Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Обобщающий урок по теме: «Квадратные уравнения»

Обобщающий урок по теме: «Квадратные уравнения»

  • Математика

Поделитесь материалом с коллегами:

Обобщающий урок по теме: «Квадратные уравнения»

8 класс

Цели урока:

  • Систематизировать способы решения квадратных уравнений.

  • Показать рациональные способы решения квадратных уравнений.

  • Использовать данные способы для быстрого решения квадратных уравнений.

  • Развивать логическое мышление учащихся.

  • Привить интерес к изучению математики.

Ход урока.

1способ. Разложение левой части уравнения на множители.

Решим уравнение

Х2+10Х-24=0.

Разложим левую часть на множители:

Х2+10Х-24=Х2+12Х-2Х-24=Х(Х+12)-2(Х+12)=(Х+12)(Х-2).

Следовательно,

(Х+12)(Х-2)=0.

Так как произведение равно, то, по крайней мере, один из его множителей равен нулю. Поэтому Х+12=0 или Х-2=0, то есть Х1=-12 или Х2=2.

Ответ: -12; 2.

2 способ. Метод выделения полного квадрата.

Решим уравнение

Х2+6Х-7=0.

Выделим в левой части полный квадрат, для этого выражение Х2+6Х запишем в следующем виде: Х2+6Х=Х2+2Х3.

Получим Х2+6Х-7= Х2+2Х3+32-32-7=(Х+3)2-9-7= (Х+3)2-16.

Таким образом, данное уравнение можно записать так:

(Х+3)2-16=0. (Х+3)2=16.

Следовательно, Х+3=4, т.е. Х1=1; Х+3=-4, т.е. Х2=-7.

Ответ: -7; 1.

3 способ. Решение квадратных уравнений по формуле.

ax2+bx+c=0, a≠0.

D=b2-4ac; x1,,2 =hello_html_13606b57.gif.

Примеры:

1). 4Х2+7Х+3=0.

a=4, b=7, c=3. D= b2-4ac=72-443=49-48=1,

Dhello_html_m7c48e444.gif0, два разных корня;

x1,,2 =hello_html_72cf22a9.gif, Х1=hello_html_60eb4cc8.gif=-hello_html_m57c90caf.gif; Х2=hello_html_m14317a9f.gif=-1.

Ответ: -1; - hello_html_m57c90caf.gif.

2). 4Х2-4Х+1=0.

a=4, b=-4, c=1. D= b2-4ac= (-4)2-441=16-16=0,

D=0, один корень;

x =hello_html_m46786619.gif . Х=-hello_html_m54b38a03.gif=hello_html_6eec8aff.gif.

Ответ:hello_html_6eec8aff.gif.

3). 2+3Х+4=0.

a=2, b=3, c=4. D= b2-4ac=32-424=9-32=-13hello_html_m7c48e444.gif0.

Dhello_html_m7c48e444.gif0, данное уравнение корней не имеет.

Ответ:hello_html_11852162.gifнет корней.

4 способ. Решение уравнений с использованием теоремы Виета.

Как известно, теорема Виета используется для приведённого квадратного уравнения x2+px+q=0,его корни удовлетворяют теореме Виета, которая при a=1 имеет вид x1x2=q x1+x2=- p.

Примеры:

1). Х2-3Х+2=0; Х1=1; Х2=2, так как x1x2=2 x1+x2=3.

2). Х2+8Х+7=0; Х1=-1; Х2=-7 , так как x1x2=7 x1+x2=-8.

3). Х2+4Х-5=0; Х1=1; Х2=-5, так как x1x2=-5 x1+x2=-4.

4). Х2-8Х-9=0; Х1=-1; Х2=9, так как x1x2=-9 x1+x2=8.

5 способ. Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение ax2+bx+c=0.

Обе части уравнения умножим на a, получим уравнение a2x2+abx+ac=0.

Обозначим ax=y,откуда x=y/a; тогда получаем уравнение y2+by+ac=0, равносильное данному. Получаем корни x1=y1/a, x2=y2/a с помощью теоремы Виета.

Способ хорош, когда дискриминант есть точный квадрат, можно легко применить теорему Виета.

Примеры:

1). Решим уравнение 2Х2-11Х+15=0.

«Перебросим» коэффициент 2 к свободному члену. Получим уравнение

4Х2-22Х+30=0,обозначим (2Х)=У, получим уравнение У2-11У+30=0,

откуда У1=5, У2=6. Х1=2,5; Х2=3.

Ответ:2,5;3.

6 способ. Свойства коэффициентов квадратного уравнения.

Дано квадратное уравнение ax2+bx+c=0, a≠0.

I. Если сумма коэффициентов равна нулю, т.е. a+b+c=0, то Х1=1,Х2=с/а.

Примеры:

1). Решим уравнение 345Х2-137Х-208=0.

Так как 345+(-137)+(-208)=0, то Х1=1, Х2=-208/345.

Ответ: 1; -208/345.

2). Решим уравнение 132Х2-247Х+115=0.

Так как 132+(-247)+115=0, то Х1=1, Х2=115/132.

Ответ: 1; 115/132.

I I. Если второй коэффициент b=2k-чётное число, то применяем формулу

D=k2-ac; x1,,2 =hello_html_m3c2183da.gif.

Примеры:

1). Решим уравнение 3Х2-14Х+16=0.

a=3, b=-14, c=16, K=-7. D=k2-ac= (-7)2-316=49-48=1, Dhello_html_m1b8a79e4.gifдва различных корня;



x1,,2 =hello_html_m3c2183da.gif.Х1=(7+1)/3=hello_html_1bcba676.gif; Х2=(7-1)/3=2.

Ответ: hello_html_1bcba676.gif; 2.

2). Решим уравнение Х2-14Х-15=0.

a=1, b=-14, c=-15.Х1=15; Х2=-1, т. к. Х12=14; Х1Х2=-15.

Ответ: 15; -1.

Дома: класс разбит на 4 группы. Каждой из них разобрать по одному способу решения квадратных уравнений:

1 группа. Графическое решение квадратного уравнения.

2 группа. Решение квадратных уравнений с помощью циркуля и линейки.

3 группа. Решение квадратных уравнений с помощью номограммы.

4 группа. Геометрический способ решения квадратных уравнений.



























Выберите курс повышения квалификации со скидкой 50%:

Краткое описание документа:

Одной из главных тем алгебры 8 класса является решение квадратных уравнений. Квадратные уравнения-это фундамент алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных. логарифмических, иррациональных уравнений и неравенств.

   Учащиеся должны знать о существовании различных способов решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения.

·         Систематизировать способы решения квадратных уравнений.

·         Показать рациональные способы решения квадратных уравнений.

·         Использовать данные способы для быстрого решения квадратных уравнений.

·         Развивать логическое мышление учащихся.

 

·         Привить интерес к изучению математики.

Автор
Дата добавления 09.03.2015
Раздел Математика
Подраздел Конспекты
Просмотров213
Номер материала 433820
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх