Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Олимпиадная работа по математике 7 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Олимпиадная работа по математике 7 класс

библиотека
материалов

Олимпиадная работа по математике 7 класс.

  1. Решите следующий числовой ребус:

Ответ: hello_html_m55b682fb.png

hello_html_6811b03f.png

2. В трёх коробках  лежат  180 карандашей. Известно, что во второй  коробке их в 2 раза больше, чем в первой, а в третьей – в 3 раза больше, чем во второй. Сколько  карандашей  во  второй  коробке?

Ответ: 40 карандашей

3. Сколько имеется четырехзначных чисел, которые делятся на 45, а две средние цифры у них – 97?

Ответ: Два числа: 6975, 2970

Решение: Число делится на 45, следовательно, оно делится на 5 и на 9. Раз число делится на 5, то последняя цифра записи числа 0 или 5 .Получим числа вида *970 или *975. Раз число делится на 9, то сумма его цифр делится на 9.

9+7+0=16 первая цифра 2, число 2970

9+7+5=21 первая цифра 6, число 6975.

4. Разрежьте квадрат с дыркой двумя прямыми на 4 части так, чтобы из них и еще одного обычного квадрата 5×5 можно было сложить новый квадрат.
hello_html_m301b082e.png

Ответ:

hello_html_m5898fa74.png

5. Как-то три учителя на практикуме решили продемонстрировать ученикам свое умение размышлять. Они взяли 5 шляп (если кто-то не может представить древнегреческих учителей в шляпах, пусть представит их в разноцветных венках или повязках на голове) - 3 белые и 2 черные - и попросили одного из учеников надеть каждому из них по шляпе. Ученик мог выбрать каждому произвольный цвет шляпы и надеть ее так, чтобы ни один мудрец не видел цвет своей шляпы. Ученик надел каждому по белой шляпе, решив, что так сделает выбор учителей труднее. Учителя договорились о том, что, если кто-либо из них догадается, какого цвета у него шляпа, он сразу же должен заявить об этом. Вскоре один из них догадался, что у него белая шляпа.

  а) Как он рассуждал?

  б) Действительно ли ученик выбрал для мудрецов самый трудный вариант?

Ответ:

а) Пусть первым догадался мудрец А. Он мог рассуждать следующим образом: «Предположим, что у меня шляпа черная. Тогда Б видит мою черную шляпу и белую шляпу В и думает, какого цвета его шляпа. «Если бы моя (Б) шляпа была черной, то В, видя 2 черные шляпы, сразу же заявил бы о белом цвете своей шляпы». Однако В молчит. Следовательно, Б должен сделать вывод о том, что его шляпа не черная, а белая, и заявить об этом. Однако и Б молчит. Следовательно, мое исходное предположение о том, что у меня шляпа черная, ложно. Таким образом, у меня шляпа белая.

б) Если у одного мудреца, например Б, черная шляпа, то А, предположив, что и у него шляпа тоже черная, ожидал бы, что В сразу же догадается, что у него белая шляпа, так как черных шляпы всего 2. Следовательно, А еще быстрее догадался бы о цвете своей шляпы, чем в случае, когда у всех белые шляпы.
Если же у двух мудрецов черные шляпы, а у третьего белая, то он моментально об этом догадался бы.


Краткое описание документа:

Олимпиадная работа по математике разработана для учащихся 7 класса, проявляющих интерес к математике. Данная работа содержит пять заданий. Первое задание - это числовой ребус. Такое задание вызывает интерес у большинства учащихся. Второе задание - задача, решение которой может быть выполнено разными способами. Третье задание требует знания признаков делимости, а также умение применять признаки в новой ситуации. Четвертое задание - задача на разрезание фигур. Пятое задание - это логическая задача. К каждому заданию приведен ответ и решение. Работа может быть использована и на занятиях кружка по математике.

Автор
Дата добавления 20.11.2014
Раздел Математика
Подраздел Другие методич. материалы
Просмотров494
Номер материала 139811
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх