Инфоурок / Математика / Научные работы / Олимпиадные задания для 5 класса
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Законы экологии», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 21 ОКТЯБРЯ!

Конкурс "Законы экологии"

Олимпиадные задания для 5 класса

библиотека
материалов

hello_html_m315be256.jpg

Центр дистанционного образования «Прояви себя»

ВПрямая соединительная линия 4сероссийская интернет-олимпиада.

Св-во о гос. регистрации серия 70 №001697583.

Св-во о регистрации сетевого издания (СМИ)

ЭЛ № ФС 77 - 61157, выдано Роскомнадзором.

Сайт: www.internet-olimpiada.ru .

E-mail: olimpiada@internet-olimpiada.ru .


ЗАДАНИЯ

Всероссийской интернет-олимпиады по математике для 5-х классов.



Инструкции для участников.


Обращаем Ваше внимание на следующие важные моменты:


1. Ответы к заданиям высылаются с 09:00 (мск) 09 ноября до 09:00 (мск) 12 ноября 2015 года с помощью специальной формы, расположенной по ссылке:

http://internet-olimpiada.ru/forma.php .

Перед внесением ответов, пожалуйста, внимательно ознакомьтесь с инструкций по заполнению формы. Инструкция опубликована по ссылке:

http://internet-olimpiada.ru/Instr_internet-olimpiada.ru.doc .

Перед отправкой ответов с помощью специальной формы рекомендуем воспользоваться тренировочной формой, чтобы понять как работает система ставок. Тренировочная форма расположена по ссылке:

http://internet-olimpiada.ru/forma2.php .


2. Ответом на любое задание может быть только целое или дробное число. В случае дробного числа целая и дробная части разделяются точкой.

Положительные числа указываются без символа «+». Отрицательные числа указываются с символом «-», пробел между символом «-» и первой цифрой числа не ставится.


3. Размерности в ответе не указываются, только числовое значение. При этом обращайте внимание, в каких единицах необходимо выразить ответ.


4. В случае успешной отправки ответов с помощью специальной формы после нажатия кнопки "Отправить ответы" на странице появится соответствующее уведомление.


5. Результаты интернет-олимпиады, в том числе баллы каждого участника, будут доступны в 09:00 (мск) 15 ноября 2015 года по ссылке:

http://internet-olimpiada.ru/results.php .

По этой же ссылке в это же время будет открыт доступ для скачивания электронных дипломов.


Желаем Вам успешного участия!




Задание №1. Папа, мама и сын идут в школу. Пока папа делает 3 шага, мама делает 5 шагов. Пока мама делает 3 шага, сын делает 5 шагов. Мама и сын посчитали, что вместе они сделали 800 шагов. Сколько шагов сделал папа?


Задание №2. В двух аквариумах вместе 300 рыбок. Когда из первого аквариума отселили 30 рыбок, а из второго 40, то в аквариумах осталось поровну рыбок. Сколько рыбок было во втором аквариуме первоначально?


Задание №3. Мама купила коробку кускового сахара (сахар в кубиках). Дети сначала съели верхний слой – 77 кубиков, затем боковой слой – 55 кубиков, наконец, передний слой. Известно, что после этого в коробке остались кубики сахара. Сколько именно кубиков сахара осталось в коробке?


Задание №4. В некотором городе 11 учреждений сотрудничают друг с другом. Сколько телефонных линий необходимо, чтобы установить прямую связь каждого учреждения с каждым из остальных?


Задание №5. Доктор дал своему пациенту пакетик с таблетками и указал ему принимать ежедневно по четверти таблетки. Пациент последовал указаниям доктора и ежедневно принимал лекарство, вынимая из пакетика таблетки наугад. Если пациенту попадалась целая таблетка, то он делил её на четвертинки, одну из которых принимал, а остальные возвращал обратно в пакетик. Если пациенту попадалась четвертинка, то он её проглатывал. Через месяц приёма лекарства оказалось, что в пакетике в 8 раз больше четвертинок, чем целых таблеток. Ещё через три месяца в пакетике осталось 5 целых таблеток и некоторое количество четвертинок. Сколько таблеток было в пакетике изначально, т.е. до начала приёма лекарства?


Задание №6. Белоснежка вошла в комнату, где вокруг круглого стола стояло 60 стульев. На некоторых из стульев сидели гномы. Оказалось, что Белоснежка не может сесть так, чтобы рядом с ней никто не сидел. Какое наименьшее число гномов могло быть за столом?


Задание №7. В музее 16 залов, расположенных, как показано на рисунке. В половине из них выставлены картины, а в половине – скульптуры. Из любого зала можно попасть в любой соседний с ним (имеющий общую стену). При любом осмотре музея залы чередуются: зал с картинами – зал со скульптурами – зал с картинами и т.д. Осмотр начинается в зале А, в котором висят картины, а заканчивается в зале Б.

hello_html_edfea9f.gif

Турист хочет осмотреть как можно больше залов (пройти от зала А к залу Б), но при этом в каждом зале побывать не больше одного раза. Какое наибольшее количество залов он сможет посмотреть?


Задание №8. На острове Невезения с населением 96 человек правительство решило провести пять реформ. Каждой реформой недовольна ровно половина всех граждан. Гражданин выходит на митинг, если он недоволен более чем половиной всех реформ. Какое максимальное число людей правительство может ожидать на митинге?


Задание №9. Доктор Айболит раздал четырём заболевшим зверям 2026 чудодейственных таблеток. Носорог получил на одну больше, чем крокодил, бегемот на одну больше, чем носорог, а слон - на одну больше, чем бегемот. Сколько таблеток придётся съесть слону?


Задание №10. Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

3


Общая информация

Номер материала: ДВ-476760

Похожие материалы