Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / ОСЕВАЯ И ЦЕНТРАЛЬНАЯ СИММЕТРИИ
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

ОСЕВАЯ И ЦЕНТРАЛЬНАЯ СИММЕТРИИ

библиотека
материалов

Учитель математики Кочкина Л.К.


Тема ОСЕВАЯ И ЦЕНТРАЛЬНАЯ СИММЕТРИИ

Цель задачи урока:

. Научить строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией ,формирование пространственных представлений учащихся. Развитие умения наблюдать и рассуждать; развитие интереса к предмету через использование информационных технологий. Развитие математической компетентности учащихся. Воспитание человека, умеющего ценить прекрасное.

Ожидаемый результат Ученики смогут строить симметричные фигуры относительно центра и прямой

Оборудование урока:

Использование информационных технологий (презентация).

Ход урока

I. Организационный момент.

Сообщить тему урока, сформулировать цели урока.

II. Показ презентации: «Симметричный мир» ( д/з учащихся)

III. работа по теме урока (работа в группах)

Ученики самостоятельно выполняют задания. По завершению, обмениваются информацией.

1 вариант

п.47

осевая симметрия

2 вариант

п.47

центральная симметрия

Осевая симметрия – это симметрия относительно____________

Центральная симметрия – это симметрия относительно________________

Две точки А и А1 называются симметричными относительно прямой а, если ____________

Две точки А и А1 называются симметричными относительно точки О, если_____________

Прямая а называется_______________

Точка О называется_________________

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры, симметричная ей точка принадлежит_________

Фигура называется симметричной относительно точки О, если для каждой точки фигуры, симметричная ей точка принадлежит________

Равны ли симметричные относительно прямой фигуры?

Да Нет

Равны ли симметричные относительно точки фигуры?

Да Нет



Рассмотрим правила построения симметричных фигур.

1.Центральная симметрия – это симметрия относительно точки.

Точки А и В симметричны относительно некоторой точки О, если точка О является серединой отрезка АВ.

Тhello_html_m57c0caf.pngочка О называется центром симметрии фигуры, а фигура называется центрально-симметричной.


hello_html_5ef70da1.png



Алгоритм построения центрально-симметричной фигуры

Построим треугольник А 1В 1 С 1, симметричный треугольнику АВС, относительно центра (точки) О.

Для этого:

  1. Соединим точки А,В,С с центром О и продолжим эти отрезки;

2. Измерим отрезки АО, ВО, СО и отложим с другой стороны от точки О, равные им отрезки (АО=А 1 О 1, ВО=В 1 О 1, СО=С 1 О 1 );

3.Соединим получившиеся точки отрезками А 1 В 1, А 1 С 1, В 1 С 1.

4. Получили ∆А 1 В 1 С 1симметричный ∆АВС.

Точка О называется центром симметрии фигуры, а фигура называется центрально-симметричной.

Задание №1 На рисунке изображена часть фигуры, центром симметрии которой является точка М. Объясните ее построение


hello_html_m2ba83dac.gif


Задание № 2 Проверьте правильность построения фигуры из №1 у соседа по парте. Постройте в его тетради четырехугольник и отметьте точку О, не принадлежащую этому четырехугольнику. Возьмите свою тетрадь обратно и постройте четырехугольник, симметричный данному относительно точки О.

Проверьте правильность выполненного задания.

hello_html_420085a3.png



2. Осевая симметрия – это симметрия относительно проведенной оси (прямой).

Точки А и В симметричны относительно некоторой прямой а, если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии.

Осью симметрии называется прямая при перегибании по которой «половинки» совпадут, а фигуру называют симметричной относительно некоторой оси.

hello_html_4796cbc6.png









Алгоритм построения фигуры, симметричной относительно некоторой прямой

Построим треугольник А 1В 1С 1, симметричный треугольнику АВС относительно прямой а.

Для этого:

1. Проведем из вершин треугольника АВС прямые, перпендикулярные прямой а и продолжим их дальше.

2. Измерим расстояния от вершин треугольника до получившихся точек на прямой и отложим с другой стороны прямой такие же расстояния.

3. Соединим получившиеся точки отрезками А 1В 1, В 1С 1, В 1С 1.

4. Получили ∆ А 1В 1С 1симметричный ∆АВС.

hello_html_28816ea7.gifhello_html_m5b6761d.gif


Задания по учебнику № 248-252,№261

  1. выполнить построение фигуры, симметричной относительно прямой а (на доске и в тетрадях).

hello_html_m2850eb54.gif

VI. Подведение итогов урока.

Рефлексия С какими видами симметрии вы познакомились на уроке?

Домашнее задание:

Определения повторить . Творческая работа: Исследовав русский алфавит (для 1 варианта) и латинский алфавит (для 2 варианта), выбрать те буквы, которые обладают симметрией. Оформить результаты исследований в формате А4. Те, кого заинтересовала данная тема, могут принять участие в творческом проекте «Симметрия в моей любимой школе»





Задание №4 Заполните таблицу:




Отрезок

Прямая

Луч

Квадрат

Один центр симметрии





Бесконечно много центров симметрии





Одна ось симметрии





Две оси симметрии





Четыре оси симметрии





Бесконечно много осей симметрии







1 вариант

п.47

осевая симметрия

2 вариант

п.47

центральная симметрия

Осевая симметрия – это симметрия относительно____________

Центральная симметрия – это симметрия относительно________________

Две точки А и А1 называются симметричными относительно прямой а, если ____________

Две точки А и А1 называются симметричными относительно точки О, если_____________

Прямая а называется_______________

Точка О называется_________________

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры, симметричная ей точка принадлежит_________

Фигура называется симметричной относительно точки О, если для каждой точки фигуры, симметричная ей точка принадлежит________

Равны ли симметричные относительно прямой фигуры?

Да Нет

Равны ли симметричные относительно точки фигуры?

Да Нет



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 13.01.2016
Раздел Математика
Подраздел Конспекты
Просмотров1203
Номер материала ДВ-334229
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх