Инфоурок / Математика / Конспекты / Окружность в задачах ЕГЭ
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Законы экологии», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 21 ОКТЯБРЯ!

Конкурс "Законы экологии"

Окружность в задачах ЕГЭ

библиотека
материалов

hello_html_2fe35059.gifhello_html_m18e41b2e.gifhello_html_m18e41b2e.gifhello_html_18deb70d.gifhello_html_18deb70d.gifhello_html_18deb70d.gifhello_html_m1381f08b.gifhello_html_m634ebe7a.gifhello_html_m7a270370.gifhello_html_m18e41b2e.gifhello_html_18deb70d.gifhello_html_218ef9f.gifhello_html_218ef9f.gifhello_html_m18e41b2e.gifhello_html_18deb70d.gifhello_html_m1381f08b.gifhello_html_m634ebe7a.gifhello_html_m7a270370.gifhello_html_m18e41b2e.gifhello_html_18deb70d.gifhello_html_218ef9f.gifhello_html_218ef9f.gifhello_html_m18e41b2e.gifhello_html_18deb70d.gifhello_html_6a6b0a69.gifhello_html_5b3116e8.gifhello_html_724ae1eb.gifhello_html_359e467e.gif















Методика обучения решения геометрических задач по теме «Окружность»

при подготовке к ЕГЭ.







Полезный факт.

Медиками установлено: при решении математических задач между клетками мозга образуются нейронные связи, усиливающие мыслительную деятельность человека.

Методика обучения решения геометрических задач при подготовке к ОГЭ и ЕГЭ включает в себя следующее:



- построение опорных геометрических конструкций;

- формулировка опорных свойств, относящихся к данной геометрической конструкции;

- подбор и решение опорных задач, формирующих навыки видения геометрических конструкций и применения соответствующих опорных свойств.

- подбор и решение сложных задач. Окружность.

Опорные геометрические конструкции:



- точка на окружности (рис.1):

- точка вне окружности (рис.2);

-точка внутри окружности (рис.3).

Рис.3

Рис.2

Рис.1

А

C

B

ТОЧКА НА ОКРУЖНОСТИ.

- Вписанный угол (рис. 4);

- Вписанный треугольник (рис. 5);

- Вписанный четырёхугольник (рис. 6);

C

B

A

C

B

А

- Касательная к окружности (рис.7)B

C

D

a

Рис. 4 Вписанный угол АВС

Рис. 6 Вписанный четырехугольник ABCD

Рис. 7 Касательная a к окружности

Рис. 5 Вписанный треугольник АВС

C

B

A

C

B

А

B

C

D

a

Рис. 4 Вписанный угол АВС

Рис. 6 Вписанный четырехугольник ABCD

Рис. 7 Касательная a к окружности

Рис. 5 Вписанный треугольник АВС

Опорные свойства вписанного угла:

1Вписанный угол равен половине угловой величины соответствующего центрального угла (дуги) Рис.8

2.Вписанные углы, опирающиеся на одну и ту же дугу равны Рис.9

3.Если точки А и В лежат на окружности по одну сторону от прямой, содержащей хорду СD, то угол САD равен углу СВD.Рис.9

4. Если точки А и В лежат на окружности по разные стороны от прямой, содержащей хорду СD, то угол / САD +/СВD =180. Рис.10

A

B

C

α

α/2

O

Рис.8

A

B

C

D

α

α

Рис.9

A

D

C

B

α

180-α

Рис.10







Опорные свойства вписанного треугольника:

1.Около каждого треугольника можно описать окружность.

2.Центр описанной окружности – точка пересечения серединных перпендикуляров к его сторонам.

3.Центр окружности, описанной около прямоугольного треугольника – середина гипотенузы.

4. .Центр окружности, описанной около остроугольного треугольника, расположен внутри треугольника.

5. Центр окружности, описанной около тупоугольного треугольника, расположен вне треугольника.

6.Теорема синусов: a/sinα = b/sinβ = c/sinγ = 2R.

R =a/2sinα = b/2sinβ = c/2sinγ





Полезный факт.

Три стороны треугольника, площадь

треугольника и радиус описанной

окружности связаны соотношением:

S = abc / 4R.

Опорные свойства вписанного четырёхугольника:



1.Теорема. Около четырёхугольника можно описать окружность тогда и только тогда, если сумма его двух противоположных углов равна 180 (Рис. 14)

2.Если хорды АВ и СD окружности пересекаются в точке М, то АМ х МВ =СМхMD (Рис.15).



A

D

C

B

α

180-α

Рис.14

С

D

B

A

α

Рис.15

M













Полезные факты

1.Параллелограмм, вписанный в окружность, является прямоугольником.(Рис.16).

2.Вписанная трапеция является равнобедренной (Рис.17) .

3.Угол между двумя пересекающимися хордами равен полусумме противоположных дуг, высекаемых хордами: φ = ½ . (АВ + CD)(Рис.15).

A

D

C

B

Рис.16



A

D

C

B

Рис.17



Опорные свойства касательной к окружности:

1.Касательная к окружности проходит через точку окружности и перпендикулярна радиусу, проведённому в эту точку (Рис. 11)

2. Угол между касательной и хордой, проведённой через точку касания, равен угловой величине дуги, заключённой между ними (Рис. 12)

3.Теорема(о касательной и секущей). Если из точки, лежащей вне окружности, проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равна квадрату касательной : МС = МАхМВ(Рис. 13)

M

r

Рис.11

A

B

Рис.12

C

А

B

Рис.13

a

α

M

ТОЧКА ВНЕ ОКРУЖНОСТИ.

- Окружность, вписанная в угол (рис.17).

- Окружность, вписанная в треугольник (рис.18).

- Окружность, вписанная в четырёхугольник (рис.19).

M



A

O

B

Рис.17



B

C

M

Рис.18

Рис.19

A

B

C

D

Опорные свойства окружности, вписанной в угол:

1.Расстояние от вершины угла до сторон касания равны (Рис. 17).

2.Луч, проведённый из вершины угла и проходящий через центр окружности являетсябиссектрисой угла, МО-биссектриса (Рис. 17).

3. Биссектриса угла, в которую вписана окружность, перпендикулярна отрезку, соединяющего точки касания: МО АВ, АК = КВ (Рис. 17).

M



A

O

B

Рис.17

Опорные свойства окружности, вписанной в треугольник:

1.В любой треугольник можно вписать окружность и притом только одну.

2.Центр окружности - точка пересечения биссектрис углов треугольника (Рис.20).

3.Радиусы, проведённые в точки касания, перпендикулярны к сторонам (Рис.21).

4.Расстояния от вершины угла до точек касания равны (Рис.22).



B

C

M

Рис.20

Рис.21

A

B

C



Рис.22

Полезные факты.

1.Радиус окружности, вписанной в прямоугольный треугольник, с катетами а и в и гипотенузой с ,равен r =( a+b- c)/2.



2.Если окружность, вписанная в ▲АВС, касается сторон АВ, ВС, АС соответственно в точках К,L,М и /ВАС= α, то /КLM = 90 – α/2.

3.Радиус окружности, вписанной в треугольник, равен площади треугольника, деленный на его полупериметр: r = S/р.

Опорные свойства окружности, вписанной в четырёхугольник:

1.Теорема.Чтобы в четырёхугольник вписать окружность, необходимо и достаточно, чтобы суммы противоположных сторон были равны.

2.Центр окружности - точка пересечения биссектрис углов четырёхугольника (Рис.23).

3.Радиусы, проведённые в точки касания, перпендикулярны к сторонам четырёхугольника (Рис.24).

4.Расстояния от вершины угла до точек касания равны (Рис.25).



Рис.23









Рис.25

Рис.24



Полезные факты.

1.Параллелограмм,описанный около окружности, является ромбом. Центр окружности-точка пересечения его диагоналей.

2.Диаметр окружности, вписанной в ромб или трапецию, является высотой ромба (трапеции).

3.Если в трапецию можно вписать окружность, то радиус окружности есть среднее геометрическое отрезков, на которые точка касания делит боковую сторону.

4.Если в трапецию можно вписать окружность, то боковая сторона трапеции видна из центра окружности под прямым углом.

5.Если окружность вписана в равнобедренную трапецию, то её средняя линия равна полусумме боковых сторон.



ЗАДАЧИ

Задача№1.В круге проведены три хорды АВ, ВС, CD. Точки M,N,K – середины соответственно, /BMN= α. Найдите /NKC.

Задача№2. В остроугольном треугольнике ▲АВС угол А равен α, а сторона ВС равна а.

К – центр описанной окружности, Н – ортоцентр. Найти:

а) радиус окружности, описанной около ▲АВС;

б) радиус окружности, описанной около ▲КВС;

в)) радиус окружности, описанной около ▲ВНС.


Задача№3. Расстояние от точки Р, расположенной внутри окружности, до центра окружности радиуса 11 равно 7. Через точку Р проведена хорда ,равная 18.Найдите отрезки, на которые делится хорда точкой Р.

Задача№4.Диагонали четырёхугольника ABCD,вписанного в окружность,пересекаются в точке М,АМ = 4, СМ = 9,ВМ = DМ, /АМВ = 30.Найдите площадь четырёхугольника.

Задача№5.Треугольник АВС вписан в окружность. Прямая, содержащая медиану ВМ, пересекает окружность в точке К, КМ = 4, ВМ = 9, ВС = 7,2. Найдите АК.

Задача№6. Найдите радиус окружности, описанной около треугольника со сторонами 13,14,15.

Задача№6. Около четырёхугольника ABCD можно описать окружность.Известно, что АВ = 3, ВС = 4,СD = 5 и АD = 2. НайдитеАC.

Задача№7. В ▲АВС известно, что АС = b, /АВС = α. Найдите радиус окружности, проходящей через центр вписанного в треугольник АВС круга и вершины А и С.

Задача№8.В окружности проведены две хорды АВ= а и АС=b.Длина дуги АС вдвое больше длины дуги АВ.Найдите радиус окружности.

Задача№9.В KLM угол L – тупой, сторона КМ = 6см..Найти радиус окружности, описанной около KLM, если известно, что на этой окружности лежит центр окружности,проходящей через точки К,М,Н, где Н-ортоцентр окружности.



Задача.



В KLM угол L – тупой, сторона КМ = 6см. Найти радиус окружности, описанной около KLM, если известно, что на этой окружности лежит центр окружности, проходящей через точки К, М, Н, где Н-ортоцентр окружности.





Общая информация

Номер материала: ДВ-010037

Похожие материалы