Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Научная работа. Простые числа- это просто.

Научная работа. Простые числа- это просто.

  • Математика

Поделитесь материалом с коллегами:


Муниципальное бюджетное общеобразовательное учреждение

города Абакана

«Средняя общеобразовательная школа № 19»










Математика






Простые числа-это просто







Автор:

Лысова

Эльмира ,

6 Б класс


Руководитель:

Быковская

Ирина Сергеевна,

учитель математики





2015 г.












КОД _____________________________








Математика







ПРОСТЫЕ ЧИСЛА - ЭТО ПРОСТО






















ОГЛАВЛЕНИЕ:

Введение

Глава 1. Простые числа

1.1. Определение простого числа.

1.2. Бесконечность ряда простых чисел.

1.3. Самое большое простое число.

1.4. Способы определения (поиска) простых чисел.


Глава 2. Применение теории простых чисел

2.1. Примеры некоторых утверждений теории простых чисел известных советских ученых .


2.2.Примеры ряда проблем в теории простых чисел.

2.3. Задачи прикладного характера (№1, №2)

2.4.Задачи на применение законов простых чисел(№3 №,4)


2 .5. Магические квадраты.

2.6.Применение закона простых чисел в различных областях


Заключение

Приложение












«В мире царит гармония,

и выражена эта гармония – в числах»

Пифагор.

ВВЕДЕНИЕ

Математика удивительна. Действительно, доводилось ли кому-либо видеть своими глазами число (не три дерева и не три яблока, а само число 3). С одной стороны, число есть вполне абстрактное понятие. Но, с другой стороны, всё, происходящее в мире, может быть в той или иной степени измерено, а значит, представлено в числах

На уроках математике при изучении темы «Простые и составные числа» меня заинтересовали простые числа, история их возникновения и способы получения. Я обратилась в библиотеку, интернет, где и приобрела нужную литературу. Хорошенько изучив её, я поняла, что существует очень много интересной информации о простых числах. Простые числа, которые были введены примерно две с половиной тысячи лет назад, а нашли неожиданное практическое применение совсем недавно. Узнала, что существуют Законы простых чисел, выраженные через формулу, но есть ряд проблем в теории чисел. Несмотря на то, что сейчас мы живем в век компьютеров и самых современных информационных программ, многие загадки простых чисел не решены до сих пор, есть даже такие, к которым ученые не знают, как подступиться. Знание открытых законов позволяет создать качественно новые решения во многих областях, интересуют как ученых, так и простых граждан. Тема заинтересовала и меня. Объектом исследования являются исключительно абстрактное понятие – простое число. Предметом изучения простого числа послужили: теория о простых числах, способы их задания, интересные открытия в этой области и их применение в практических целях.

Целью моей работы является расширение представлений о простых числах. Определила следующие задачи:

  • познакомиться с историей развития теории о простых числах,

  • сформировать общее представление о способах нахождения простых чисел,

  • узнать интересные достижений советских ученых в области теории простых чисел,

  • рассмотреть некоторые проблемы в теории простых чисел,

  • познакомиться с применения теории простых чисел в различных областях,

  • понять принцип выделения простых чисел из натурального ряда с помощью способа «Решето Эратосфена» в пределах до 100; 1000,

  • изучить применение простых чисел в задачах.

Для достижения поставленной цели и выполнения задач использовала следующие методы исследования: поиск информации, сопоставление данных, проверка математических утверждений аналитическим и практическим способами, решение задач разными способами. Вновь приобретенными знаниями хочу поделиться с вами.


I. ПРОСТЫЕ ЧИСЛА


    1. Понятие простого числа


Простые числа - одно из чудес математик. Один, два, три... С этими словами вступаем мы в страну чисел, она не имеет границ. С виду плоские, близкие числа при более близком знакомстве с ними опаляют нас своим внутренним жаром, обретают глубину.

С разложением чисел на множители мы знакомы с начальной школы. При отыскании общего знаменателя приходится разлагать на множители знаменатели слагаемых. Разлагать на множители приходится при сокращении дробей. Одно из основных утверждений арифметики гласит: каждое натуральное число единственным образом разлагается на простые множители.

72 = 2x2x2x3x3

1001 = 7 х 11 х 13

Разложение чисел на простые множители показывает, что всякое число является либо простым, либо произведением двух или нескольких простых чисел. Поэтому можно сказать, что простые числа являются составными элементами натуральных чисел, как бы кирпичами, из которых, при помощи действия умножения, составляются все целые числа.

Простым числом называется натуральное число, имеющее только два различных делителя (само число и 1).

Несколько любопытных фактов.

Число 1 не является простым числом и не составным.

Единственным четным числом, попавшим в группу «простые числа» является двойка. Любое другое четное число сюда попасть попросту не может, так как уже по определению, кроме себя и единицы, делится еще и на два.

Простые числа не появляются в натуральном ряду беспорядочно, как это может показаться на первый взгляд. Внимательно проанализировав их, можно сразу заметить несколько особенностей, наиболее любопытны числа - «близнецы»- простые числа, разность между которыми равна2 . Называют их так потому, что они оказались по соседству друг с другом, разделенные только четным числом (пять и семь, семнадцать и девятнадцать). Если внимательно к ним присмотреться, то можно заметить, что сумма этих чисел всегда кратна трем. Пары близнецов с общим элементом образуют пары простых чисел - «двойников» (три и пять, пять и семь).


    1. Бесконечность ряда простых чисел.


Издавна бросалась в глаза нерегулярность распределения простых чисел среди всех натуральных чисел. Было замечено, что по мере продвижения от малого числа к большему в натуральном ряду простые числа встречаются всё реже. Поэтому одним из первых вопросов был такой: существует ли последнее простое число, то есть, имеет ли ряд простых чисел конец? Около 300 лет до нашей эры на этот вопрос дал отрицательный ответ знаменитый древнегреческий математик Евклид. Он доказал, что за каждым простым числом имеется, ещё большее простое число, то есть, существует бесчисленное множество простых чисел.

Самое старое известное доказательство этого факта было дано Евклидом в «Началах» (книга IX, утверждение 20).

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.

Итак, нельзя принять, что ряд простых чисел конечен: предположение это приводит к противоречию. Таким образом, какую бы длинную серию последовательности составных чисел мы не встретили в ряду натуральных чисел, мы можем быть убеждены в том, что за нею найдется ещё бесконечное большее число.

Математики предлагали и другие доказательства.


1.3.Самое большое простое число.


Одно дело быть уверенным в том, что существуют какие угодно большие простые числа, а другое дело — знать, какие числа являются простыми. Чем больше натуральное число, тем больше вычислений надо провести, чтобы узнать, является ли оно простым или нет.

Издавна ведутся записи, отмечающие наибольшие известные на то время простые числа. Один из рекордов поставил в своё время Эйлер в ХVIII столетии, он нашел простое число 2147483647.

Наибольшим известным простым число-рекордсмен по состоянию на июнь 2009 года является 2 в степени 43112609 – 1(открыл Купера из Университета Центрального Миссури в СШ А). Оно содержит 12 978 189 десятичных цифр и является простым числом Мерсенна. Благодаря этому ученому простые числа Мерсенна давно удерживают рекорд как самые большие известные простые. Чтобы их определить, потребовалось 75 мощных компьютеров.  

Числа вида: 2 в степени n минус 1, где n тоже простое число, относятся к числам Мерсенна. Купера сделал новое математическое открытие в 2013 г.. Ему удалось найти самое длинное простое число в мире. Записано оно следующим образом – 2 в степени 57885161 - 1.   Число содержит более 17 миллионов цифр. Для того чтобы распечатать его на бумаге понадобится более 13 тысяч страниц формата А4.
       Теперь новый рекорд в классе простых чисел Мерсенна записывается как
2 в степени 57885161 - 1, в нём 17425170 цифр.   Открытие нового рекордсмена принес Куперу денежный приз в размере 3 тысяч долларов

Фонд Электронных Рубежей также обещает наградить 150 и 250 тысячами долларов США людей, которые представят миру простые числа, состоящие из 100 миллионов и миллиарда символов

    1. Способы определения (поиска) простых чисел.

а) Решето Эратосфена.

Существуют различные способы поиска простых чисел. Первый, кто занимался  задачей  «выписать из множества натуральных чисел  простые», был великий греческий математик древности  Эратосфен, живший почти 2 300 лет назад. Он  придумал такой способ: записал все числа от единицы до какого-то числа, а потом вычеркнул единицу, которая не является ни простым, ни составным числом, затем вычеркивал через одно все числа, идущие после 2 (числа, кратные двум, т.е. 4,6,8 и т.д.). Первым оставшимся числом после 2 было 3. Далее вычеркивались через два все числа, идущие после трех (числа, кратные 3, т.е. 6, 9, 12, и т.д.), в конце концов оставались не вычеркнутыми только простые числа: 2, 3, 5, 7, 11, 13,….

Таким образом, Эратосфен изобрёл способ, посредством которого можно отсеять все простые числа от 1 до некоторого определённого числа путем вычленения всех чисел кратных каждому простому числу. Этот способ называется «Решето Эратосфена». Решето Эратосфена - самый простой способ нахождения начального списка простых чисел вплоть до некоторого значения.

Греки делали записи на покрытых воском табличках или на папирусе, а числа не вычёркивали, а выкалывали иглой, то таблица в конце вычислений напоминала решето.

Возможно, ли распознать простое число, как говорится, с первого взгляда? Если зачерпнуть в сито сразу много чисел, сверкнет ли среди них простое, как золотой самородок? Некоторые считают, что да. Например, числа, оканчивающиеся на 1, часто оказываются искомыми, скажем, такие как 11, 31, 41. Однако при этом следует быть осторожным и не принять фальшивое золото за чистое, как, скажем, 21 или 81. По мере роста величины чисел, единица на конце все чаще вводит нас в заблуждение. Создается даже впечатление будто простые числа, в конце концов, просто исчезают, как полагали некоторые древние греки.

б) Составление таблиц способом «Решета Эратосфена»

а) Решето Эратосфена, как теоретический метод исследования, в теории чисел был введен в 1920 году Норвежским математиком В.Бруном. Используя этот способ, ученые составили таблицы простых чисел между 1 и 12 000 000

Истинным героем в составлении таблицы простых чисел является профессор Чешского университета в Праге Якуб Филип Кулик (1793-1863).

Он, не имея никаких видов на печатание своего труда, составил таблицу делителей чисел первых ста миллионов, точнее чисел до 100 320 201, и поместил её в библиотеке Венской Академии наук для пользования работающими в этой области.

Мы на уроках математики пользуемся таблицей, приведенной на форзаце учебника в пределах 1000.



в) Составление таблиц с помощью вычислительной техники

Внедрение средств вычислительной техники в теоретическую и прикладную математику существенно облегчило решение задач, связанных с трудоёмкими расчётами.

В память достаточно сложных компьютеров можно заложить табличные данные любого объёма, однако такими возможностями пока ещё не обладают калькуляторы индивидуального пользования. Поэтому над проблемами составления компактных и удобных таблиц, предназначенных, в частности, для анализа чисел, продолжают работать специалисты-математики.

Применение для этой цели вычислительных машин позволило сделать весьма существенный шаг вперёд. Например, современная таблица чисел, для составления которой была привлечена вычислительная техника, охватывает числа до 10 000 000. Это довольно объёмистая книга.


г) Тесты простоты.

На практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты.

Использование специализированных алгоритмов по определению простоты числа (является ли число простым?) позволяет осуществить поиски простого числа в заданных пределах натурального ряда чисел.

д) Открытие века – Закон простых чисел

Еще в глубокой древности ученых интересовал вопрос о том, по какому закону расположены в натуральном ряду простые числа. Русский Пифагор – Владимир Хренов – своим открытием Закона простых чисел произвел шок в научном мире. Этот закон не только возвращает математику в правильное русло, но и объясняет многие законы природы с точки зрения истинного познания мира. Русский гений,  Владимир Хренов сделал научное открытие, которое переворачивает существующее представление о времени и пространстве, что простые числа - это не хаос.

Простые числа получаются по формуле: «6Х плюс-минус 1», где Х любое натуральное число.

13=6*2-1; 13=6*2-1; 19=6*3+1; 31=6*5+1;

Открытие было сделано 30 апреля 2000 года. Это была юбилейная Пасха Воскресения Христа. Знаменательная дата. В этот день открылась истинная модель реального пространства и времени. 7 января 2001 года был описан закон простых чисел, а вместе с ним – закономерности формирования всех чисел натурального ряда. Так вот, после открытия закона простых чисел стало понятно, что единица – эталон пространства, шесть – эталон времени, а в совокупности два эталона пространства и времени творят все многообразие природы и являются вечной первопричиной всего. Теперь, после открытия Закона простых чисел, стало ясно, что они образуются научное обоснование магии числа 7. Данный закон имеет не только колоссальное мировоззренческое, но позволяет создавать технологии защиты информации нового поколения, основанные на данной теории. Для создания нового нужно новое простое число. Вот почему математикам, открывшим его, выплачивают такие огромные суммы.

  1. ПРИМЕНЕНИЕ ТЕОРИИ ПРОСТЫХ ЧИСЕЛ


    1. Примеры некоторых утверждений теории простых известных советских ученых по теории простых чисел.

Хотя со времени Евклида прошло более двух тысяч лет, к его теории ничего нового не добавилось. Простые числа в натуральном ряду располагаются чрезвычайно прихотливо. Однако, существует огромное количество загадок, связанных с простыми числами.

Большие заслуги в области изучения простых чисел принадлежат русским и советским математикам. Меня заинтересовали простые и в то же время удивительные утверждения, которые доказали в этой области известные советские ученые. Я их рассмотрела и привела ряд примеров, подтверждающих истину высказываний.

П.Л.Чебышев (1821-1894) доказал, что между любым натуральным числом больше 1, и числом вдвое больше данного, всегда имеется хотя бы одно простое число.

Рассмотрим следующие пары простых чисел, удовлетворяющих этому условию.

Примеры:

  1. и 4 - простое число 3.

  2. и 6 - простое число 5.

10 и 20 -простые числа 11; 13; 17; 19.
5 и 10 - простое число 7.

7 и 14 - простые числа 11; 13.

11 и 22 - простые числа 13; 17; 19.

Вывод: действительно, между любым натуральным числом больше 1 и числом вдвое больше данного, имеется хотя бы одно простое число.

Христиан Гольдбак , член Петербургской академии наук, почти 250 лет назад высказал предложение, что любое нечетное число больше 5, можно представить в виде суммы трех простых чисел.

Примеры:

21 = 3 + 7 + 11,

37 = 17 + 13 + 7,

23= 5 + 7 + 11,

29= 11 + 13 + 5,

Виноградов ИМ. (1891-1983), советский математик, доказал это предложение лишь 200 лет спустя.

7 = 2 + 2 + 3, 15 = 3 + 5 + 7 = 5 + 5 + 5,

9 = 3+3 + 3, 20 = 7 + 11 + 2.


Но утверждение «Любое четное чисто, больше 2, можно представить в виде суммы двух простых чисел» до сих пор не доказано.

Примеры:

28= 11 + 17, 924 = 311 + 613,

56= 19 + 37, 102 = 59 + 43.


