготовка питательной среды

Основу питательных сред для культивирования микроорганизмов составляют источники органического углерода (субстраты) . Разнообразие таких источников очень велико, так как микроорганизмы потребляют широкий спектр органических соедине­ний, начиная от простейших углеродных соединений, таких как метан (СН4), метанол (СНзОН) и углекислота (CCh), и кончая природными био­полимерами.

Кроме углерода клетки микроорганизмов в процессе роста нуждаются в источниках азота, фосфора, макро- и микроэлементов (калии, магнии. цинке, железе, меди, молибдене, марганце и др). Как правило, эти компо­ненты заранее вносятся в питательные среды в виде минеральных солей перед началом ферментации. Исключение составляют газообразные ком­поненты.

Отделение приготовления питательной среды представляет собой цех, оборудованный емкостями для хранения жидких и твердых веществ, сред­ствами их транспортировки и аппаратами с перемешивающими устройст­вами для приготовления растворов, суспензий и эмульсий. При этом все компоненты питательной среды хранятся обычно в твердом виде, а приго­товление их смеси в заданном соотношении производится в аппарате с мешалкой, куда они непосредственно поступают для последующего рас­творения. Иногда сначала в отдельных емкостях готовятся растворы каж­дого компонента, а потом производится их окончательное смешение.

Важнейшим элементом подготовки питательных сред является их сте­рилизация, поскольку выращивание промышленного микроорганизма должно проводиться, по крайней мере, в начальной стадии, в отсутствие посторонней микрофлоры. Это достигается путем предварительной стери­лизации всех потоков, поступающих на стадию ферментации.

Для стерилизации газовых потоков используют фильтрацию через спе­циальные волокнистые фильтры с определенным диаметром пор, которые задерживают клетки микроорганизмов из окружающей среды.

Все потоки могут стерилизоваться термическим, радиационным, фильтрационным или химическим методами.

Наиболее часто в промышленности используется термический метод. Он основан на губительном действии на живые клетки высоких темпера­тур. Основным недостатком термической стерилизации являются неиз­бежные потери питательных свойств среды. Наиболее часто в качестве источника углерода используются углеводы, которые не выдерживают на­гревания до высоких температур (120-150°С). Поэтому обычно источники углерода стерилизуют отдельно от растворов минеральных солей, обла­дающих большей термической устойчивостью.

Некоторые субстраты сами обладают способностью подавлять рост по­сторонних микроорганизмов, поэтому их стерилизации не требуется. К ним относятся, например, метанол, этанол, уксусная кислота и их концен­трированные растворы.

   Остальные методы стерилизации применяются реже. Радиационный метод, основанный на облучении материалов большими дозами ионизи­рующих излучений (гамма-излучение), дает хорошие результаты. Однако он предполагает наличие мощных источников гамма-излучения. Поэтому радиационный метод используют для стерилизации небольших объектов, главным образом медицинского назначения (например, хирургический инструмент, перевязочный материал).

Химический метод стерилизации основан на использовании веществ, обладающих дезинфицирующим действием. Основной проблемой в этом случае является необходимость удаления стерилизующего агента из пита­тельной среды после подавления посторонней микрофлоры. Это может быть достигнуто путем его химического разложения с образованием не­токсичных для производственной культуры продуктов. К сожалению, чис­ло таких веществ очень невелико.

Фильтрационный метод основан на пропускании питательной среды че­рез специальные фильтры или мембраны, способные задерживать клетки микроорганизмов. Он наиболее пригоден для стерилизации питательных сред, которые не выдерживают действия высоких температур (молоко, растворы белков и др.). Основная трудность, возникающая при использо­вании этого метода, - необходимость стерилизации самого фильтрующего элемента, который не отличается достаточной термостойкостью.

1.2. Выращивание чистой культуры или получение посевного материа­ла

Основой любого биотехнологического производства является штамм-продуцент целевого продукта. Поэтому очень важно сохранить на протя­жении длительного времени полезные свойства используемого штамма, который в дальнейшем используется для получения посевных доз, необ­ходимых для осуществления основной ферментации.

Все вышеизложенное требует организации на каждом биотехнологиче­ском предприятии условий для сохранения полезных признаков микроор­ганизма и отделения для выращивания чистой культуры.

Для любого микробиологического производства всегда необходима ис­ходная культура продуцента, которая, как правило, не отличается высокой стабильностью при хранении. Поэтому любое предприятие в условиях собственной центрально-заводской лаборатории обновляет культуру пу­тем периодических пересевов на специально подготовленной среде и в дальнейшем организует ее хранение в холодильнике при температуре 3-4°С.

Для продолжительного хранения используют, в основном, следующие методы:

1) Хранение под слоем вазелинового масла.

Для этого выращенную в пробирках культуру заливают предварительно простерилизованным вазелиновым маслом на высоту слоя I см. Сохра­няемую таким образом культуру подвергают пересеву 1 -2 раза в год.

2) Хранение в ампулах в 10%-м растворе глицерина в атмосфере жидкого азота.

Возможный срок хранения составляет не более 5-ти лет.

3) Хранение в лиофильно-высушенном состоянии.

Для этого культуру в асептических условиях выдерживают при темпе­ратуре - 35°С, затем высушивают в вакууме, постепенно повышая темпе­ратуру до 20°С, в течение 25-30 часов. Ампулы запаивают. В таком виде культура может храниться в течение 5-6 лет без потери активности.

С учетом специфических свойств отдельных микроорганизмов допус­каются и другие способы хранения производственных штаммов. Так, стрептомицеты можно хранить на зерне или в стерильной почве.

Неотъемлемой частью работы отделения чистой культуры является проведение микробиологического и биохимического контроля.

Микробиологическому контролю исходная культура микроорганизма подвергается на всех стадиях производства. В ходе микробиологического контроля прежде всего проверяют чистоту культуры, а иногда и наличие типичных цитологических признаков. Присутствие хотя бы одной посто­ронней колонии в высеве с данной партии посевного материала выбрако­вывает всю партию. Для спорообразующих культур единица массы посев­ного материала должна содержать требуемое количество спор.

Кроме того, в отделении чистой культуры осуществляют микробиоло­гический контроль воздуха, стен, поверхностей используемого оборудова­ния.

Целью биохимического контроля является определение концентраций расходуемого субстрата или получаемого продукта. В производстве вто­ричных метаболитов могут дополнительно контролироваться концентра­ции полупродуктов или предшественников их биосинтеза. Посевной мате­риал считается пригодным для засева в основной ферментер, если он обеспечивает на промышленной питательной среде близкие к паспортным данным концентрации целевого продукта.

 В отделении чистой культуры производится накопление посевных доз производственной культуры.

Поскольку количество засевного материала, передаваемого в основной ферментер, может варьировать в разных производствах от 5 до 20% объе­ма среды культивирования в нем, то накопление производственной куль­туры проводят 2-6 этапов. Для этого используется ряд так называемых посевных аппаратов, рабочий объем которых каждый раз увеличивается, как правило, в 10 раз. Число пересевов не может быть выше 6-ти, посколь­ку увеличивается риск обсеменения производственной культуры и ее вы­рождения. Размер посевных аппаратов для разных производств различен и может варьировать от 10 л до 50 м .

1.3. Основная ферментация

Эффективность биотехнологического производства определяется, в первую очередь, производительностью основного оборудования. Поэтому проведению стадии основной ферментации уделяется большое внимание. Под ферментацией понимают всю совокупность последовательных опера­ций от внесения в заранее приготовленную и нагретую до требуемой тем­пературы среду посевного материала и до завершения процесса роста кле­ток или биосинтеза целевого продукта. По окончании ферментации обра­зуется сложная смесь, состоящая из клеток продуцента, раствора непо­требленных питательных компонентов и накопившихся в среде продуктов биосинтеза. Такую смесь называют культуральной жидкостью.

Процесс ферментации может осуществляться 2-мя способами: поверхностного культивирования, когда выращивание производствен­ной культуры производят на среде, содержащей твердые частицы субстра­та; 2) глубинного культивирования, когда выращивание той же культуры микроорганизмов происходит во всем объеме жидкой питательной среды, содержащей растворенный субстрат.

При поверхностном способе культивирование проводится в так назы­ваемых кюветах, которые представляют собой противни, изготовленные из оцинкованной жести или нержавеющей стали с перфорированным днищем. Размер их обычно 600x800x30 мм, перфорация выполнена в виде щелей 2x20 мм. Заполненные питательной средой кюветы размещают на этажерках с небольшим наклоном через каждые 100-120 мм по высоте. В целях экономии производственных площадей кюветы объединяют в кассе­ты. Многоярусные подвижные этажерки устанавливают в растилыше ка­меры, имеющие размеры (в мм) 200х 1000x200. Камеры располагают меж­ду 2-мя коридорами: загрузочным и разгрузочным; с обеих сторон камеры снабжены герметичными дверями. Такой вариант не является эффектив­ным, поскольку предполагает использование громоздкого оборудования, значительную долю ручного труда. Способ находит ограниченное приме­нение, в основном в случае, если продукт не может быть получен глубин­ным культивированием.

Более распространенным в микробиологической промышленности яв­ляется метод глубинного культивирования . По сравнению с поверхност­ным способом он является более интенсивным, позволяет вырабатывать за единицу времени и объема большее количество целевого продукта. глубинное культивирование проводят в емкостных аппаратах, которые назы­ваются ферментаторами или ферментерами (рис.2). Такой аппарат должен обеспечивать: 1) рост и развитие популяций микроорганизмов в объеме жидкой фазы, 2) подвод питательных веществ к клеткам микроорганиз­мов, 3) отвод от микробных клеток продуктов их обмена веществ (метабо­лизма), .4) отвод из среды выделяемого клетками тепла. Самый простой ферментер состоит из емкости 1, определяющей рабочий объем аппарата, системы ввода и выивода жидкостных и газовых потоков 2, системы пере­мешивания 3, обеспечивающей наиболее полное смешение компонентов питательной среды, системы диспергирования воздуха (при проведении аэробных процессов) - барботера 4, охлаждающих устройств для отвода тепла - змеевика 5 и рубашки 6.

.Рис.2. Аппарат для глубинного культивирования микроорганизмов (фер­ментер):

1 - емкость; 2 - система ввода и вывода жидкостных и газовых потоков; 3 -система перемешивания; 4 - барботер; 5 -змеевик; 6 - рубашка

В зависимости от цели биотехнологического производства - получение клеток или продуктов их жизнедеятельности - способы ведения основной ферментации несколько различаются. Если процесс направлен на получение биомассы, то назначение ферментации - получить максимально воз­можный титр клеток, а в случае получения метаболитов их накопление осуществляют одновременно, причем максимумы образования продуцента и целевого продукта всегда сдвинуты по времени. Поэтому продолжи­тельность ферментации в первом случае всегда меньше, чем во втором.

Просто в ферментационной среде создаются условия, например низкие значения рН или повышенные температуры, которые обеспечивают доминирование производственного штамма над посторонней микрофлорой. Примером таких технологий является культи­вирование в непрерывных условиях кормовых дрожжей и получение ук­сусной кислоты при пониженных значениях рН среды, а также производ­ство кормового витамина Вц и анаэробное сбраживание органических ве­ществ, где используются термофильные микроорганизмы и стадию фер­ментации проводят при температуре 50-55°С.

Чтобы обеспечить доминирующий рост производственному штамму, пользуются приемом, суть которого сводится к увеличению доли посевно­го материала, передаваемого в основной аппарат. Она может достигать 20-25%.

Ферментационные процессы отличаются и значениями контролируе­мых параметров. К ним, прежде всего, относятся температура, рН среды, объемный расход воздуха. При культивировании различных микробных клеток интервал рабочих температур варьирует от 25 до 60°С, значения рН - от 2 до 9, расход воздуха в аэробных процессах - от 0.15 до 2.5 м° на 1 м' среды в минуту. Весьма важна точность, с которой эти параметры под­держиваются в ходе проведения отдельной ферментации. Температуру стараются поддерживать с точностью 1°С, рН среды - 0.2, объемный рас­ход воздуха -10%. Продолжительность проведения отдельных фермента­ции тоже сильно варьирует. Если целью является получение биомассы промышленного штамма в периодическом процессе, то время культивиро­вания в периодическом процессе не превышает 24 ч. При производстве первичных метаболитов время биосинтеза составляет уже 48-72 ч, а вто­ричных - более 72-144 ч.

Технологическое оформление процессов биосинтеза различается также в зависимости от отношения организма-продуцента к кислороду. С этой точки зрения различают аэробные и анаэробные процессы.

Большинство используемых в современном производстве культур мик­роорганизмов являются аэробными, т.е. требуют присутствия кислорода в среде. Это достигается путем обеспечения необходимой концентрации растворенного кислорода в жидкой питательной среде. Для того, чтобы облегчить растворение кислорода в воде, внутрь ферментера помещают так называемые барботеры (трубы с малыми отверстиями по всей длине). При этом кислород поступает в жидкую фазу в виде мелких пузырьков, что при работающей мешалке увеличивает скорость его растворения. Од­нако иногда в микробиологической промышленности, например при по­лучении витамина В]2, используются анаэробные культуры.

Вопросы, связанные с подводом или отводом тепла в ходе ферментации являются очень актуарными в ряде биотехнологических производств. Проблема обусловлена прежде всего тем, что температурный оптимум роста клеток большинства микроорганизмов лежит в интервале 26-40°С. Кроме того, в аэробных процессах на стадии выращивания, продуцента на­блюдается значительное тепловыделение. При работе с большими объе­мами ферментационной среды поддержание температуры на требуемом уровне является непростой задачей. Для отвода тепла на практике наибо­лее часто применяют охлаждение ферментера оборотной водой, которая подается в змеевики и многосекционные рубашки. Однако такой метод оказывается малоэффективен в теплое время года, когда разность темпе­ратур ферментационной среды и оборотной воды порой не превышает не­скольких градусов.

По окончании ферментации культуральная жидкость поступает на пе­реработку, где происходит выделение и очистка целевого продукта.

1.4. Выделение и очистка продуктов

Культуральная жидкость содержит клетки и продукты их жизнедея­тельности и выходит из ферментера в виде водной суспензии, для которой характерно, как правило, невысокое содержание основного компонента и наличие многих примесных веществ. В подавляющем большинстве произ­водств на первом этапе проводят отделение взвешенных частиц, включая биомассу продуцента от растворенных веществ. Если растворенные мета­болиты не представляют практической ценности, то жидкую фазу не пере­рабатывают. Ее считают жидким отходом производства и направляют на очистные сооружения, где инактивируются все содержащиеся в ней органические соединения. Переработке подлежит только сконцентрированная биомасса. Технологические приемы выделения клеток из культуральной жидкости в сильной степени зависят от природы продуцента. Например, для получения хлебопекарских дрожжей используют штаммы Saccharo-myces cerevisiae, кормовых - дрожжи рода Candida. Однако в каждом слу­чае приемы выделения клеток различны. Поскольку первые имеют боль­шие размеры, их можно отделить фильтрованием. Затем биомассу, снятую с фильтра, прессуют на рамном фильтр-прессе до содержания сухих ве­ществ 25% и фактически получают готовый продукт с высоким содержа­нием живых клеток. Клетки кормовых же дрожжей по размерам в не­сколько раз меньше сахаромицетов и фильтруются плохо, так как практи­чески сразу забивают поры фильтра. Поэтому для отделения биомассы ис­пользуют сепарирование . Эта стадия основана на осаждении взвешенных частиц под деиствием~1гентробежной силы работающего агрегата - сепара­тора. Основной его частью является вращающийся ротор, который и по­зволяет осаждать из суспензий взвешенные частицы, включая микробные клетки, таким образом в несколько ступеней удается довести концентра­цию клеток только до 10-12%, что недостаточно для получения товарной формы продукта. В дальнейшем сгущенную суспензию клеток подвергают выпариванию под вакуумом и сушке распылением в токе горячего возду­ха. Готовый продукт содержит инактивированные (мертвые) клетки дрожжей и часть веществ, содержащихся в культуральной жидкости.

Для отделения клеток, бактериальных продуцентов также применяют стадию сепарирования или концентрирования на бактофугах.

При выделении продуктов жизнедеятельности клеток из нативных рас­творов требуется их достаточно глубокая очистка от взвешенных частиц, а порой и от окрашенных соединений. Использование традиционного сепа-ранионного оборудования для отделения взвешенных частиц малоэффек­тивно, так как значительная часть культуральной жидкости уходит вместе с клетками. Если биомасса продуцента не подлежит переработке в товар­ную продукцию, а утилизируется как твердый отход, то возможно приме­нять особый вариант стадии фильтгювания_с так называемым "намывным слоем". Для этого, как правило, используют барабанные вакуум-фильтры, работающие в непрерывном режиме. Их рабочим элементом является на­тянутое на барабан " бесконечное полотно", на котором находится так на­зываемый "намывной слой". Его назначение - уменьшить диаметр пор фильтрующего полотна, что позволяет достичь эффективного отделения почти всех взвешенных частиц культуралъной жидкости. Для создания "намывного слоя" чаще всего используют порошок тонко измельченных белых глин - каолин, бентонит, а также кизельгур, древесные опилки и пр. Образующийся при этом фильтрат практически свободен от взвешенных частиц. Однако обычно его доосветляют традиционным фильтрованием под давлением, используя плотные фильтрующие материалы.

Наиболее простым методом, часто применяемым в промышленности для выделения метаболитов является метод осаждения целевого продукта. Многие вещества имеют так называемую изоэлектрическую точку, т.е. область значений рН среды, в которых их растворимость минимальна. Поэтому, установив значение рН нативного раствора на требуемом уровне, можно получить осадок выделяемого вещества, тогда как примеси остаются в растворе.

Технологии, использующие метод осаждения, достаточно широко применяются в биотехнологии. По этому способу выделяют ряд первичных метаболитов: аминокислоты, L-глутаминовую и L-валин. антибиотик 7-хлортетрациклин медицинского назначения.

Другая группа методов выделения метаболитов основывается на применении баромембранных процессов: обратного осмоса, микро- и ультрафильтрации. Последние два широко используются в биотехнологии. Метод микрофильтрации нашел широкое применение при отделении взвешанных частиц и стерилизации жидких потоков. Его несомненное достоинство состоит в том, что он позволяет достаточно надежно освобождать нативные растворы от посторонней микрофлоры и получать достаточно прозрачные растворы. Метод ультрафильтрации применяют для отделения ,очистки и концентрирования соединений с молекулярными массами не ниже 5000 Д. К их числу относятся белковые соединения, в том числе ферменты, высокомолекулярные компоненты нуклеиновых кислот и углеводов. Оказалось весьма перспективным использовать метод ультрафильтрации для очистки нативных растворов от нежелательных окрашенных продуктов ферментации. Около 50% пигментных веществ остается в концентрате (ретанте). Это позволило частично или полностью исключить стадии очистки растворов метаболитов, основанные на использовании ионообменных технологий и активированного угля.

1.5.    Получение товарных форм препаратов

Последней стадией технологического цикла в микробиологическом синтезе является получение товарной формы продукта. В зависимости от принятых на предыдущей стадии решений, товарные формы представляют собой либо сложную смесь, содержащую среди прочих некоторое количество основного вещества, определяемое техническими условиями или ГОСТ, либо достаточно высоко очищенный препарат.

Стадия фасовки препаратов кормового и технического назначения заключается в помещении их в тару, размеры и тип которой определяются потребностями заказчика и свойствами продукта.

Для препаратов медицинского назначения стадия упаковки усложняется тем, что препараты должны иметь высокую степень чистоты и очень часто абсолютную стерильность. Это заставляет использовать специальную технологию, позволяющую стерилизовать вещества и подготовленную для них тару, и произвести ее наполнение и укупорку в асептических условиях. Последнее достигается применением специальных автоматизированных линий фасовки и тщательным химическим и микробиологическим контролем производства.

2.СЫРВЕВАЯ БАЗА БИОТЕХНОЛОГИИ

Питательные среды для культивирования любого биотехнологического объекта содержат большое количество компонентов, основным из кото­рых считают тот, который является для него источником углерода и энер­гии. Это вещество называют субстратом, а все остальные - компонентами питания, без которых невозможно его нормальное развитие или его био­синтетическая активность.

Питательные среды готовят из различных видов сырья, которые услов­но делятся на две группы: синтетические и комплексные. Первые пред­ставляют собой индивидуальные соединения, для которых известен точ­ный химический состав, например глюкоза, сахароза (сахар), крахмал, этанол, низшие спирты и органические кислоты, углекислота, метан, н-парафины и пр. Вторые - сложную смесь органических веществ, в кото­рой, как правило, известно содержание одного «главного» ингредиента , влияющего на рост или биосинтетическую активность штамма-продуцента. Если первая - это очищенные продукты химической и пище­вой промышленности, то вторая — в основном те же химические соедине­ния, но не очищенные, а присутствующие в отходах пищевых произ­водств, сельского хозяйства, например глюкоза, гидрол, сахароза в мелас­се, аминокислоты в кукурузном экстракте или в белковых гидролизатах разного происхождения и т.д. У таких источников сырья есть только два преимущества. Это относительно низкая цена и наличие в составе росто­вых факторов, например витаминов, необходимых для нормального разви­тия штамма-продуцента и др. соединений, влияющих на рост и активность производственной культуры. В остальном им присущи только недостатки. Выпускаемые в жидком виде, они обсеменяются посторонней микрофло­рой, что требует сокращения времени их доставки и хранения. Наличие в них воды (не менее 50%) ведет к увеличению транспортных затрат. В су­хом виде - это, как правило, гигроскопичные продукты, требующие соответствующей упаковки и соответствующих условий их хранения на скла­де. При поступлении на биотехнологическое производство они подлежат обязательному для сырья входному контролю не только согласно паспорту (сертификату) изготовителя, но и микробиологическому и биохимическо­му контролю потребителем. Однако низкая стоимость таких источников сырья по-прежнему привлекает внимание многих потребителей как в России, так и за рубежом. Здесь также не следует забывать и о том, что отказ от их использования в сельском хозяйстве может привести к ослож­нению экологической обстановки в регионах, где эти отходы образуются.

В данной главе мы кратко охарактеризует основные источники сырья, используемые в биотехнологии.

Гидролизаты растительного сырья

Гидролизаты растительного сырья - это растворы Сахаров в виде смеси гексоз и пентоз, т.е. углеводов, содержащих соответственно 6 и 5 атомов углерода, образующиеся при кислотном гидролизе древесины, подсолнеч­ной и хлопковой шелухи, кукурузной кочерыжки, ботвы и т.п.

Гидролиз проводят разбавленной до 0.5% серной кислотой при повышен­ном давлении и температуре (160-170°С) в течение 2.5 часов. При гидро­лизе горячая серная кислота протекает через слой неподвижной твердой фазы (измельченного растительного сырья). В дальнейшем полученные гидролизаты очищают от вредных примесей, прежде всего содержащих фурфурол и его производные. Избыток серной кислоты удаляют в виде гипса фильтрованием после нейтрализации гидролизата известковым мо­локом.

Основной летучей примесью в растительных гидролизатах является фурфурол. Он подавляет обмен веществ у микроорганизмов и замедляет их рост уже при концентрациях 0.02%. Поэтому из гидр'олизатов расти­тельного сырья сначала обязательно выделяют фурфурол. Для этого гид­ролизаты охлаждают до температуры 30-35°С в вакуум-охладительной ус­тановке. При этом летучие компоненты гидролизата конденсируются и далее в зависимости от количества фракции образовавшегося фурфурола поступают в цех по переработке летучих соединений в товарный продукт.

Гидролизаты торфа считаются перспективными источниками сырья для получения кормовых дрожжей. При этом наибольшее значение имеет вер­ховой торф, содержащий в своем составе до 50% полисахаридов.

Гидролиз    торфа проводят разбавленной серной кислотой (0.5-0.7%) при температуре 160-170 С.

Торф, содержащий значительные количества азота и фосфора в легко­усвояемой форме, после предварительной подготовки может служить хо­рошим сырьем для производства кормовых дрожжей.

Сульфитный щелок - отход целлюлозо-бумажной промышленности. В современном производстве бумаги, осуществляемом на целлюлозо-бумажных комбинатах, образуются промышленные стоки в виде предгидролизатрв и сульфитного' щелока. Первичная обработка древесной щепы горячей водой удаляет из нее гемицеллюлозы. Их основу составляют при­родные полисахариды, построенные из остатков ксилозы и глюкозы с мо­лекулярной массой 10-40 тыс. При этом отщепляются содержащиеся в древесине ацетатные группы, образующие уксусную кислоту, которая в дальнейшем играет роль кислотного катализатора. Последний способству­ет протеканию частичного гидролиза гемицеллюлоз и накоплению в вод­ном растворе гексоз и пентоз. При варке целлюлозы из 1 т перерабатывае­мой древесины образуется до 6 м3 такого вида предгидролизатов, которые после предварительной подготовки могут быть использованы для культи­вирования дрожжей p. Candida -~ продуцентов кормового белка.

Для выделения целлюлозы как основы для производства бумаги из древесины широкое распространение получил сульфитный метод, при ко­тором древесное сырье подвергают вторичной обработке при повышенном давлении и температуре водным раствором солей сернистой кислоты. Не­целлюлозные компоненты древесного сырья, переходящие при такой об­работке в раствор (сульфитный щелок), можно после соответствующей обработки и подготовки использовать как субстрат для выращивания кор­мовых дрожжей. На 1 т получаемой целлюлозы образуется 6.5-8.0 куб.м сульфитного щелока. Состав последнего зависит от вида используемого сырья, режима переработки древесины и выхода целлюлозы.

     Глюкоза (С е Н-, О6)

Глюкоза является продуктом пищевой промышленности. Идеальный субстрат практически для всех биотехнологических производств. Однако в чистом виде в крупнотоннажном производстве не используется из-за вы­сокой цены. Чаще всего она входит в состав комплексного сырья в виде гидрола - отхода крахмало-паточного производства.

     Сахароза (Ci2H220ii)

Сахароза-не менее идеальный субстрат, чем глюкоза,практачески для всех биотехнологических производств. В виде сахарного песка или сахара-сырца крайне ограниченно по причине высокой стоимости используется как субстрат для культивирования микробных клеток - продуцентов неко­торых аминокислот, когда содержащие сахарозу другие источники сырья

применить невозможно. В количестве до 40% входит в состав мелассы -отхода производства сахара из сахарной свеклы или тростника, приготов­ленных специальным образом гидролизатов растительного сырья, в том числе сульфитного щелока, торфа.

Меласса широко используется в производстве хлебопекарских дрожжей, в биосинтезе большинства L-аминокислот (глутаминовой, лизи­на и др.). Однако современные сахарные заводы, совершенствуя свои тех­нологии, могут выдавать мелассу, содержащую до 20-30% сахара. Естест­венно, такой отход представляет меньший интерес для биотехнологии.

2.4.   Крахмал (СеН10О5)

Крахмал картофельный или кукурузный - продукт пищевой промыш­ленности. Разваренный в присутствии амилолитических ферментов, обра­зует вязкую однородную массу, которую используют как субстрат для биосинтеза ряда биологически активных веществ.

2.5.   Одноуглеродные соединения

Используются в промышленном культивировании метилотрофов -продуцентов кормовой микробной биомассы. Метилотрофы в качестве субстрата используют производные метана, например метанол, формаль­дегид, метиламин. Важнейшим из этих веществ является метанол как один из дешевых продуктов химической промышленности, выпускаемых круп­нотоннажно. Помимо метанола для культивирования бактерий может ис­пользоваться метан, являющийся основным компонентом природного га­за, дешевле метанола и менее токсичен. Для стран, обладающих газодобы­вающей промышленностью, к которым, в первую очередь, можно отнести Россию, эти факторы могут иметь решающее значение. Однако природ­ный газ многих российских месторождений загрязнен сероводородом, по­давляющим рост многих микроорганизмов. Поэтому возникает необходи­мость его предварительной очистки. В конце 70-х - начале 80-х годов в бывшем СССР было создано опытно-промышленное производство кормового белка из природного газа мощно­стью 12.0 тыс.т в год.

 

Санитарно-микробиологические исследования объектов окружающей среды

ПОЛУЧЕНИЕ КОРМОВЫХ БЕЛКОВ

Белки являются обязательными компонентами клеток любого живоuорганизма, выполняющими жизненно важные функции: каталитические регуляторные, транспортные, биоэнергетические, защитные от инфекции и действия стрессовых факторов; структурные, запасные и др. В вегета­
тивной массе растений на долю белков приходится 5—15 % сухого веще­ства, в зерне злаков — 8—18%, семенах масличных растений16—28 %, зерне зернобобовых культур — 20—40 %. В различных тканях организма человека и животных содержание белков обычно от 20 до 80 % их сухой массы.

Исходя из этого совершенно очевидно, что для образования клеток и тканей организма, а также поддержания его жизненных функций должен осуществляться постоянный синтез структурных и других форм белков. Для синтеза белковых молекул все живые организмы используют 18 ами­нокислот и два амида (аспарагин и глутамин). Однако после синтеза бел­ков их молекулы могут подвергаться модификациям, вследствие чего в составе белков обнаруживают до 26 аминокислот.

Растения и большинство микроорганизмов способны синтезировать все входящие в их состав аминокислоты из простых веществ — углеки­слоты, воды и минеральных солей, тогда как в организме человека и жи­вотных некоторые аминокислоты не могут синтезироваться и должны поступать в организм в готовом виде как компоненты пищи. Такие аминокислоты принято называть незаменимыми, к ним относятся валин, цин, изолейцин, лизин, метионин, треонин, триптофан, фенилаланв Отсутствие в пище хотя бы одной незаменимой аминокислоты привод к тяжелым заболеваниям человека, а недостаток их в кормах сниж продуктивность сельскохозяйственных животных.

В связи с необходимостью обеспечения человека и животных нез нимыми аминокислотами разработаны научно-обоснованные норм суточного потребления. Главными источниками незаменимых аминокислот для человека являются  белки животного или растительного происхождения, входящие в состав  пищи, Поступающие с пищей или кормом белковые вещества под действием ферментов желудочного сока гидролизуются до аминокислот, которые затем используются для образования белковых молекул человеческого или животного организма. При этом первостепенное значение  имеют незаменимые аминокислоты, недостаток которых вызывает прекращение синтеза белков и, следовательно, задержку роста и раз­вития организма.

Следует также учитывать, что все незаменимые аминокислоты долж­ны содержаться в белках пищи в определенных соотношениях, отвечаю­щих потребностям данного организма. Если хотя бы одна аминокислота окажется в недостатке, то другие аминокислоты, оказавшиеся в избытке, не будут использоваться для синтеза белков (в соответствии с механиз­мом синтеза белков). В таких условиях для обеспечения дальнейшего синтеза белковых веществ и поддержания жизнедеятельности организма потребуется дополнительное количество пищевого или кормового белка, вследствие чего увеличивается расходование пищи или корма. Последнее особенно важно учитывать в животноводстве, так как несбалансирован­ность кормовых белков по содержанию незаменимых аминокислот при­водит к значительному перерасходу кормов и существенному повыше­нию себестоимости животноводческой продукции.

Для предотвращения перерасхода кормов необходимо контролиро­вать, с одной стороны, сбалансированность белков корма по содержанию незаменимых аминокислот, а с другой стороны, количество белка в кор­ме. Для оценки аминокислотного состава белков определяют показатели, характеризующие их биологическую питательную ценность. Кормовые и пищевые белки, имеющие оптимальное содержание незаменимых амино­кислот, называют биологически полноценными белками.

В результате обобщения многочисленных данных по изучению ами­нокислотного состава белков Международной организацией по продо­вольствию и сельскому хозяйству (ФАО), образованной при ООН, разра­ботаны рекомендации, в которых дается оптимальное содержание неза­менимых аминокислот в пищевых и кормовых белках. Эти нормативы ис­пользуются в качестве эталона при оценке биологической питательной Ценности различных белков. Например, если принять за 100 % биологи­ческую ценность эталонного по рекомендациям ФАО белка, то биологиxеская ценность большинства животных белков составляет 90 — 95 %; ,белков вегетативной массы бобовых трав — 80 — 90 %; белков зерна зер-бобовых и семян масличных культур, клубней картофеля, корнепло­дов, овощей, вегетативной массы многих травянистых растений — %; белков зерна большинства злаковых культур — 60 — 70 %; особенно низкая биологическая ценность белков зерна кукуру­зы — 52—58 %.

В соответствии с нормами питания человек должен ежедневно полу­чать с пищей от 60 до 120 г полноценного белка. Для правильного корм­ления сельскохозяйственных животных необходимо, чтобы в их кормо­вом рационе в расчете на каждую кормовую единицу содержалось 100—120 г хорошо переваримого и полноценного белка.

Если содержание белков в растительной массе, используемой для кормления сельскохозяйственных животных, ниже, чем требуется по нормам, то во избежание перерасхода кормов и повышения себестоимо­сти животноводческой продукции количество белка в корме балансиру­ют путем добавления белковых концентратов. По такому же принципу контролируют содержание в кормовом белке незаменимых аминокислот. Недостающее до нормы количество какой-либо аминокислоты баланси­руют добавлением в корм чистых препаратов дефицитных аминокислот или белковой массы, имеющей более высокое содержание данной амино­кислоты по сравнению с принятым эталоном.

Наиболее сбалансирован­ное содержание незаменимых аминокислот имеют белки зерна сои, у нее отмечается лишь некоторый дефицит по метионину и триптофану. Отно­сительно высокую биологическую ценность имеют также белки зерна риса и гороха. В то же время широко возделываемые в нашей стране зер­новые культуры — пшеница, кукуруза, ячмень — отличаются несбалан­сированным аминокислотным составом белков. В белках зерна пшеницы и ячения очень мало содержится лизина, метионина и изолейцина, а в бел­ках зерна кукурузы еще и триптофана.

Вследствие того, что белки сои хорошо сбалансированы по аминокис­лотному составу и их содержание в семенах достигает 35—40 %, эта культура имеет важное значение как самый дешевый источник пищевого и кормового белка. Крупнейшим поставщиком соевого белка на мировом  рынке являются США. В России, хотя и проводятся работы по расшире­нию посевов сои, ее возделывание ограничено вследствие неблагоприят­ных климатических условий. Однако ведется поиск других источников полноценного белка. Одним из важных путей в этом направлении являет­ся расширение посевов других зернобобовых культур, которые так же, как и соя, способны накапливать в зерне большое количество белка (25—35 %), имеющего высокую биологическую ценность.

Наряду с этим разрабатываются и реализуются научные программы, связанные с созданием новых генотипов зерновых культур, отличающих­ся повышенным содержанием в зерне белков с улучшенным аминокис­лотным составом. Возможность создания таких программ стала реальной после открытия высоколизиновых мутантов кукурузы с генами Опейк-2 и Флаури-2, в белках зерна которых содержится значительно больше лизи­на и триптофана, чем у обычной кукурузы.

В результате селекционной работы, проведенной в Краснодарском научно-исследовательском институте сельского хозяйства им. П.П. Лукьяненко, на основе указанных генов получены высокобелковые и высоко-лизиновые гибриды кукурузы, которые по урожайности не уступают рай­онированным гибридам. В суммарном белке зерна полученных новых ге­нотипов кукурузы содержание лизина повышено на 50—80 %, трипто­фана — на 30—50 %. Использование зерна такой кукурузы для кормле­ния сельскохозяйственных животных позволяет существенно повысить их продуктивность и сократить затраты кормового белка на 20—25 %.

Зерновые культуры составляют большой удельный вес в структуре кормопроизводства нашей страны. В среднем на долю белков зерна при­ходится около 50 % от общего количества кормового белка, а в свиновод­стве и птицеводстве до 80 %. Для балансирования кормов, включающих в качестве основного компонента зерно злаковых культур, по белку и неза­менимым аминокислотам применяются концентрированные кормовые добавки — комбикорма.

Для приготовления комбикормов обычно используют мясо-костную и рыбную муку, отходы мясной и молочной промышленности, жмыхи масличных растений, отруби, шроты зернобобовых культур. Учитывая, что рыбная и костная мука, другие белковые отходы животного происхо­ждения во все большем объеме направляются на получение пищевых белков, требуется их полноценный заменитель, способный сбалансировать недостаток белков и незаменимых аминокислот не только в зерновой час­ти кормового рациона, но и в растительных компонентах комбикормов.

В результате изучения различных организмов было выяснено, что вы­сокой интенсивностью синтеза белков отличаются многие микроорганиз­мы, причем белки микробных клеток имеют повышенное содержание не­заменимых аминокислот (табл. 7.2). В специальных опытах была прове­дена пищевая и токсикологическая оценка белковой микробной массы, которая показывает, что клетки некоторых микроорганизмов можно ис­пользовать в качестве концентрированных кормовых добавок, не усту­пающих по биологической ценности белков соевому шроту или рыбной муке.

Микроорганизмы в качестве источников кормового белка имеют ряд преимуществ по сравнению с растительными и даже животными организ­мами. Они отличаются высоким (до 60 % сухой массы) и устойчивым со­держанием белков, тогда как в растениях концентрация белковых ве­ществ значительно варьирует в зависимости от условий выращивания, климата, погоды, типа почвы, агротехники и др. Наряду с белками в мик­робных клетках образуются и другие ценные в питательном отношении вещества: легкоусвояемые углеводы, липиды с повышенным содержани­ем ненасыщенных жирных кислот, витамины, макро- и микроэлементы.

Микроорганизмы чрезвычайно широко распространены в природе: в воздухе, воде рек, озер и горячих ключей, во льдах, в почве тропических и полярных стран. Однако состав микрофлоры в зависимости от условий обитания различен.

При использовании микроорганизмов на ограниченной площади можно организовать промышленное производство и получать большое количество кормовых концентратов в любое время года, причем микроб­ные клетки способны синтезировать белки из отходов сельского хозяйст­ва и промышленности и, таким образом, позволяют одновременно ре­шать другую важную проблему — утилизацию этих отходов в целях ох­раны окружающей среды.

Микроорганизмы имеют еще одно ценное преимущество — способ­ность очень быстро наращивать белковую массу. Например, растения сои массой 500 кг в фазе созревания семян способны в сутки синтезировать 40 кг белков, бык такой же массы — 0,5—1,5 кг, а дрожжевые клетки мас­сой 500 кг —до 1,5 т белков. В качестве источников кормового белка наиболее часто используются различные виды дрожжей и бактерий, мик­роскопические грибы, одноклеточные водоросли, белковые коагуляты травянистых растений.

Кормовые дрожжи. Дрожжи впервые стали использовать как источ­ник белка для человека и животных в Германии во время первой мировой войны, когда была разработана промышленная технология культивиро­вания пивных дрожжей (Saccharomyces cerevisiae), предназначенных для добавления в продукты питания. В нашей стране первый завод по произ­водству кормовых дрожжей был пущен в 1935 г. Дрожжи выращивали на гидролизатах из отходов древесины и другого целлюлозосодержащего растительного сырья, которые при гидролизе образуют легкоусвояемые для микроорганизмов формы углеводов. В настоящее время нашей био­технологической промышленностью на основе гидролиза растительного сырья производится значительный объем кормовых дрожжей для сель­ского хозяйства.

В качестве исходного сырья при такой технологии получения кормо­вого белка обычно используются отходы целлюлозной и деревообраба­тывающей промышленности, солома, хлопковая шелуха, корзинки под­солнечника, льняная костра, стержни кукурузных початков, свеклович­ная меласса, картофельная мезга, виноградные выжимки, пивная дроби­на, верховой малоразложившийся торф, барда спиртовых производств, отходы кондитерской и молочной промышленности.

Измельченное растительное сырье, содержащее большое количество клетчатки, гемицеллюлоз, пентозанов, подвергается кислотному гидро­лизу при повышенном давлении и температуре, в результате чего 60—65 % содержащихся в них полисахаридов гидролизуются до моноса­харидов. Полученный гидролизат отделяют от лигнина, избыток кисло­ты, применяемой для гидролиза, нейтрализуют известковым молоком или аммиачной водой. После охлаждения и отстаивания в гидролизат до­бавляют минеральные соли, витамины и другие вещества, необходимые для жизнедеятельности микроорганизмов. Полученная таким образом питательная среда подается в ферментерный цех, где осуществляется вы­ращивание дрожжей.

Для культивирования на гидролизатах растительных отходов наибо­лее эффективны дрожжи родов Candida, Torulopsis, Saccharomyces, кото­рые способны использовать в качестве источника углерода гексозы, пентозы и органические кислоты. При оптимальных условиях из 1 т отходов хвойной древесины можно получить 200 кг кормовых дрожжей.

Для получения кормовых дрожжей применяется технология их глу­бинного выращивания в специальных аппаратах — ферментерах (рис. 7.1), в которых обеспечивается режим постоянного перемешивания сус­пензии микробных клеток в жидкой питательной среде и оптимальные условия аэрации. В целях поддержания заданного температурного режи­ма в конструкции ферментера предусматривается система отвода избы­точного тепла. Рабочий цикл выращивания культуры дрожжей длится около 20 ч. По окончании рабочего цикла культуральная жидкость вместе с суспендированными в ней клетками дрожжей выводится из ферменте­ра, а в него вновь подается питательный субстрат и культура дрожжевых клеток для выращивания.

Выведенная из ферментера суспензия микробных клеток далее пода­ется на флотационную установку, с помощью которой производится от­деление биомассы дрожжей от культуральной жидкости. В процессе фло­тации происходит вспенивание суспензии, при этом микробные клетки всплывают на поверхность вместе с пеной, которая отделяется от жидкой фазы декантацией. После отстаивания дрожжевая масса концентрируется с помощью сепаратора. Для достижения лучшей перевариваемости дрож­жей в организме животных проводится специальная обработка микроб­ных клеток (механическая, ультразвуковая, термическая, ферментатив­ная), обеспечивающая разрушение их клеточных оболочек. Затем дрож­жевая масса упаривается до необходимой концентрации и высушивается, влажность готового продукта не должна превышать 8—10%.

В сухой дрожжевой массе содержится 40—60 % сырого белка, 25—30 % усвояемых углеводов, 3—5 % сырого жира, 6—7 % клетчатки и зольных веществ, большое количество витаминов (до 50 мг%). Посредст­вом обработки дрожжей ультрафиолетовыми лучами проводится их обо­гащение витамином D2, который образуется из содержащегося в них эр-гостерина. Для улучшения физических свойств готового продукта кормо­вые дрожжи выпускают в гранулированном виде.

На основе ферментации гидролизатов растительного сырья наряду с производством кормовых дрожжей получают также этиловый спирт. В этом случае особенность технологии заключается в том, что вначале про­водится спиртовое брожение, в результате которого происходит утилиза­ция содержащихся в гидролизате гексоз. После отгонки спирта остается неиспользованный субстрат — барда, содержащая в основном пентозы. Эта послеспиртовая барда используется далее как питательная среда для выращивания кормовых дрожжей. Таким образом, из гидролизатов рас­тительных отходов одновременно могут быть получены два вида ценной продукции.

В России и некоторых других нефтедобывающих странах разработа­ны технологии получения кормовых дрожжей из н-парафинов нефти. Дрожжевые клетки могут использовать в качестве источников углерода для их роста неразветвленные углеводороды с числом углеродных ато­мов от десяти до тридцати. Они представляют собой жидкие фракции с температурами кипения 200—320°С, которые выделяют из нефти путем ее перегонки.

Хороший субстрат для выращивания кормовых дрожжей — молоч­ная сыворотка, являющаяся производственным отходом при переработке молока. В 1 т молочной сыворотки в среднем содержится 10 кг полноцен­ного белка и 50 кг дисахарида лактозы, который легко утилизируется микроорганизмами. Для выделения из молочной сыворотки белков разра­ботана эффективная технология с применением метода ультрафильтра­ции низкомолекулярных веществ через мембраны. Получаемые таким способом белки используются для приготовления сухого обезжиренного молока или в качестве пищевой белковой добавки. Остающиеся после от­деления белков жидкие отходы (пермеат), содержащие лактозу, могут быть затем переработаны путем культивирования дрожжей в обогащен­ные белками кормовые продукты.

Кроме углеводов и углеводородов в качестве источников углерода дрожжевые клетки могут также использовать низшие спирты — метанол и этанол, которые обычно получают из природного газа или раститель­ных отходов. Дрожжевая масса, полученная после культивирования дрожжей на спиртах, отличается высоким содержанием белков (56—62 % от сухой массы) и в ней меньше содержится вредных приме­сей, чем в кормовых дрожжах, выращенных на н-парафинах нефти.

По сравнению с растительными источниками белков кормовые дрож­жи имеют повышенное содержание нуклеиновых кислот (4—6 % от су­хой массы), которые в такой концентрации оказывают вредное воздейст­вие на организм. В результате их гидролиза образуется много пуриновых оснований, превращающихся затем в соли мочевой кислоты, которые от­кладываясь в организме, могут быть причиной мочекаменной болезни, остеохондроза и других заболеваний. Вследствие этого оптимальная нор­ма добавления дрожжевой массы в корм сельскохозяйственных живот­ных обычно составляет не более 5—10% от сухого вещества или 10—20 % дрожжевого белка от общего количества белка в кормовом ра­ционе.

Кормовые дрожжи, культивируемые на питательной среде из н-пара-финов нефти, могут содержать многие вредные примеси — производные бензола, D-аминокислоты, аномальные липиды, различные токсины и канцерогенные вещества, поэтому их подвергают специальной очистке (экстракция бензином).

Получение аминокислот

По значению для м/организма аминокислоты подразделяют на заменимые и незаменимые. К незаменимым относят те аминокислоты, которые не синтезируются в человеческом и животном организме. Для человека- 8 аминокислот: изолейцин, лейцин, лизин, метиония, треонин, триптофан, валин, фенилаланин. М/организмы сами синтезируют аминокислоты из аммиака и нитратов. Потребность в аминокислотах велика. В мире производится 500 тыс.тонн в год аминокислот. Широко используются в пищевой промышленности как питательные добавки. В больших количествах аминокислоты применяют как добавку к растительным кормам. Также применяют в медицине-4%, косметике. По объему .и по значимости первое место занимает- метионин.

Технология получения аминокислот базируется на принципах ферментации продуцентов и выделении вторичных метаболитов. Размножают маточную культуру вначале на агаризованной среде в пробирках, затем на жидкой среде в колбах, посевных аппаратах, затем в головных ферментаторах.

Если аминокислота предусмотрена в качестве добавки к кормам, то биотехнологический процесс кормового продукта включает следующие стадии:

• ферментацию

• стабилизацию

Известны 2 способа получения аминокислоты:

• одноступенчатый

• двухступенчатый

По первому слособу-продуцент аминокислоты культивирует на оптимальной для биосинтеза среде. Целевой продукт накапливается в культуральной жидкости, из которой его выделяют.

В двухступенчатом способе микроб-продуцент культивирует в среде, где он получает и синтезирует все необходимые вещества для последующего синтеза целевого продукта.

ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ МИКРОБНЫХ ИММУНОБИОЛОГИ­ЧЕСКИХ ПРЕПАРАТОВ

К микробным иммунобиологическим препаратам относят вакцины, им­мунные сыворотки и диагностикумы.

Вакцины по праву занимают ведущее место в лечении и профилактике инфекционных заболеваний. Термин "вакцина" происходит от латинского слова vacca -корова. Вначале под вакциной понимали содержимое оспен­ных пузырьков, получаемое от коров для предохранительных прививок человеку. В настоящее время в понятие вакцины входит все, что получают из патогенных микробов и что вызывает образование специфических ан­тител при введении в организм. Вакцины получают как из самих патоген­ных микроорганизмов, так и используя продукты их жизнедеятельности. Применение вакцин обеспечивает невосприимчивость к заражению соот­ветствующим возбудителем и стимулирует защитные силы организма.

Вакцина - это препарат ослабленного или убитого инфекционного аген­та (бактерии, вируса и т.п.) или его отдельных компонентов, несущих ан­тигенные свойства и способных вызывать образование активного иммуни­тета к данной инфекции.

В настоящее время вакцины можно разделить на четыре основные груп­пы:

1. вакцины из клеток микроорганизмов:

-      живые;

-      убитые;

2. химические вакцины, представляющие собой различные, извлекаемые
химическим путем, компоненты микробной клетки:

-      полисахаридные;

-      рибосомальные;

 

3.     анатоксины - вакцины, получаемые из продуктов обмена клеток;

4.    вирусные вакцины:

-      живые;

-      инактивированные.

Вакцины могут быть в виде монопрепаратов, предназначенных для профилактики специфических инфекций, а также в ассоциированной фор­ме для создания иммунитета против нескольких инфекций. В зависимости от числа входящих в вакцину микробных видов их называют ди-. три- и т.д. или поливакцинами.

Вакцины из клеток патогенных микробов

Вакцины из инактивированных клеток патогенов - представляют собой взвесь клеток болезнетворных бактерий или грибов, обладающих выра­женной иммуногенностью, но лишенные патогенности. Их получают инактивируя микробную взвесь нагреванием, добавлением формалина, спирта, ацетона, облучая ее ультрафиолетовым светом или разрушая ульт- развуком. В качестве одного из примеров приготовления убитой вакцины может быть приведена технология производства сухой спиртовой брюшнотифозной вакцины. Для ее изготовления применяют штаммы бактерий, возбудителей брюшного тифа. Одним из таких штаммов является штамм Salmonella typhi.

Технологический процесс, состоит из следующих стадий. I) Подбор вакцинных штаммов. Для приготовления убитой вакцины отбирают несколько наиболее вирулентных и полноценных в антигенном отношении штаммов. Вирулентность - степень болезнетворного действия микроба. Ее можно рассматривать как способность микроба адаптироваться к организму хозяина, т.е. к новой среде, и преодолевать его защитные механизмы. 2) Получение маточной культуры (посевного материала). Посевным материалом служит 18-часовая агаровая культура в изотоническом растворе хлорида натрия (0,8%NaCl) с числом клеток 5-10 4 кл/мл, вводимая в объеме 5-10% к объему засеваемой среды, или 5-6-часовая бульонная культура. 3) Приготовление и стерилизация питательной среды. Брюшнотифозные бактерии выращивают на белково-гидролизатных или нолуеинтетических средах, позволяющих получать достаточно высокий выход биомассы, например бульон гидролизата казеина. 4) Выращивание микробной взвеси - ферментация. Выращивание проводят в асептических условиях методом глубинного культивирования в ферментерах. Режим культивирования периодический. В процессе культивирования подается стерильный воздух. Дополнительное перемешивание эарируемой среды обеспечивается турбинной или роторной мешалкой. Параметры культивирования: t=37°C, pH 7,6-7,8. Выращивание проводят 10-12 ч до концентрации бактерий порядка 4-6 -1010 кл/мл. 5) Инактивация микробной взвеси. Для проведения инактивации полученную взвесь микробных клеток двукратно обрабатывают 96%-м этиловым спиртом в соотношении 1:4 и 1:10 соответственно. Обработку проводят при тщательном перемешивании в специальных емкостях. 6) Отделение клеток от кулътуралъной жидкости, как правило, проводят центрифугированием. 7) Титрование вакцины (стандартизация). Инактивированную биомассу ресуспенди-руют в зотоническом растворе хлорида натрия. Готовая вакцина должна содержать эпределенное количество микробных тел в 1 мл. Титр убитой брюшнотифозной вакцины составляет 5 • 109 кл/мл. К готовой вакцине прибавляют консервант, например, фенол (0,25%). 8) Контроль производится трем основным критериям: а) стерильность (отсутствие живых клеток генного   микроба);   б)   безвредность   (определение   переносимости   и токсичности);   в)   эффективность   (способность   препарата  формировать антибактериальный иммунитет).  9) Розлив в ампулы;   10) Лиофилизация. пензюо в  ампулах замораживают при t=  - 40  -  50°С и лиофильно высущивают (в режиме возгонки воды). 11) Запайка ампул под вакуумом.

Убитыми являются вакцины против брюшного тифа, бруцеллеза (лечебная), гонореи, дизентерии, коклюша, холеры, лептоспироза и др.

7)Вакцины из живых клеток -   содержат   живые микробы, вирулентность которых ослаблена при сохранении их иммуногенных свойств.

Живые вакцины не должны содержать консервантов или каких-либо других ингибиторов роста и развития вакцинных штаммов. Сухие вакцины имеют вид белой или желтоватой плотной массы, хорошо растворимой в воде. Перед употреблением сухую вакцину растворяют в необходимом объеме стерильного изотонического раствора хлорида натрия или в стерильной дистиллированной воде с соблюдением всех правил асептики Если живые вакцины выпускают в жидком виде, то допускается ис­пользование стабилизаторов: сахарозы, хлорида магния или забуференно-го изотонического раствора хлорида натрия. Жидкие вакцины представ­ляют собой мутные жидкости, легко суспендирующиеся при встряхива­нии, в которых при хранении образуется осадок.

В настоящее время применяют вакцины из живых ослабленных микро­организмов для профилактики туберкулеза (вакцина БЦЖ), бруцеллеза, туляремии, чумы, гриппа, оспы, полиомиелита и др. Живые вакцины вво­дят обычно однократно.

Вакцины из клеточных компонентов патогенных микробов

Вакцины полисахаридные. Полисахариды, содержащие различные саха­ра или аминосахара, не связанные с липидами или белками при достаточ­ной величине молекулярной массы могут выступать в роли полноценных антигенов.

Рибосомальные вакцины. У прокариот рибосомы содержат примерно 60% РНК и 40% белка, у эукариот - 55% и 45% соответственно. В стационарной фазе бактериальная клетка содержит 104 рибосом; это число возрастает в период экспоненциальной фазы роста. Впервые рибосомальный препарат из штамма Mycobacterium tuberculosis был приготовлен в 1965 году. Рибосомы в чистом виде не применяют в качестве вакцин, но используют обогащенные ими полисахаридные и другие антигенные препараты.

Анатоксины

Анатоксины - препараты, полученные из обезвреженных экзотоксинов микробов и обладающие антигенными и иммуногенными свойствами. В настоящее время широко применяются анатоксины, полученные из дифтерийного, столбнячного, ботулинического, стафилококкового экзотоксинов, а также из токсинов, возбудителей газовой гангрены, яда некоторых змей и растений. Как правило, анатоксины выпускаются сорбированными на геле гидрооксида алюминия. При использовании анатоксинов вырабатывается активный иммунитет.

 Иммунные сыворотки и гамма-глобулин

Специфические иммунные сыворотки содержат антитела к определенным видам микроорганизмов. Сывороточные препараты используют в следующих целях:

для  лечения,   так   как  введение  в  организм   антител   обеспечивает

быстрое обезвреживание микробов и их токсинов;

для профилактики, чтобы быстро создать невосприимчивость у человека, контактировавшего с больным или инфицированным материалом;

микроорганиз­ма выделенного от больного, что позволяет установить вид (тип) мик-

Введение сыворотки в организм человека создает пассивный иммунитет.

Различают сыворотки антитоксические, которые получают путем иммуни­зации животных анатоксинами или токсинами микробов, и антимикробные. домученные при многократной иммунизации животных бактериями и эндо­токсинами. Наиболее эффективны антитоксические сыворотки, которые бы­стро обезвреживают экзотоксины в организме больного. Их применяют для лечения дифтерии, скарлатины, столбняка, ботулизма, газовой гангрены и заболеваний, вызванных стафилококками. Антимикробные сыворотки менее эффективны, поэтому их используют реже.

 

ТЕХНОЛОГИЯ ПРОИЗВДСТВА БИОГАЗА

Обострение экологических проблем, истощение запасов невозобнов­ляемых энергоресурсов, рост цен на них, обусловили глобальный интерес к разработке и использованию технологии биоконверсии органических отходов для получения тепловой и других видов энергии.

Известно, что животные плохо усваивают энергию растительных кор­мов и более половины ее уходит в навоз, который прежде всего является ценнейшим видом органических удобрений. Вместе с тем, он может быть использован в качестве возобновляемого источника энергии. Концентра­ция животных на крупных фермах и комплексах обусловила увеличение объемов навоза и навозных стоков, которые должны утилизироваться, не загрязняя окружающую среду.

Одним из путей рациональной утилизации навоза и навозных стоков является их анаэробное сбраживание, которое обеспечивает обезврежи­вание навоза и сохранение его как важнейшего органического удобрения при одновременном получении биогаза.

Очистные сооружения, использующие анаэробное брожение для об­работки органических отходов, известны с конца прошлого столетия. Первый такой опыт относится к 1895 г., когда в английском городе Экзе-тер был введен в эксплуатацию так называемый септиктенк для очистки коммунальных отходов. Помимо чисто санитарных задач, эта установка обеспечивала получение биогаза, который использовался для освещения улиц.

Анаэробный метод обработки отходов долгое время применялся для стабилизации осадков водоочистных станций и отходов животноводства. Однако с началом энергетического кризиса 1970-х годов этот метод при­влек особое внимание в связи с идеей получения биогаза в основном из навоза сельскохозяйственных животных.

Анаэробное сбраживание навоза с получением биогаза осуществляет­ся в специальных биогазовых установках, основными элементами кото­рых являются герметические емкости (рис. 8.1).

Технологический процесс обработки навоза осуществляется следую­щим образом. Из животноводческого копительную емкость 2, далее фекальным насосом 3 его загружают в ме­тантенк 4 (емкость для анаэробного сбраживания навоза). Биогаз, обра­зующийся в процессе брожения, поступает в газгольдер 5 и далее к потре­бителю. Для нагрева навоза до температуры брожения и поддержания теплового режима в метантенке установлен теплообменник б, через кото­рый протекает горячая вода, нагреваемая в котле 7. Сброженный навоз выгружают в навозохранилище 8.

В метантенке обеспечиваются все необходимые параметры процесса (температура, концентрация органических веществ, кислотность и др.). Метантенк имеет тепловую изоляцию, позволяющую обеспечивать и поддерживать на заданном уровне температурные режимы сбраживания, в нем также имеется устройство для постоянного перемешивания навоза. Поступление навоза в метантенк регулируется так, чтобы процесс сбра­живания протекал равномерно.

Во время сбраживания в навозе развивается микрофлора, которая по­следовательно разрушает органические вещества до кислот, а последние под действием синтрофных и метанообразующих бактерий превращают­ся в газообразные продукты — метан и углекислоту. Степень разложения органического вещества при анаэробном сбраживании навоза составляет 25—45 %.

-    Деградация органических веществ при метаногенезе осуществляется как многоступенчатый процесс, в котором углеродные связи постепенно разрушаются под действием различных групп микроорганизмов. Соглас­но современным воззрениям, анаэробное превращение практически лю­бого сложного органического вещества в биогаз проходит через четыре последовательных стадии гидролиз сложных биополимерных молекул (белков, липидов, по­
лисахаридов и др.) на более простые мономеры: аминокислоты, углево­
ды, жирные кислоты и др.;

-    ферментация (брожение) образовавшихся мономеров до еще бо­
лее простых веществ — низших кислот и спиртов, при этом образуются
также углекислота и водород;

-    ацетогенная стадия, на которой образуются непосредственные
предшественники метана: ацетат, водород, углекислота;

-    метаногенная стадия, которая ведет к конечному продукту расще­
пления сложных органических веществ — метану.

            Первичные анаэробы разлагают органические вещества до предшественников мета­на: водорода и углекислоты, ацетата, метанола, метиламидов, формиата. Ввиду субстратной специфичности метаногенов их развитие без трофи­ческой связи с бактериями предыдущих стадий невозможно. В свою оче­редь, метановые бактерии, используя вещества, продуцируемые первич­ными анаэробами, определяют возможность и скорость реакций, осуще­ствляемых этими бактериями. Центральным метаболитом, осуществляю­щим регуляторную функцию в метанообразующем сообществе, является водород. За счет поддержания низкого парциального давления водорода в системе становится возможным его межвидовой перенос, меняющий метаболизм первичных анаэробов в сторону образования непосредствен­ных предшественников метана. Если водород из системы не удаляется, то образуются более восстановленные продукты — летучие жирные кисло ты и спирты. Метаболизм этих соединений осуществляется синтрофны-ми бактериями, для жизнедеятельности которых необходимо связывание образующегося водорода метановыми бактериями.

Физические свойства биогаза  позволяют судить о воз­можностях его использования. Объемная теплота сгорания, температура воспламенения и предел воспламеняемости определяются в основном со­держанием СН4, поскольку незначительное количество Н2 и H2S на этот показатель почти не оказывает влияния, зоо

Биогаз успешно применяется как топливо. Его можно сжигать в го­релках отопительных установок, водогрейных котлов, газовых плит, ис­пользовать в холодильных установках абсорбционного типа, в инфра­красных излучателях, в автотракторных двигателях, в газовом цикле Отто (с искровым зажиганием) и газодизельном цикле (с впрыскиванием небольшой дозы запального дизельного топлива). Карбюраторные двига­тели легко переводятся на газ: достаточно заменить карбюратор на смеси­тель.

При производстве электроэнергии из биогаза в электрический ток преобразуется всего 30 % его энергоресурса, остальная часть — отброс­ная теплота. Ее можно использовать при нагревании воды для бытовых нужд и содержания скота, отопления жилых помещений и теплиц, подог­рева воздуха для сушилок, а также при регулировании микроклимата в животноводческих помещениях и нагрева навоза до нужной температуры брожения в биогазовых реакторах.

Кроме того, метановое сбраживание навоза обеспечивает его дезодо­рацию, дегельминтизацию, уничтожение способности семян сорных рас­тений к всхожести, перевод удобрительных веществ в легкоусвояемую растениями минеральную форму. При анаэробной обработке навоза фосфор и калий практически пол­ностью сохраняются в сброженной массе. Потери азота, которые при дру­гих методах обработки навоза составляют до 30 %, в процессе метаноге-неза не превышают 5 %. При этом значительная часть азота, присутст­вующего в свежем навозе в форме органических соединений, в сброжен­ном— содержится в аммиачной форме, которая быстро усваивается растениями.

Экономическими критериями невозможно оценить тот факт, что ана­эробная переработка навоза животных находится в полном согласии со все более строгими требованиями к соблюдению принципов охраны ок­ружающей среды. Навоз после анаэробной обработки является дезодори­рованным, биологически стабилизрованным, не привлекает насекомых.

После анаэробной обработки в навозе значительно уменьшается со­держание пахнущих веществ При анаэробной обработке наличие поливирусов снижается на 98,5 %, индекс Э. коли — от 108 до 105—104 и зародышей паразитов на 90—100%.

Экологические требования к природоиспользованию приобретают особое значение в условиях хозрасчета, когда требуется возмещение ис­пользованных природных ресурсов законодательными актами. При высо­ких ценах на энергию перспективной становится малоэнергоемкая анаэ­робная биологическая очистка с положительным выходом энергии в виде

 

Получение микробных препаратов-стимуляторов и регуляторов роста

Микроорганизмы, фиксирующие азот из воздуха, подразделяют на свободноживущие в природных условиях и на симбиотические с растениями и другими микробами.

К свободноживущим относят азотобактерии, актиномицеты, к микробным симбионатам-азотоспириллы, симбиоты бобовых растений.

Микробы-азотофиксаторы ежегодно фиксируют примерно 18  107 т молекулярного азота из воздуха, из которых 15% приходится на цианобактерии.

К  микробным  стимулятороам   и  регуляторам   роста - гиббериллины, фузикокцин, ауксины.

К удобрителям почв можно отнести ризотрофин. Представляет собой торфяную основу, смешанную с ризобактериями. Технологический процесс включает подготовку клубеньковых бактерий и получение инокулята. Инокулят готовят в условиях умеренной аэрации на средах содержащие растительные экстраты и дополнительно вводят неорганические соли фосфаты и карбонаты. Накапливают 5 млрд. клеток в 1 мл. Такую суспензию вносят в “ кислый” торф при 10-15 С. Торф до “обсеменения” бактериями должен быть гомогенным, подсушенным, увлажненным. В подготовленный торф вносят 50 мл суспензии бактерий, перемешивают во вращающем барабане и сохраняют до полугода при 5-10С.

Как регуляторы роста применяется в промышленности. Гиббериллиновая кислота синтезируется микромицетом, относится к группе растительных гормонов сложного химического строения. Образование и накопление гиббериллинов - процесс занимает до 15 суток.

Питательные среды для выращивания содержат 6% глюкозы, глицерина, 0,7% соли  аммония,  0,3% неорганический  фосфат,  микроэлементы.  Выход  гиббериллинов - 200 мг/л культуральной жидкости.                 

Фузикокцин-относят к регуляторам роста растений гормонального типа. Он индуцирует корнеобразование у многих древесных и плодовоягодных культур, стимулирует прорастание семян, моркови. Фузикокцин образуется грибом. Продукт получают при глубинной ферментации в периодическом режиме на средах с глюкозой или сахаразой и соевой мукой. Затем экстрагируют хлороформом из культуральной жидкости, сорбируют активированным углем, кристализируют.

 

Прикладная генетика и клеточная ин.женерия

1. Общая характеристика генетической инженерии.

Генетическая инженерия - это методы получения рекомбинатных ДНК, объединяющих последовательности равного происхождения, т.е. осуществляется перенос целых хромосом от клеток-доноров в клетки-реципиенты - (получить рекомбинатную ДНК).

В основу генноинженерных методов заложена способность ферментов рестриктоз расщеплять ДНК на отделочные нуклеотидные последовательности, которые могут быть использованы для встраивания их в генны бактериальных клеток с целью получения гибридных или химерных форм, эти гибридные формы состоят из собственной ДНК и дополнительно встроенных фрагментов несвойственной им ДНК. Поэтому методами генетической инженерии добиваются клонирования генов. Это когда выделяют нужный отрезок ДНК из какого-либо биообъекта и затем получают любое количество его, выращивая колонии генетически идентичных клеток, содержащих заданный участок ДНК . Тонирование ДНК - это получение ее генетически идентичных колоний.

Подразделяют:  

 - генную инженерию

 - геномную инженерию

 - хромосомную инженерию.

Сущность первой состоит в целенаправленном использовании перестроек естественного генома, для изменения генетических характеристик известных вирусов и клеток. В качестве примера можно привести перемещение в вирусные геномы некоторых клеточных генов, придающих вирусам свойства онкогенности.

Сущность генной инженерии заключается в целенаправленной глубокой перестройке генома прокариот вплоть до создания новых видов. При геномной инженерии вносят большое количество дополнительной генетической информации и получают гибридный организм, который отличается- от исходного по многим признакам. Здесь возможно получение половых (слияние гамет) или соматических (слияния неполовых клеток).

 Хромосомная инженерия - сеть генетической инженерии, объектами ее является хромосомы клеток высших и низших микроорганизмов (прокариоты, эукариоты), благодаря хромосомной инженерии стало возможным лечение наследственных заболеваний, селекция пород животных, различных видов растений.

Аэробные биохимические процессы в очистке сточных вод

Комплекс очистных сооружений включает четыре основных блока: механической очистки, биологической очистки, обеззараживания воды и обработки осадков.

В блоке механической очистки из воды изымаются нерастворимые примеси, при этом они разделяются на преимущественно неорганические и преимущественно органические. Последовательность удаления разных примесей обусловлена степенью их дисперсности и удельной массой.

На первой стадии очистки воду процеживают через решетки, задерживающие крупные примеси - отбросы. Сухое вещество отбросов на 95 % состоит из органических соединений. На следующей стадии - в несколовках - вода освобождается от тяжелых минеральных примесей (песок). На последней стадии механической очистки в первичных отстойниках выделяют часть взвешенных веществ, которые в результате седиментации образуют осадок, сырой осадок. Осадок содержит в основном легко загнивающие примеси органического характера.

Применение биологических методов для очистки сточных вод основано на способности различных групп м/организмов использовать компоненты этих вод в качестве эффективных источников энергии и материала для построения своего тела. Биологическая очистка может осуществляться в аэробных и анаэробных условиях. Аэробные методы применяют в основном для малоконцентрированных субстротов (концентрация по БПК до 1000 мг/л). Концентрация городских сточных вод по БПК обычно не выходят за пределы 200-400 мг/л. Для их очистки применяют аэробные методы.

Блок биологической очистки включает биоокислитель (аэротенк или биофильтр) и вторичный отстойник. Избыток биомассы постоянно удаляют из биоокислителя, а так как это субстрат органической природы, его передают на сооружения обработки осадка. В процессе механической и биологической очистки исходные загрязнения сточной воды концентрируется в сравнительно небольшом объеме осадков (для городских сточных вод не более 1,5% от объема отработанной воды).

Очистка сточной воды заканчивается ее обеззораживанием. Для этого на городских станциях очистки сточных вод обычно применяют хлор. В аэробных условиях сточные воды очищают в сооружениях двух основных модификацпий: с активной биомассой, взвешенной в воде, или с прикрепленной к материалу инертной загрузки.

Первый вариант реализуется в аэротенках. Биоциноз аэротенков носит название активного ила.

Активный ил поддерживается во взвешенном состоянии с помощью воздуха. Для м/организмов активного ила воздух служит источниками кислорода и поддерживает хлопья ила во взвешенном состоянии. Активный ил и сточная вода поступают с одной стороны аэротенка и выводятся с другого торца.

Вторая модификация процесса биологической очистки воды осуществляется в биофильтрах. Важнейшая составная часть биофильтров - загрузочный материал, в качестве которого используют шлак, териал, в качестве которого используют шлак, гравий, керамзит, пластмассовые материалы. Активная биомасса, называемая биопленкой, образует слизистый слой, обвалакивающий отдельные элементы загрузки.

Сточная вода подается сверху, орошая поверхность загрузки. Проходя через биофильтр, вода тонким слоем оттекает загрузочный материал, контактируя с биопленкой. Воздух попадает в тело фильтра либо путем естественной тяги, либо нагнетается вентиляторами. Толщина слоя биопленки - 3 мм. Потоком воды часть биопленки, в основном отмершая, выносится из биофильтра и осаждается во вторичном отстойнике, откуда поступает на сооружения обработки осадка.

Физико-химическая и химическая характеристика активного ила.

По внешнему виду активный ил представляет собой хлопьевидную массу от светло-серого до темно-коричневого цвета. Хлопья ила густо заселены бактериями, которые заключены в слизистую массу. В диапазоне рН 4-9 хлопья активного ила несут отрицательный заряд, имеют развитую поверхность и большую адсорбционную способность. Механизм хлопьеобразования связан с процессом развития колоний бактерий. На поверхности клеток накапливаютсявнеклеточные полимеры, которые имеют анионоактивные неионоактивные функциональные группы. Основная масса внеклеточных полимеров состоит из полисахаридов и белков. В процессе очистки сточных вод интенсивное накапливание бактериями полимеров происходит в фазе эндогенного дыхания, сначала клетки окисляют запасные вещества, затем клеточные липиды, углеводы, белки. Образовывать хлопья способны многие роды бактерий. В смешанных культурах хлопья образуются интенсивнее. Структура хлопьев ила видоизменяется при массовом развитии в активном иле нитчатых бактерий и некоторых грибов. Хлопья увеличиваются в размере, становятся рыхлыми. Пружиняющиеся нити бактерий, пронизывая хлопья, припятствуют их осаждению. Это явление называется вспуханием активного ила. Наблюдается вспухание при избытке углеводов в сточной воде или недостатке биогенных элементов при недостаточной аэрации. Вспухший ил выносится из вторичных отстойников, ухудшая качество очищенной воды. При этом вспухший ил имеет и полезные свойства. Активная поверхность такого ила больше, чем у обычного и он лучше изымает из сточной воды органические загрязнения. Также потребность в азоте и фосфоре у нитчатых бактерий существенно ниже, чем у обычных бактерий, пэтому такой ил выгодно использовать для очистки сточных вод с недостаточным количеством биогенных элементов.

Органическое или беззольное вещество активного ила состоит из белков, жиров, углеводов. Беззольная часть состоит изкислорода, азота, водорода, углерода. Соотношение этих элементов зависит от состава  обрабатываемых сточных вод и технологического режима очистки. Для илов городских очистных станций зольность составляет 25-30%. По сравнению с клеточным веществом в иле возрастает содержание железа и кремния. При очистке жесткой воды в хлопке ила обнаруживается нерастворимый фосфат кальция, увеличивающий плотность хлопка и зольность активного ила.

Микробиологическая характеристика активного ила и биопленки.

Бионаселение активного ила и биопленки представлен м/организмами разных систематических групп-бактерий, простейшие, грибы,водоросли, многоклеточные животные, черви, личинки и др. Количество бактерий в активном иле составляет от 108 до 1014 на 1 г сухого вещества. Состав бактериального населения зависит от состава обрабатываемой воды и от условий, в которых осуществляется процесс очистки. К числу самых распространенных бактерий относятся псевдомонады(50-88%) всего бактериального населения. В активном иле присутствуют аммонифицирующие,      целлюлозоразрушающие,      жирорасщепляющие, нитрифицирующие бактерии. В илах биокислитедей развиваются м/организмы всех трех температурных групп (психрофильные, мезофильные, термофильные).

В условиях достаточной концентрации кислорода в активном иле преобладают аэробы, но и распространены и факультативные анаэробы- Практически всегда присутствуют актиномицеты,  обнаруживаются грибы и дрожжи.  Массовое развитие грибов нежелательно, т.к. препятствует осаждению активного ила. Из животного населения- простейшие, которые представлены 2 типами-инфузориями и саргомастигофарами. Функции простейших: питаясь бактериями, они регулируют численность их, выполняют санитарную функцию, поедая сапрофитные и патогенные м/организмы, они осветляют воду. Микрофлора активного ила более чутко, чем бактерии реагирует на любые нарушения технологического режима, служит индикатором процессов очистки воды в биокислителях. В аэротенках встречаются более 100 видов микрофауны.

При аэрировании сточной воды прежде всего начинают размножаться амебы и жгутиковые простейшие. В фазе логарифмического роста бактерий из воды извлекается основное количество загрязнений. По мере перехода бактерий в стадию -эндогенного дыхания образуются хлопья активного ила.

Условия обитания м/организмов в биофильтрах значительно отличаются от условий в аэротенкае. Видовой состав бак.населения активного ила и биопленки идентичны. Однако количественные соотношения видов отличаются. Так при численности бактерии 2×1014 в 1м3 аэротенке (анаэробы составляют 0, 01%), то в биофильтре, содержится 1×1012 клеток в 1м3 объема, из них анаэробы составляют 28, 8%. 0бьясняется тем, что концентрация кислорода изменяется как по высоте биофильтра, так и по толщине слоя биопленки, покрывающей загрузочный материал. Пониженная концентрация кислорода наблюдается в верхних слоях загрузочного материала вследствие наиболее высокой нагрузки на них органических вещесгв.

Основная часть бактерий сосредоточена в биолленке в верхнем слое глубиной до 0,5 м.  Здесь интенсивно размножаются грибы, нитчатые бактерии, жгугиковые. Чрезмерное развитие грибов и нитчатых бактерий ухудшают условия аэрации. Поверхность биофильтра часто покрывается слоем водорослей. В их присутствии бактерии легче усваивают трудноокисляемые вещества. В верхней зоне прирост биомассы самый большой при малом видовом разнообразии. В средней зоне биофильтра за счет снижения количества питательных веществ уменьшается численность гетеротрофов-грибов и бактерий. Разнообразие м/организмов больше, чем в верхнем слое. Нижняя зона биофильтра характеризуется большим видовым разнообразием организмов при малой численности и биомассе. В большом количестве развиваются круглые и малощетинковые черви. Небактериальное население активного ила и биопленки различаются. Если в активном иле черви присутствуют в небольшие количествах, то в биофильтре они постоянные обитатели. Черви в  качестве источника питания потребляют биопленку. Основная масса червей развивается в нижней половине фильтра. Куда с поверхности загрузки смывается отмершая биопленка вышележащих слоев. Минерализуя биоиленку и тем самым способствуя ее выносу из биофильтра, черви  предотвращают заиливание загрузки. Также черви обеспечивают доступ кислорода к глубоким слоям биопленки, т.к. прорывая ходы в биоппенке, они делают ее более рыхлой.

Микробиологическая характеристика анаэробного ила

Анаэробным илом называют биоценоз м/организмов сбраживающих осадки.

Бактериальное население анаэробного ила чрезвычайно разнообразно. Условно подразделяется на две группы. Первую составляют бактерии, использующие в энергетическом обмене органичекие вещества исходного субстрата (осадка). Эту группу объединяют под общим названием кислотообразующие бактерии, т.к. основными конечными продуктами их жизнедеятельности являются жирные кислоты. Во вторую группу входят специфические виды бактерий, способные превращать метаболиты кислотоообразующих бактерий в конечные продукты метановового брожения- метан и диоксид углерода. Бактерии второй группы называют метанообразующими.

Кислотообразующие    бактерии    представлены    облигатными    и факультативными анаэробами. Выделено из бродящего осадка от 50 до 92 видов, половину из них составляют спорообразующие формы. Они различны по физиологическим особенностям. Степень развития отдельных физиологических групп зависит от состава обрабатываемых осадков. Органические вещества разлагаются   аммонифицирующими,   целлюлозными,   жирорасщепляющими бактериями. В анаэробном иле найдены денитрофикаторы и судьфатредецирующие бактерии. Обнаружены виды потребляющие в качестве источника углерода совершенно определенные вещества. Макромолекулы белков, жиров и углеводов разрушаются в основном спорообразующими бактериями. Важное значение в процессах брожения имеют клострии. В зависимости от используемого субстрата различают- клостридии, обладающие сахаролитической активностью, которые окисляют вещества углеводной природы; клостридии, имеющие активные протеалитические ферменты, в качестве субстрата используют белки и продукты их гидролиза; клостридии, сбраживающие гетероциклические азотосодержащие соединения.

В целом группа кислотообразующих бактерий осуществляет процесс брожения сложных субстратов в широком диапазоне рН. Время генерации для некоторых видов составляет 20-30 мин.

Метанообразующие бактерии включает 3 рода:

1 род включает виды, имеющие форму прямых или изогнутых палочек 307 мкм, которые образуют нити, большинство из них неподвижны.

Представители 2 рода имеют сферические клетки размером 0, 5-10 мкм неправильной формы. Клетки могут быть одиночными, располагаться попарно или в виде скоплений. Есть неподвижные и подвижные формы.

 3 род- неподвижные бактерии, состоящие из крупных сферических клеток размером 1,5-2,5 мкм. Все метагенные бактерии-облигатные анаэробы, чувствительны к окислительно-восстановительным реакциям среды. Оптимальное значение рН для них ограничено узким интервалом 6,8-7,5.

Почти все метаногенные бактерии принадлежат к мезофилам. Оптимальная температура составляет 35-40С. Половина метанообразующих бактерий в качестве источника углерода используют углекислый газ. Сложные органические соединения метагенные  бактерии  потреблять  не  могут.  Источником  азота для метанобразующих бактерий служат аммонийные соединения. Наиболее характерной особенностью метаногенных бактерий является специфичность отдельных видов по отношению к донору водорода. Большинство этих бактерий способны потреблять водород.

Процесс биохимического окисления веществ в анаэробных условиях.

1. стадия кислого брожения.

Ее осуществляют кислотообразующие бактерии. Благодаря им все органические компоненты осадков подвергаются деструкции. Анаэробный ил       обладает гидролитической активностью. В нем обнаружены гидролитические ферменты: протеазы, глюкозидазы, липазы. Под действием этих ферментов исходные вещества осадка и активного ила, подвергаясь внеклеточному гидролизу, превращаются в соединения, которые доступны клеткам бактерии.

Внутриклеточные превращения простых сахаров приводит к образованию ПВК - ключевого промежуточного продукта метаболизма (углеводов,  глицерина,  аминокислот).  В  результате разложения аминокислот бактериями появляется аммиак, а в случае серосодержащих аминокислот - сероводород.

Продукты гидролиза  жиров используются многими видами кислотообразующих бактерий. В ходе ферментативных реакций глицерин превращается в фосфоглицериновый альдегид, который затем включается в обмен углеводов.

Таким образом, кислотообразующие бактерии превращают белковые   соединения, жиры и углеводы осадков сточных вод в низшие жирные кислоты, спирты, аммиак, водород и сероводород.                         

 2. стадия щелочного брожения.                                      

Осуществляется метанообразующими бактериями. При ферментации     уксусной кислоты и метилового спирта метан синтезируется в результате восстановления метильной группы.

СН3СООН -—— СН4 + С02                (1)                  

4СН3ОН -—- ЗСН4 + СО2 +2Н2О       (2)             

Иной механизм образования метана характерен для тех видов  метаногенных бактерий, которые не способны утилизировать уксусную кислоту и метанол. Это бактерии синтезируют метан в результате восстановления диоксида углерода по реакции:                           

 

4АН2 + СО2 -- СН4 + 2Н2О + А           (3)              

В процесс метанообразования вовлекаются и более сложные вещества,       такие как масляная, пропионовая, капроновая кислоты. Превращение их  осуществляется по типу реакции (3), в которой вместо молекулярного водорода участвуют перечисленные органические субстраты. Например, при использовании этилового спирта он окисляется до СНзСООН с одновременным восстановлением диоксида углерода по типу реакции:    

2СН3СН2ОН+ СО2 -- СН4 + 2СН3СООН

Некоторые виды метаногенных бактерий восстанавливают СО2,

потребляя молекулярный водород:                          

2 + СО2 —— СН4+2Н2О.                   

Таким образом, все известные пути получения метана сводятся к реакциям 2 типов: восстановление метильной группы уксусной кислоты и метанола и восстановление диоксида углерода, выполняющего роль конечного акцептора водорода.

Обезвреживание и утилизация отходов биотехнологических производств.

Отходами биотехнологического производства могут быть клетки (ткани) и культуральные жидкости после извлечения из них нужных метаболитов. Нет полной информации о количестве отходов всех биопроизводств в мире. Например, на одну тонну лимонной кислоты образуется 150-200 кг сухого мицелия.

Отходы биотехнологических производств относятся к типу разлагающихся в природных условиях под действием различных факторов (биологических-минерализация с участием м/организмов, химических-окисление, физико-химических-благодаря комплексному воздействию, например, лучистой энергии, химических веществ).

Отходы биотехнологических производств подразделяются на твердые и жидкие.

Плотные отходы в биотехнологических производствах представляют собой - микробную массу, отделяемую от культурольного фильтра:

- шламы;

- растительную биомассу, после экстракции из нее действующих веществ;

- некоторые тканевые культуры млекопитающих;

- осадки сточных вод (ил)

Подсчитано, что в коммунальных очистных сооружениях сточные воды от одного горожанина образуют за год около 500 литров ила.

В пивоварении плотными отходами являются дрожжевые клетки (0,40 кг на 1 гл пива), солодовая и хмельная дробина, белковый осадок из сепараторов. За счет того, что белковый осадок , хмельная дробина содержит горечи, их не могут использовать в качестве добавок к кормам животных, поэтому их либо ожигают (перептобельно) либо передают на биологическое обезвреживание.

В спиртовом производстве отходом является барда, состав которой зависит от качества используемого сырья (картофель, зерно). Высушенная барда используется в качестве добавок к корму. Количество плотных отходов действует на выбор метода их обеззараживания. Так, патогенные микробы должны быть обезврежены полностью. Эффективный способ - сжигание. Если отходом является биомасса клеток стрептомицетов, их достаточно убить нагревом, далее их можно уже использовать в качестве добавок к кормам, в качестве удобрений. Но здесь необходимо исключить их сенсибилирующее действие. В аэробных очистных сооружениях, где происходит обезвреживание отходов, лимитирующими факторами выступают качество и площадь биопленки, состоящий из микро-макрофлоры и фауны. При этом необходимо убедиться, что привносимые плотные отходы, которые богаты органическими веществами не приведут к ухудшению работы аэротенков.

Жидкие  отходы  в  биотехнологических  производствах  достаточно разнообразны по своему составу. Это объясняется неполным использованием биообъектами компонентов, входящих в состав питательных сред; присутствием растворителей, используемых для экстракции конечных продуктов; наличием веществ, секретируемых клетками. Жидкие отходы дрожжевых заводов, где производят дрожжи на мелассном сусле, содержат органические и минеральные вещества: этанол, углеводы, общий азот, зольные элементы. Отходы, образующиеся от 1000 т мелассы, соответствуют бытовым стокам города с населением около 0.5 млн. жителей. Подобные жидкие отходы подвергают микробиологической обработке. Сточные воды отдельных предприятий неравноценны. Одни могут быть названы условно чистыми, поскольку они почти не отличаются от потребляемой в производствах природной воды (конденсаты, вода из теплообменников). Другие воды являются загрязненными неорганическими и органическими примесями, которые попадают от сырья, загрязненного при транспортировке; от оборудования. Отличительной особенностью биотехнологических процессов, основанных на выделении метаболитов из культуральных жидкостей, является неравновесное соотношение целевого продукта и жидкости. В подобных производствах количество жидких отходов больше, чем плотных.

Газообразные   отходы   в   процессах   биологической   технологии немногочисленны в ассортименте. Энергетическим субстратом для биообьектов является углеводы. В аэробных и анаэробных условиях из них образуется диоксид углерода. Выделяющийся диоксид углерода улавливается и утилизируется в пищевой промышленности в качестве хладагента. "Отработанный воздух" биотехнологических процессов не должен поступать в атмосферу без очистки и обезвреживания. "Отработанный воздух" представляет собой высокодисперсный аэрозоль, в котором дисперсной фазой оказываются капельки жидкости и м/организмы. Они легко переносятся воздушными потоками и на большие расстояния и не исключено неблагоприятное воздействие на людей. "Отработанный воздух" должен быть термически обработан и только после этого подвергаегся фильтрационной очистке.                                                          

 

МИКРОФЛОРА ВОЗДУХА

В атмосферный воздух микроорганизмы попадают с поверх­ности земли и предметов вместе с подымающейся пылью, а также с мельчайшими капельками влаги, сдуваемыми с вод­ной поверхности. Микроорганизмы находятся в воздухе обычно вместе с частицами пыли.

Воздух не является благоприятной средой для развития микроорганизмов, так как в нем отсутствует капельно-жидкая вода. В воздухе микроорганизмы лишь временно могут сохра­нять жизнеспособность, и многие из них более или менее быстро погибают под влиянием высушивания и солнечных лучей.

Количественный и качественный состав микрофлоры атмо­сферного воздуха может существенно изменяться в зависимости от климатических условий, времени года и других факторов. Над морями, горами, ледяными полями Арктики воздух содер­жит очень мало микробов. Значительно больше их в воздухе населенных местностей, особенно крупных промышленных го­родов. Чем больше в воздухе пыли, тем больше в нем микро­организмов. Каждая пылинка может нести на себе множество микробов.

Количество микробов в воздухе по мере удаления от на­селенных мест заметно снижается. Например, над Москвой на высоте 500 м содержится до 2700 клеток микроорганизмов в 1 м3 воздуха, 1000 м — 500-700 клеток. При удалении от города на 5—7 км на тех же высотах содержание бактерий уменьшается в 3—4 раза. Жизнеспособные микроорганизмы обнаружены даже в стратосфере, хотя их там очень мало. Зимой в воздухе микробов значительно меньше, чем летом. Ветры способствуют обогащению воздуха микробами, а выпадающие осадки значительно очищают от них воздух.

Большое значение для уменьшения количества микробов в воздухе имеют зеленые насаждения. Листья деревьев и кус­тарников обладают значительной пылезадерживающей способ­ностью.

Состав микрофлоры воздуха нестабилен. В воздухе нахо­дятся обычно наиболее устойчивые против высыхания и дей­ствия ультрафиолетовых лучей различные микрококки, сарцины, споры бактерий и грибов, дрожжи. Могут встречаться и болезнетворные микроорганизмы, особенно устойчивые к вы­сушиванию, например туберкулезные палочки, патогенные стрептококки и стафилококки, вирусы. Человек в среднем за сутки вдыхает 12000 л воздуха. При этом в дыхательных путях задерживаются 99,8% микроорганизмов, содержащихся в воздухе.

 На микрофлору воздуха следует обращать большое внимание, так как воздух служит источником инфицирования микробами пищевых продуктов. Через воздух могут передаваться и некоторые инфекционные заболевания, возбудители которых выделяются больными и ба­циллоносителями при разговоре, чихании, кашле.

В закрытых помещениях, особенно где находится много лю­дей, воздух почти всегда содержит больше микроорганизмов, чем наружный. В производственных помещениях количество пыли, а следовательно, и микроорганизмов зависит от способа очистки помещения, организации производственного процесса, применения и эффективности работы вентиляции и других ус­ловий.

На предприятиях пищевой промышленности, в производст­венных цехах и в местах хранения продуктов необходимо соблю­дать не только определенные влажность и температуру воздуха, но и его чистоту. Нельзя допускать на близлежащей терри­тории и в подсобных помещениях предприятий торговли и об­щественного питания скопления всевозможных отбросов. Санитарно-показательными микроорганизмами, по содержанию ко­торых в воздухе можно судить о степени его чистоты, служат гемолитические (растворяющие эритроциты крови) стрепто­кокки. Они являются постоянными обитателями верхних дыха­тельных путей, слизистой носа и ротовой полости человека.

Санитарная оценка воздуха. Для определения микрофлоры воз­духа используют следующие методы:  - седиментационный (метод Коха), фильтрационный (воздух пропускают через воду); методы, основанные на принципе ударного действия воздушной струи с использованием специальных приборов. Последние методы надежнее, так как они позволяют точно определить коли­чественное загрязнение воздуха микроорганизмами и изучить их видовой состав.

На предприятиях пищевой промышленности, в производствен­ных цехах и в местах хранения продуктов необходимо соблюдать как определенную влажность и температуру, так и чистоту воз­духа.

В молочной промышленности санитарное состояние воздуха производственных помещений оценивают по двум микробио­логическим показателям: общему числу бактерий (микрококки, сарцины, палочковидные) и числу плесневых грибов и дрожжей, которые оседают из воздуха на поверхность агаровой среды (мясо-пептонного и суслового агаров) в чашках Петри за 5 мин.

На предприятиях мясной промышленности в холодильных ка­мерах проводят анализ воздуха на присутствие плесневых грибов.

Воздух камер исследуют перед закладкой мяса (до и после де­зинфекции) и периодически -- не реже 1 раза в квартал в про­цессе хранения мяса при температуре -12 °С. Учет ведут по числу колоний плесневых грибов, выросших на поверхности агаровой среды  на чашках Петри.

Санитарную оценку воздуха закрытых помещений осуществляют по двум микробиологическим показателям: общему количеству микроорганизмов и количеству санитарно-показательных стрептококков в 1 м3 воздуха

По числу клеток в 1 м3 воздуха судят о степени обсеменения стрептококком носоглоточной микрофлоры человека и животных а следовательно, о возможном наличии в воздухе патогенных микроорганизмов.

Своевременная окраска, побелка стен и потолков, ежеднев­ная влажная уборка помещений, систематическая вентиляция, особенно с фильтрацией поступающего воздуха, значительно уменьшают запыленность помещений и количество в них мик­робов.

В отдельных случаях для очистки воздуха от микроорганиз­мов  применяют дезинфекцию.  Для этого пригодны только те дезинфицирующие вещества, которые быстро вызывают гибель микроорганизмов, но безвредны для человека, не портят обо­рудования и других   предметов, бесцветны   и   лишены запаха. Хорошие результаты   получены, например, при   использовании в качестве антисептиков молочной кислоты (технической), триэтиленгликоля.

МИКРОФЛОРА ПОЧВЫ

Почва является средой обитания микроорганизмов. Они на­ходят в почве все условия, необходимые для своего развития: пищу, влагу и защиту от губительного влияния прямых солнеч­ных лучей и высушивания.

Количественный и качественный состав микрофлоры различ­ных почв значительно колеблется .в зависимости от химического состава почвы, ее физических свойств, реакции, влагоемкости, степени аэрации. Существенно влияют также климатические условия, время года, способы сельскохозяйственной обработки почвы, характер растительного покрова и многие другие фак­торы.

Неодинаково распространены микроорганизмы и по гори­зонтам почвы. Меньше всего их содержится обычно в самом поверхностном, толщиной в несколько миллиметров, слое, где микроорганизмы подвергаются неблагоприятному воздействию солнечного света и высушивания.

Особенно обильно населен следующий слой почвы, толщи­ной до 5 см.. По мере углубления число микроорганизмов па­дает. На глубине 25 см, количество   их  в   10—20   раз  меньше, чем   в   поверхностном   слое  толщиной    1—2   см,   (по   данным А. С. Разумова). Меняется с глубиной и состав микрофлоры. В верхних слоях почвы, содержащих много остатков животных и растений, а также подвергающихся хорошей аэрации, преоб­ладают аэробные сапрофитные организмы, способные расщеп­лять сложные органические соединения. Чем глубже почвенные слои, тем  беднее они органическими веществами; доступ воз­духа в них затруднен, поэтому здесь преобладают анаэробные бактерии.

Количество  бактерий  в  почве измеряется  сотнями  и  тысячами. Микрофлора почвы представлена разнообразными видами бактерий, актиномицетов, грибов, водорослей и простейших животных. К постоянным обитателям почвы относятся различ­ные спороносные бактерии. Из аэробов чаще встречаются Bacillus mycoides, В. mesentericus, В. megatherium, из анаэро­бов Clostridium sporogenes, С. perfringens, С. putrificum.

В почве находятся также бактерии маслянокислые, разла­гающие клетчатку, нитрифицирующие, денитрифицирующие, азотфиксирующие. Наряду с обычными обитателями почвы мо­гут встречаться и болезнетворные микроорганизмы, преиму­щественно спорообразующие бактерии, например возбудители столбняка, газовой гангрены, ботулизма и др. Поэтому загряз­нение почвой пищевых продуктов представляет опасность.

Патогенные бесспоровые бактерии (например, брюшноти­фозные, дизентерийные) сохраняются в почве сравнительно не­долго (недели, месяцы), а споры бактерий — годами.

При санитарной оценке почвы критерием служит титр ки­шечной палочки и количество сапрофитных бактерий. Имеет значение и определение С. perfringens и энтерококков.

В почве одновременно с минерализацией органических ве­ществ происходят процессы бактериального самоочищения — отмирание несвойственных почве сапрофитных и патогенных бактерий.

Деятельность почвенных микроорганизмов играет большую роль в формировании почвы, создании ее плодородия. Особо важное значение имеют микроорганизмы, фиксирующие сво­бодный азот, и те, которые переводят соединения углерода, азота, фосфора и других элементов из недоступных для расте­ний форм в усвояемые ими вещества. Различные микроорга­низмы, последовательно сменяя друг друга, осуществляют грандиозную работу по минерализации попадающих в почву раз­нообразных органических веществ, что обусловливает кругово­рот веществ в природе.

МИКРОФЛОРА ВОДЫ

Природные воды представляют собой среду, в которой мик­роорганизмы могут размножаться. Интенсивность размножения микробов в воде зависит от ряда факторов и в первую очередь от наличия в ней пищи. Природные воды всегда содержат в большем или меньшем количестве растворенные органические и минеральные вещества, которые могут быть использованы микроорганизмами в процессе питания. Количественный и ка­чественный состав микрофлоры различных природных вод раз­нообразен.

Состав микрофлоры подземных вод (артезианской, ключевой и др.) зависит главным образом от глубины залега­ния водоносного слоя, характера грунта и почвы. Артезианские воды, находящиеся на больших глубинах, содержат очень мало микроорганизмов. Подземные воды, добываемые через обычные колодцы из неглубоких водоносных слоев, куда могут просачи­ваться поверхностные загрязнения, содержат обычно значитель­ные количества бактерий, среди которых могут быть и болезне­творные. Чем выше расположены грунтовые воды, тем обильнее их микрофлора.

Поверхностные воды, т. е. воды открытых водоемов (рек, озер, водохранилищ, прудов и т. п.), отличаются большим разнообразием и непостоянством химического состава и состава микрофлоры. Эти воды загрязняются остатками растений, про­мышленными и бытовыми отбросами. Загрязнения попадают в водоемы главным образом с дождевыми потоками и со сточ­ными водами промышленных производств. Вместе с различными органическими и минеральными загрязнениями в водоемы вно­сится масса микроорганизмов, среди которых могут попадать патогенные.

Возбудители кишечных инфекций и другие патогенные бак­терии в воде длительно сохраняются вирулентными. Так, воз­будитель брюшного тифа сохраняется в водопроводной воде 2— 93 дня, дизентерии—15—27, а холеры — 4—28 дней. В речной воде возбудители этих заболеваний сохраняют жизнеспособ­ность в течение соответственно 4—183 дней, 12—90 и 1 — 90 дней. Во льду также в течение нескольких недель остаются жизнеспособными бактерии коли-тифозной группы.

Состав и количество микробов открытого водоема зависят от химического состава воды, заселенности прибрежных райо­нов, времени года и других причин.

В чистых водоемах до 80% всей аэробной сапрофитной мик­рофлоры приходится на долю кокковых форм бактерий, осталь­ные — преимущественно бесспоровые палочковидные бактерии.

В реке, протекающей в районе крупных населенных пунктов или промышленных предприятий, вода может содержать сотни тысяч и миллионы бактерий в 1 см3, а выше этих пунктов — всего лишь сотни или тысячи бактерий.

В воде прибрежной зоны водоемов, особенно стоячих, мик­роорганизмов больше, чем вдали от берегов. Больше микроор­ганизмов содержится также в поверхностных слоях воды, но особенно много их в иле, главным образом в его верхнем слое, где образуется как бы пленка из бактерий, играющая большую роль в процессах превращения веществ в водоеме. Сильно воз­растает число бактерий в открытых водоемах во время весен­него половодья или после обильных дождей.

Среди водных организмов есть такие, массовое развитие ко­торых может принести значительный вред. Бурное развитие микроскопических водорослей обусловливает «цветение» водо­емов. Даже при небольшом цветении резко ухудшаются органолептнческие свойства воды, осложняется работа фильтров на водопроводных станциях. Массовое развитие некоторых видов сине-зеленых водорослей может служить причиной падежа скота, отравления рыбы, заболеваний людей.

Промышленные предприятия, используя воду в технологиче­ских процессах, предъявляют определенные требования к ее физическим свойствам и химическому составу, специфические для разных производств.

Пищевая промышленность предъявляет к воде особые тре­бования, Важное значение имеет не только химический состав воды, но и характер ее микробного населения. Вода непосред­ственно входит в состав ряда продуктов (напитков, бульонов, соусов и др.)- Ее употребляют также для мойки перерабатывае­мого пищевого сырья, аппаратуры, тары и т. п. Использование воды с большим количеством микробов приводит к чрезмерному обсеменению ими продуктов. В связи с этим вода, применяемая в пищевой промышленности и на предприятиях общественного питания, как и питьевая вода, должна соответствовать опреде­ленным санитарно-гигиеническим требованиям.

Питьевая вода по составу и свойствам должна быть безопасной в эпидемическом отношении, безвредной по химиче­скому составу и иметь хорошие органолептические свойства. Качество питьевой воды, подаваемой централизованными хо­зяйственно-питьевыми системами водоснабжения и водопрово­дами, оценивается комплексом химических, органолептических и бактериологических показателей. Общее число бактерий не должно превышать 100 клеток в 1 см3, количество кишечных палочек (коли-индекс) должно быть не более трех в 1 л, а коли-титр—-не менее 300 см3; при этом учитывают все разно­видности бактерий группы кишечной палочки (ГОСТ 2874—73). Вода колодцев и открытых водоемов признается доброкаче­ственной при коли-индексе не более 10 (коли-титр— не менее 100 см3), общее число бактерий должно быть не более 1000 в 1 см3.

В качестве источников водоснабжения используются откры­тые водоемы (реки, водохранилища) и подземные (артезиан­ские) воды. К водоисточникам предъявляют определенные требования. Вода их оценивается также по химическим, органолептическим, санитарно-бактериологическим показателям, в за­висимости от которых устанавливают методы обработки (очи­стки) и обеззараживания воды.

По степени микробного загрязнения различают три зоны водоема:

1) полисапробная зона — наиболее сильно загрязненная ;
бедная кислородом, богатая органическими веществами. В 1 мл
воды содержится 1 млн клеток микробов и более. Преобладают клетки кишечной палочки и анаэробные бактерии, вызывающие процессы брожения и гниения;

2) мезосапробная зона — умеренно загрязненная вода, в кото­-
рой активно идет процесс минерализации органических веществ
с интенсивными процессами окисления и нитрификации. Содер­-
жание микроорганизмов в 1 мл воды составляет сотни тысяч кле­-
ток бактерий, кишечных палочек значительно меньше;

3) олигосапробная зона — зона чистой воды, содержащей в 1 мл
десятки или сотни клеток, не более. В 1 л этой воды кишечная
палочка отсутствует или выделяется несколько ее клеток. Это ука-­
зывает на то, что самоочищение воды закончилось.

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Микробиология Предмет и задачи микробиологии"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Специалист по студенческому спорту

Получите профессию

Технолог-калькулятор общественного питания

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

Микробиологией называется наука о малых (невидимых невооруженным глазом) организмах - микробах, об их строении и жизнедеятельности.

Микробиология изучает морфологию, систематику и физиологию микроорганизмов, исследует общие условия, выясняет роль, которую они играют в превращении различных веществ окружающей нас природы.

Многие микроорганизмы одноклеточные, но имеются и многоклеточные.

Они легко приспосабливаются к условиям существования, высокая выносливость к теплу, холоду, недостатку влаги, способность к быстрому размножению. Активно участвуют в различных превращениях веществ в природе.

С жизнедеятельностью микроорганизмов на планете связано образование каменного угля, нефти, некоторых руд, торфа.

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 656 383 материала в базе

Материал подходит для УМК

  • «Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова

    «Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова

    Больше материалов по этому УМК
Скачать материал

Другие материалы

Анатомия пәні бойынша Эндокриндік жүйе тақырыбына презентация.
  • Учебник: «Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова
  • Тема: Индивидуальное развитие организма
  • 16.01.2020
  • 4991
  • 61
«Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова
Презентация по биологии на тему "Модификационная изменчивость"
  • Учебник: «Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова
  • Тема: Модификационная, или ненаследственная, изменчивость
  • 15.01.2020
  • 551
  • 0
«Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова
Конспект урока по биологии: "Онтогенез. Индивидуальное развитие организма".
  • Учебник: «Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова
  • Тема: Индивидуальное развитие организма
Рейтинг: 5 из 5
  • 12.01.2020
  • 737
  • 9
«Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова
Конспект урока по биологии: "Модификационная изменчивость. Вариационный ряд"
  • Учебник: «Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова
  • Тема: Возникновение приспособлений
  • 12.01.2020
  • 2523
  • 30
«Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова
Презентация на тему "Столовые корнеплоды "
  • Учебник: «Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова
  • Тема: Достижения селекции растений
  • 12.01.2020
  • 2651
  • 147
«Общая биология. Среднее профессиональное образование», В. М. Константинов, А. Г. Резанов, Е. О.Фадеева; под ред. В.М.Константинова

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 18.01.2020 3859
    • DOCX 1.5 мбайт
    • 40 скачиваний
    • Рейтинг: 5 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Сагинбаева Эльвира Хатмулловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 6 лет и 1 месяц
    • Подписчики: 5
    • Всего просмотров: 842257
    • Всего материалов: 332

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Копирайтер

Копирайтер

500/1000 ч.

Подать заявку О курсе

Курс профессиональной переподготовки

Биология и химия: теория и методика преподавания в профессиональном образовании

Преподаватель биологии и химии

500/1000 ч.

от 8900 руб. от 4450 руб.
Подать заявку О курсе
  • Сейчас обучается 46 человек из 26 регионов
  • Этот курс уже прошли 58 человек

Курс повышения квалификации

Государственная итоговая аттестация как средство проверки и оценки компетенций учащихся по биологии

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 29 человек из 20 регионов
  • Этот курс уже прошли 273 человека

Курс профессиональной переподготовки

Анатомия и физиология: теория и методика преподавания в образовательной организации

Преподаватель анатомии и физиологии

300/600 ч.

от 7900 руб. от 3950 руб.
Подать заявку О курсе
  • Сейчас обучается 34 человека из 21 региона
  • Этот курс уже прошли 172 человека

Мини-курс

Инновационные технологии в краеведческой и географической работе со школьниками: применение туристических приемов для эффективного обучения

6 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Преодоление фобий: шаг за шагом к свободе от социальных источников страха

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 33 человека из 21 региона
  • Этот курс уже прошли 14 человек

Мини-курс

Формирование социальной ответственности и гармоничного развития личности учеников на уроках

4 ч.

780 руб. 390 руб.
Подать заявку О курсе