Инфоурок / Математика / Другие методич. материалы / Несложные задачи по теории вероятностей (с ответами, теорией)

Несложные задачи по теории вероятностей (с ответами, теорией)

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Несложные задачи по теории вероятностей с решениями

hello_html_272d11aa.jpg


Любая задача по теории вероятностей в школьном курсе математики по большому счету сводится к стандартной формуле.

hello_html_m45b8eb29.jpg


где Р - искомая вероятность, n - общее число возможных событий, m - число интересующих нас событий.

Главное - правильно определить ее компоненты. А вот здесь уже чаще всего нужны дополнительные знания и умения применять различные методы решения верятностных задач.

Первый блок задач - задачи, которые решаются по формуле определения вероятности буквально в одно действие.


  1. В среднем из 2000 садовых насосов, поступивших в продажу, 14 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.


Решение.

Число вариантов выбора насосов: n = 2000. Число вариантов выбора исправных насосов: m = 2000 - 14 = 1986.

Искомая вероятность:

hello_html_6315325.jpg

Ответ: 0,993.


2. Фабрика выпускает сумки. В среднем на 120 качественных сумок приходится девять сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.


Решение.

Число вариантов выбора сумок: n = 120 + 9 = 129.

Число вариантов выбора качественной сумки: m = 120. 
Искомая вероятность:

hello_html_m36041ac8.jpg

Ответ: 0,93.




3. В коробке лежат 5 красных, 7 зеленых и 2 синих кубика. Случайным образом из коробки берут кубик. Какова вероятность того, что из коробки взяли зеленый кубик?


Решение.
Число вариантов выбора кубиков: n = 5 + 7 + 2 = 14.

Число вариантов выбора зеленого кубика: m = 7.

Искомая вероятность:

hello_html_m3faff274.jpg

Ответ: 0,5.


4. В кармане у Сережи находится 7 монет достоинством 5 рублей, 10 монет достоинством 1 рубль и 8 монет достоинством 2 рубля. Мальчик случайным образом вытаскивает одну монету из кармана. Какова вероятность того, что будет вытащена не однорублёвая монета?


Решение.
Число вариантов выбора монет: n = 7 + 10 + 8 = 25.
Число вариантов выбора монет достоинством 5 рублей или 2 рубля: m = 7 + 8 = 15. 
Искомая вероятность:
hello_html_70632778.jpg
Ответ: 0,5.


5. В чемпионате по гимнастике участвуют 50 спортсменок: 17 из России, 22 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.


Решение.
Число вариантов выбора спортсменки, выступающей первой, из разных стран: n = 50.
Число вариантов выбора спортсменки, выступающей первой, из Китая:
m = 50 - (17 + 22) = 11. 
Искомая вероятность:
hello_html_3d7348f3.jpg
Ответ: 0,22.

 


Источники информации


  1. Игральная кость http://www.komus.ru/photo/_normal/456031_1.jpg

  2. Теория вероятностей на ЕГЭ https://youtu.be/PQ8pmQVtiX0

  3. https://sites.google.com/site/gotovimsakege2015pomatematike/medioteka/teoria-veroatnosti-na-ege

  4. Сайт «Досье школьного учителя» http://www.mathvaz.ru/



Справка: к сожалению сайт в том виде в котором существовал сейчас не существует



Краткое описание документа:

Материал представляет собой краткую теорию и пять базовых задач с решением по теории вероятностей. Материал данной работы может быть использован учащимися для самостоятельного изучения темы, педагогами для организации дистанционного обучения темы Теория вероятностей (классическое определение).

Любая задача по теории вероятностей в школьном курсе математики по большому счету сводится к стандартной формуле P = m/n, где Р - искомая вероятность, n - общее число возможных событий, m - число интересующих нас событий.

1.В среднем из 2000 садовых насосов, поступивших в продажу, 14 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

2. Фабрика выпускает сумки. В среднем на 120 качественных сумок приходится девять сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

3. В коробке лежат 5 красных, 7 зеленых и 2 синих кубика. Случайным образом из коробки берут кубик. Какова вероятность того, что из коробки взяли зеленый кубик?

4. В кармане у Сережи находится 7 монет достоинством 5 рублей, 10 монет достоинством 1 рубль и 8 монет достоинством 2 рубля. Мальчик случайным образом вытаскивает одну монету из кармана. Какова вероятность того, что будет вытащена не однорублёвая монета?

5. В чемпионате по гимнастике участвуют 50 спортсменок: 17 из России, 22 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

Общая информация

Номер материала: ДБ-020912

Похожие материалы

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»