2.2 Примеры ряда проблем в теории простых чисел.


Проблема отсутствия закономерностей распределения простых чисел занимает умы человечества еще со времен древнегреческих математиков. Благодаря Евклиду мы знаем, что простых чисел бесконечно много. Эрастофен, Сундарам предложили первые алгоритмы тестирования чисел на простоту. Эйлер, Ферма, Лежандр и многие другие известные математики пытались и пытаются по сей день разгадать загадку простых чисел. На сегодняшний момент найдено и предложено множество изящных алгоритмов, закономерностей, но все они применимы лишь для конечного ряда простых чисел или простых чисел специального вида. Передним же краем науки в исследованиях простых чисел на бесконечности считается доказательство гипотезы Римана. Она входит в семерку неразрешенных проблем тысячелетия, за доказательство или опровержение которой математическим институтом Клэя предложена премия в 1.000.000 $.

Наиболее известные проблемы простых чисел были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе. Сегодня ученые говорят о 23 проблемах.

Мне удалось рассмотреть 4 из них, привести ряд примеров по каждой проблеме.

Первая проблема Ландау (проблема Гольдбаха ):

доказать или опровергнуть:

Каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел.

Примеры:


8 = 3+5,

12 = 5+7,

16=13 +3, 17= 11+3+3,

24=19+5, 21=11+7+3

50 = 13+37

Вторая проблема Ландау (проблема Гольдбаха) :

бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2?

а) Определила следующие числа «близнецы»:

3 и 5; 5 и 7; 7 и 9; 11 и 13, 17 и 19; 41 и 43;

б). Пары близнецов состоят из двойников с общим элементом. Мне удалось найти следующие пары близнецов - «двойников»


Решение:

(3, 5) и (5, 7);

Известно, что простых чисел бесконечно много. Но никто не знает, конечно, или бесконечно множество пар близнецов.

Третья проблема Ландау ( гипотеза Лежандра )

верно ли, что между числами вида n2 и (n + 1)2 всегда найдётся простое число?( n – нечетное число)


Решение:

а) при n=3, получим 6 и 8, между ними простое число 7.

б) при n=5, получим 10 и 12, между ними простое число 11.

в) при n=9, получим 18 и 20, между ними простое число 19.


4.Четвёртая проблема Ландау:

бесконечно ли множество простых чисел вида n2 + 1?

Решение:

при n=1, то имеем 3; при n=2, то имеем 5; при n=3, то имеем 7

при n=5, то имеем 11, при n=6 то имеем 13; при n=8, то имеем 17 и т.д.


2.3. Задачи прикладного характера


Задача 1. С помощью решета Эратосфена определите сколько простых чисел находится от 1 до 100.

Решение:

Для этого выпишем все числа от 1 до 100 вряд. .

Будем вычеркивать числа, которые не являются простыми. Вычеркнем 1,так как это не простое число. Первое простое число 2.

Подчеркнем его и вычеркнем все числа кратные 2, то есть числа 4, 6, 8... 100 следующее простое число 3. Подчеркнём его и вычеркнем числа кратные 3, которые остались не вычеркнутыми, то есть числа 9? 15, 21 ... 99. Затем подчеркнем простое число 5 и вычеркнем все числа кратные 5. Числа 25...95. И так далее, пока не останется одно простое число 97.

Вывод: Между 1 и 100 находится 25 простых чисел, то есть числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. (Приложение 1)

Задача 2. Чтобы получить список простых чисел, меньше 1000 надо «отсеять» числа, которые делятся на 2, 3, 5, 7, 11 … На каком числе при этом можно остановиться ?

Решение:

Используя метод Эратосфена, мной была проведена аналогичная

работа по отсеиванию составных чисел в пределах до 1000.

Вывод: чтобы получить простые чисел до 1000 можно остановиться на простом числе 31 (вычеркнуть числа кратные 31). (Приложение 2)


2.4.Задачи на применение законов простых чисел


Задача 3. Как с помощью двух проверок показать, что число 19 – простое?

Решение представлено в приложении 3.


Задача 4. Как с помощью трёх проверок показать, что число 47 – простое?

Решение представлено в приложении 4.


2.5 Магические квадраты.


Простым числам посвящено множество занимательных математических задач в применении квадратных матриц – магических квадратов, у которых суммирование элементов по любой строке, любому столбцу и двум главным диагоналям дает одно и то же число.

Первый из них была придуман Генри Эрнестом Дьюдни, известным английским специалистом по головоломкам.

Существуют ли магические квадраты, состоящие только из простых чисел? Оказывается, да.

Я изучила магические квадраты размером 3х3, 4х4., 6х6.Определила сумму вдоль каждой строки, каждого столбца и каждой главной диагонали каждого из этих квадратов. Решение представлено в приложении 5.

вдоль каждой строки, каждого столбца и каждой главной диагонали. привожу примеры квадратов, с матрицей 3х3, 4х4, 6х6.


1

67

43

37

13

61

73

31

7


3

61

19

37

43

31

5

41

7

11

73

29

67

17

23

13



3

1

3

9

9

1

9

8

3

9

2

9

1

6

4

3

1

2

5

1

7

4

7

1

7

1

5

9

7

1

9

3

7

3

3

9





Вывод:

1.Магический квадрат 1 размером 3х3 имеет сумму 111 (между прочим, тоже не простое число)

2. Магический квадрат 2 размером 4х4 имеет сумму ?

3. Магический квадрат 3 размером 6х6 имеет сумму ?



3.4. Применение закона простых чисел в различных областях.

Простые числа являются не только объектом пристального рассмотрения со стороны математиков всего мира, но уже давно и успешно используются в составлении различных рядов чисел, что является основой, в том числе, для шифрографии. Знание законов позволило дать такие запатентованные технические решения защиты передачи информации, которые на существующем математическом базисе считались просто невозможными. Простые числа необходимы для создания шифров. Рано или поздно всякий шифр рассекречивается.

Здесь ученые обращаются к одному из важнейших разделов информатики – к криптографии. Если так трудно найти следующее простое число, то где и для чего эти числа можно использовать на практике?» Наиболее распространенным примером использования простых чисел является применение их в криптографии (шифровании данных). Самые безопасные и трудно дешифруемые методы криптографии основаны на применении простых чисел, имеющих в составе более трех сотен цифр.

Я попробовала проиллюстрировать проблему, с которой сталкивается дешифровщик для расшифровки некоего пароля. Допустим, паролем является один из делителей составного числа, а дешифровщиком выступает человек. Возьмем число из первого десятка, например, 8. Каждый (я надеюсь) человек способен в уме разложить число 8 на простые множители – 8=2*2*2. Усложним задачу: возьмем число из первой сотни, например, 111. В этом случае 111 быстро разложат в уме на множители люди, знающие признаки делимости числа на 3 (если сумма цифр числа кратна 3, то данное число делится на 3), и действительно - 111=3*37. Усложняя задачу, возьмем число из первой тысячи, например 1207. Человеку (без использования машинной обработки) потребуется, как минимум, бумага и ручка, для того чтобы перепробовать деление числа 1207 на «все» предшествующие этому числу простые числа. И только перебрав последовательно деление 1207 на все простые числа от 2 до 17 человек, наконец то, получит второй целый делитель данного числа – 71. Однако и 71 необходимо так же проверить на простоту.

Становится понятно, что с увеличением разрядности чисел, например, пятизначного числа - 10001, разложение (в нашем примере дешифровка пароля) без машинной обработки займет большое количество времени. Современный этап развития компьютерной техники (доступный рядовому пользователю) позволяет за считанные секунды раскладывать на множители числа, состоящие из шестидесяти цифр.

 Задумайтесь, сколько жизней должен прожить человек, чтобы разложить данное число на простые множители без помощи машин!

На сегодняшний день разложить числа, состоящие из тысячи и более цифр, за соизмеримое с человеческой жизнью время, способны только суперкомпьютеры! Именно с их помощью ученные находят все новые и новые, наибольшие из известных, простые числа.

Я узнала, что знание открытых законов позволит создать качественно новые решения в следующих областях:

  • Сверх защищённая операционная система для банков и корпораций.

  • Система борьбы с контрафактной продукцией и поддельными денежными знаками.

  • Система дистанционной идентификации и борьбы с угонами автотранспорта.

  • Система борьбы с распространением компьютерных вирусов.

  • Компьютеры нового поколения на нелинейной системе счисления природы.

  • Математико-биологическое обоснование теории гармонии восприятий.

  • Математический аппарат для нано – технологий.



















ЗАКЛЮЧЕНИЕ.


В ходе работы над данной темой мне удалось расширить представление о простых числах по следующим направлениям:

  • изучила интересные стороны развития теории простых чисел,познакомилась с новыми достижениями ученых доступные для моего понимания в этой области и практическом ее применении,

  • сформировала общее представление о способах нахождения простых чисел, освоила принцип выделения простых чисел из натурального ряда с помощью способа «Решето Эратосфена» в пределах до 100; 1000,

  • изучила применение теории простых чисел в задачах,

  • познакомилась с применением теории простых чисел в различных областях.

В ходе написания работы мне удалось освоить два способа получения ряда простых чисел:

  • практический способ – отсеивание (решето Эратосфена),

  • аналитический способ – работа с формулой (закон простых чисел).


В рамках исследования:

  • сделала самостоятельно проверку ряда математических утверждений путем подстановки значений, получив верные математические выражения,

  • определила ряд чисел «Двойники» и «Близнецы»,

  • составила ряд числовых выражений, обозначенных в проблемах Ландау,

  • проверила, что квадраты с матрицей 3х3, 4х4., 6х6 магические,

  • решила две задачи двумя способами на применение закона простых чисел и утверждений.

В процессе работы над темой я убедилась в том, что простые числа остаются существами, всегда готовыми ускользнуть от исследователя. Простые числа есть «сырой материал» из которого формируется арифметика, и что существуют неограниченные запасы этого материала.

Меня заинтересовали специалисты в области криптографии, которые с недавних пор пользуются известным спросом в секретных организациях. Именно они находят все новые и новые большие простые числа для постоянного обновления списка возможных ключей и стараются выявить все новые закономерности в распределении простых чисел. Простые числа и криптография - это моя дальнейшая тема по изучению теории простых чисел.

Считаю, что работа может быть использована на во внеурочной деятельности, на факультативных занятиях учащихся 6-7 классов, как дополнительный материал к урокам математики в 6 классе при подготовке сообщений по теме. Тема исследования очень интересна, актуальна, не имеет границ изучения, должна вызвать широкий интерес у учащихся.


Библиографический список














Выберите курс повышения квалификации со скидкой 50%:

Краткое описание документа:

В ходе работы над данной темой ученице удалось расширить представление о простых числах по следующим направлениям:

üинтересные стороны   развития теории простых чисел,новые достижениями  ученых  доступные для ее понимания в этой области и практическом ее применении,

ü общее представление о способах нахождения простых чисел, принцип выделения   простых чисел из натурального ряда с помощью способа «Решето Эратосфена»  в пределах до 100; 1000,

üприменение  теории простых чисел в задачах,

üзнакомтсво с применением теории простых чисел в различных областях.

В освоены два способа получения ряда простых чисел:

ü практический  способ – отсеивание (решето Эратосфена),

üаналитический способ – работа с формулой (закон простых чисел).

 

 

Автор
Дата добавления 02.03.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров1307
Номер материала 418963
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх