Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Научная работа на тему "Проценты в нашей жизни"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Научная работа на тему "Проценты в нашей жизни"

библиотека
материалов

hello_html_m62a00377.gifМуниципальное бюджетное образовательное учреждение Ширинская средняя общеобразовательная школа № 18





Секция: математика







ПРОЦЕНТЫ В НАШЕЙ ЖИЗНИ





Автор: Миняева Елена Евгеньевна,

ученица 9Б класса



Руководитель: Дробкова Ольга Сергеевна,

учитель математики

















с. Шира, 2015 год



СОДЕРЖАНИЕ






ВВЕДЕНИЕ

Проценты - это одна из сложнейших тем математики, и очень многие учащиеся затрудняются или вообще не умеют решать задачи на проценты. А понимание процентов и умение производить процентные расчёты необходимы для каждого человека. Я считаю, что эта тема актуальна в наше время. Ведь почти во всех областях человеческой деятельности встречаются проценты. Без понятия «процент» нельзя обойтись ни в бухгалтерии, ни в финансовом деле, ни в статистике. Чтобы начислить зарплату работнику, нужно знать процент налоговых отчислений; чтобы открыть счёт в сбербанке или взять кредит, наши родители интересуются размером процентных начислений на сумму вклада и процентом по кредиту; чтобы знать приблизительный рост цен в будущем году, мы интересуемся процентом инфляции. В торговле понятие «процент» используется наиболее часто. Мы очень часто можем слышать о скидках, наценках, уценках, прибыли, кредитах, и т.д. – всё это проценты. Современному человеку необходимо хорошо ориентироваться в большом потоке информации, принимать правильные решения в разных жизненных ситуациях. Для этого необходимо хорошо производить процентные расчёты.

Таким образом, изучая данную тему, мы выясним, какое значение проценты имеют в нашей жизни.


Цель исследования : показать широту применения процентных вычислений в реальной жизни.


Задачи: изучить литературу по данной теме; рассмотреть необходимость использования процентов; исследовать сферы деятельности человека, в которых используются проценты.


  1. ПОНЯТИЕ ПРОЦЕНТА


Процент - это одна сотая часть от числа. Процент записывается с помощью знака %.

hello_html_m216d01a8.png

Чтобы перевести проценты в дробь, нужно убрать знак % и разделить число на 100.

Чтобы перевести десятичную дробь в проценты, нужно дробь умножить на 100 и добавить знак %.

Чтобы перевести обыкновенную дробь в проценты, нужно сначала превратить её в десятичную дробь, а потом умножить на 100 и добавить знак %.

Как вы поняли, проценты тесно связаны с обыкновенными и десятичными дробями. Поэтому стоит запомнить несколько простых равенств. В повседневной жизни нужно знать о числовой связи дробей и процентов. Так, половина - 50%, четверть - 25%, три четверти - 75%, одна пятая - 20%, а три пятых - 60%.

Знание наизусть соотношений из таблицы внизу облегчит вам решение многих задач.

1 = 100%

Дробь


hello_html_6eec8aff.gif

hello_html_685d8d49.gif

hello_html_m57c90caf.gif

hello_html_3b7b3c70.gif

hello_html_2ee8300a.gif

hello_html_3b88a430.gif

hello_html_m1d4fc936.gif

hello_html_m208cf19f.gif

hello_html_d538969.gif

Десятичная дробь

0,5

0,25

0,75

0,2

0,4

0,6

0,1

0,05

0,02

Проценты


50%

25%

75%

20%

40%

60%

10%

5%

2%


2. ОСНОВНЫЕ ТИПЫ ЗАДАЧ НА ПРОЦЕНТЫ


Основными задачами на проценты являются следующие:

  1. Нахождение процента от данного числа

Пример 1. В школе 940 учеников. Из них 15 % занимаются в музыкальной школе. Сколько учащихся посещает музыкальную школу?

Решение: т.к 15%=0,15, то для решения задачи надо умножить 940 на 0,15. Получим, hello_html_44a31967.gif

Значит, музыкальную школу посещают 141 ученик.

Ответ: 141 ученик.

  1. Нахождение числа по процентам


Пример 2. В школьной библиотеке 2100 учебников, что составляет 40 % от всех книг. Сколько книг в библиотечном фонде школы?

Решение: Обозначим общее количество книг через x- это 100%. По условию 40% составляют учебники, их 2100 штук. Составим пропорцию:hello_html_m3852743f.gifЗначит,hello_html_m5f0ea4c1.gif

Ответ: 5250 книг находится в школьной библиотеке.


  1. Нахождение процентного отношения чисел

Пример 3. В школе 800 учащихся, 16 из них являются отличниками. Сколько процентов учащихся школы учится на «5»?

Решение: Всего в школе 800 учащихся – это 100%. Процент учащихся, обучающихся на «5», обозначим за х. Составим пропорцию hello_html_76bc37ea.gif. Значит, hello_html_m181ee881.gif

Ответ: 2% обучающихся являются отличниками.

3. ИССЛЕДОВАНИЕ ПО ТЕМЕ «ПРОЦЕНТЫ»


Для того чтобы выяснить, какое место в нашей жизни занимают проценты, мы решили выяснить, где мы можем встретить проценты:

1. В магазинах во время праздников появляются скидки, которые выражаются в процентах, например, в магазине одежды при покупке 2 вещей скидка 10% и т.д.

Задача. На сезонной распродаже магазин верхней одежды снизил цены на шубы сначала на 20%, а потом еще на 10%. Сколько рублей можно сэкономить при покупке шубы, если до снижения цен они стоили 18000 р.?

Решение:

1 способ решения:

Стоимость шубы 18000 рублей – это 100%. Найдем сколько рублей составит 20% скидка: hello_html_6f86cb21.gif , Значит, hello_html_4036aa53.gifруб. Таким образом, цена на шубу составит 18000-3600=14400 руб. После второй уценки новая цена шуб снизилась еще 10% , что составит 1440рублей. В итоге шубы подешевели на 5040 рублей;

2 способ решения:

  1. 18000-18000●0,2=14400 (руб) – цена на шубу после 20% скидки

  2. 14400-14400●0,1=12960 (руб) – цена на шубу после второй 10% скидки

  3. 18000-12960=5040 (руб) – сэкономит покупатель.

2. В процентах указывают состав ткани, например, при покупке костюма, в котором 60% cotton (хлопка) и 40% синтетика и т.д.;

3. В процентах выражены различные статистические данные по населению, по выпуску определенной продукции и т.д.;

4. При покупке какого-либо изделия в кредит необходимо уметь высчитывать проценты;

5. В школе в процентах вычисляют успеваемость и качество знаний учащихся;

6.Бухгалтерами при начислении заработной платы. Например, у нас, в селе Шира, идет доплата 30% северных и 30% сельских.

Задача. При приёме на работу директор предприятия предлагает Вам оклад 14 000 рублей. Какую сумму получите Вы после доплат: 30% северных и 30% сельских, и удержания налога на доходы физических лиц?


Решение:

1 способ решения:

Всего доплаты составляют 60 %, т.е. hello_html_m76fc9b.gif. Значит, hello_html_1c680f37.gif рублей составляют надбавки. Таким образом, начисление с доплатами будет равно 14000+8400= 22400 (14000*1,6=22400). Теперь посчитаем, сколько Вы получите на руки после удержания налога на доходы физических лиц (этот налог составляет 13%) : hello_html_6ef0533.gif

hello_html_2bf6c215.gifруб. – составляет налог

Исходя из этого, получаем, что Ваша заработная плата равна:

22400-2912=19488 рублей.


2 способ решения:

С учетом доплат заработная плата составит 160%. т.к 160%=1,6, то для решения задачи надо умножить 14000 на 1,6.

Получим, hello_html_3ca0eaff.gifруб.

Теперь посчитаем, сколько Вы получите на руки после удержания налога на доходы физических лиц (этот налог составляет 13%=0,13)

22400●0,13=2912 руб. – составляет налог

Исходя из этого, получаем, что Ваша заработная плата равна:

22400-2912=19488 рублей.


7. Особенно часто проценты применяются при денежных расчетах в сберкассах, в банках, в торговле. Величины, которые употребляются в финансовых операциях, имеют особые названия.

Денежная сумма, внесенная в сберкассу или в банк, называется начальным капиталом. Число, показывающее на сколько процентов увеличивается начальный капитал за определенное время (обычно за год), процентной таксой; сумма, на которую увеличился начальный капитал за указанный период, процентными деньгами или процентами. Начальный капитал вместе с процентными деньгами называется наращенным капиталом. При финансовых расчетах год принимается равным 360 дням, а каждый месяц – 30 дням.

Процент называется простым, если начисляется только один раз на первоначальную сумму, сложными процентами, если начисляется на наращенный капитал, т.е. несколько раз.

Сложными процентами часто пользуются при финансовых вычислениях, размножения того или иного вида животных, растений и т.д.;


Задача: вкладчик положил на счет в банк 500000 рублей. В течение трех лет не снимал деньги со счета и не брал процентные начисления. За хранение денег банк начислял вкладчику 11% годовых. Посчитайте сколько будет насчиту вкладчика через год?


Решение: Для расчета сложного процента применяем простую формулу:

S=P*(1+I/100)^nгде

  • S – общая сумма («тело» вклада + проценты), причитающаяся к возврату вкладчику по истечении срока действия вклада;

  • Р – первоначальная величина вклада (Р=500000);

  • n - общее количество операций по капитализации процентов за весь срок привлечения денежных средств (в данном случае оно соответствует количеству лет). В нашем случае n=3;

  • I – годовая процентная ставка (I=11%).

Подставляем: hello_html_71cd8cc.gif (руб) – сумма вклада через 3 года.

8. Проценты широко применяются в повседневной жизни. У каждой семьи свой бюджет. Он включает средства, необходимые для существования. В нем объединяются результаты совокупного труда в виде доходов и возможности последующего потребления в виде расходов.

Для того, чтобы эффективно использовать свои доходы, семья должна правильно составить свой бюджет, тщательно продумать покупки и делать сбережения для достижения своих целей. Для составления семейного бюджета необходимо составить список всех источников доходов членов семьи. В статье расходов нужно перечислить все, за что надо заплатить в течение месяца.

Таких сфер деятельности, где используются проценты очень много, и перечислять можно до бесконечности.

















Мы провели опрос среди учащихся, и просили ответить на вопрос: Кто из Вас занимается в секции по баскетболу, кто в секции по волейболу, а кто ходит на другие спортивные секции? И получили следующие ответы:


Класс

Количество обучающихся

Посещают секцию волейбола

% посещающих секцию волейбола

Посещают секцию баскетбола

% посещающих секцию баскетбола

Посещают иные секции

% посещающих иные секции

% занимающихся спортом

5 А

25

0

0

0

0

5

20

20

19

0

0

0

0

6

32

32

18

0

0

2

11

0

0

11

17

0

0

0

0

3

18

18

15

7

47

3

20

2

13

80

18

0

0

4

22

2

11

33

24

1

4

0

0

4

16

20

24

5

21

3

12

1

4

37

23

2

9

2

9

6

26

44

22

4

18

2

9

3

14

41

10А

13

3

23

4

31

2

15

69

10Б

13

0

0

1

8

2

15

23

11А

16

4

25

0

0

2

12

37

11Б

16

0

0

2

12

5

31

43





























Получили следующие результаты, которые вы можете увидеть на диаграмме.







Исходя из полученных результатов, мы сделали следующие выводы:

  1. Проценты применяются практически во всех сферах деятельности.

  2. Проценты являются удобным инструментом для подсчета различных данных.

  3. Чтобы произвести расчеты в процентах, необходимо уметь решать типовые задачи на проценты.

  4. По результатам исследования выяснилось, что наибольшее спортивным классом является 7Б. в данном классе 80% учащихся занимаются в различных спортивных секциях.

ЗАКЛЮЧЕНИЕ

Исходя из вышеизложенного, можно сказать, что задачи на проценты очень разнообразны, а понятие процента используется в различных областях:

  • строительстве,

  • торговле,

  • пищевой промышленности,

  • в бухгалтерии,

  • образовании,

  • в банковской сфере,

  • в повседневной жизни и т.д.

Тема процентов мне очень понравилась, я считаю что «Проценты» одна из интереснейших и увлекательных тем в математике.

Трудно назвать область, где бы ни использовались проценты. Применение в жизни процентных расчетов полностью рассмотреть очень сложно, так как проценты применяются во всех сферах жизнедеятельности человека.

В своей работе я показала применение понятия процента при решении различных задач, рассмотрела основные типы задач на проценты.

Данная тема оставляет широкое поле для дальнейших исследований. Задачи на проценты имеют большое практическое значение и приобретенные знания, я надеюсь, помогут мне в дальнейшей жизни. Я планирую развивать начатую тему, рассмотреть более подробно проценты в банковской сфере. Чтобы быть современным человеком, необходимо иметь возможность самому вычислять возможные выплаты по кредиту или хотя бы примерно знать, стоит ли брать кредит или ссуду.


СПИСОК ЛИТЕРАТУРЫ



  1. Боровских А. Что такое процент? / А. Боровских, Н. Розов // Математика.- 2012.- №1.- стр.23-25;

  2. Валиева Ю. Проценты в прошлом и настоящем / Ю. Валиева // Математика.- 2012.- №9.- стр.13-15;

  3. Дятлов В. Технологии решения задач. Лекция 15. Текстовые задачи с участием процентов и долевого содержания / В. Дятлов // Математика.- 2013.- №11.- стр.44-49;

  4. Зубарева И.И. Математика. 5 класс: учеб. для учащихся общеобразоват. учреждений / И.И. Зубарева, А.Г. Мордкович. – 12-е издание, испр. и доп. – М.: Мнемозина, 2012. – 270 с.;

  1. Петрова И.Н. Проценты на все случаи жизни / И.Н. Петрова. - М., Просвещение, 2006;

  2. Тумашева О.В. Урок математики в 5-6 классах: учебно-методическое пособие / О.В. Тумашева; Краснояр. Гос. Пед. Университет им. В.П. Астафьева. – Красноярск, 2007 – 104 с.


Автор
Дата добавления 21.11.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров368
Номер материала ДВ-176128
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх