Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Открытый урок "Функция у=ax^2. Cвойства и график", 9 класс.

Открытый урок "Функция у=ax^2. Cвойства и график", 9 класс.



Осталось всего 2 дня приёма заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)


  • Математика

Документы в архиве:

Название документа urok8kl.ppt

Итак, начнём…
Отгадав ребус, вы узнаете тему нашего урока.
УРОК -3х2=-48 Х2-6х+9=0 Х2=2х (х-5)(2х+1)=0 7х2 -7=0
Заполни пропуски … 1. Функция у = aх2 + bx + c, где а, b, c – заданные дейст...
Подумай… 1. Найдите координаты вершины параболы у=х2-4х+4 Ответ: (2;0) Найдит...
4. По графику найдите значения х, при которых значения функции у=х2 - 5х + 6...
Реши… 	 1 группа 2 группа 3 группа
Найти значение х, при которых квадратичная функция у=2х2 -5х+3 принимает знач...
Найдите координаты точек пересечения параболы у = х2 + х - 12 с осями коорд...
Не строя график функции у = х2 – 4х + 6, найти ее наибольшее или наименьшее з...
Используя программу Advanced Grapher… Решите графически неравенство Х2 + 2х –...
 Решил? Дa! Нет
Получай!!!
Получай!!!
Успехов!!! До новых встреч!
Тест Назад
1 из 16

Описание презентации по отдельным слайдам:

№ слайда 1 Итак, начнём…
Описание слайда:

Итак, начнём…

№ слайда 2 Отгадав ребус, вы узнаете тему нашего урока.
Описание слайда:

Отгадав ребус, вы узнаете тему нашего урока.

№ слайда 3 УРОК -3х2=-48 Х2-6х+9=0 Х2=2х (х-5)(2х+1)=0 7х2 -7=0
Описание слайда:

УРОК -3х2=-48 Х2-6х+9=0 Х2=2х (х-5)(2х+1)=0 7х2 -7=0

№ слайда 4 Заполни пропуски … 1. Функция у = aх2 + bx + c, где а, b, c – заданные дейст
Описание слайда:

Заполни пропуски … 1. Функция у = aх2 + bx + c, где а, b, c – заданные действительные числа, а  0, х – действительная переменная, называется … функцией. 2. График функции у = ах2 при любом а  0 называют … . 3. Функция у = х2 является … (возрастающей, убывающей) на промежутке х  0. 4. Значения х, при которых квадратичная функция равна нулю, называют … функции. 5. Точку пересечения параболы с осью симметрии называют … параболы. 6. При а >0 ветви параболы у = ах2 направлены … . Если а< о и х  0, то функция у = ах2 принимает … (положительные, отрицательные) значения. Назад квадратичной параболой убывающей нулями функции вершиной параболы вверх отрицательные

№ слайда 5 Подумай… 1. Найдите координаты вершины параболы у=х2-4х+4 Ответ: (2;0) Найдит
Описание слайда:

Подумай… 1. Найдите координаты вершины параболы у=х2-4х+4 Ответ: (2;0) Найдите нули квадратичной функции у=х2+х-2 Ответ: (-2; 0), (1; 0) Не производя построение графика, опреде- лите, наибольшее или наименьшее значение принимает квадратичная функция У=2-5х-3х2 Ответ: наибольшее

№ слайда 6 4. По графику найдите значения х, при которых значения функции у=х2 - 5х + 6
Описание слайда:

4. По графику найдите значения х, при которых значения функции у=х2 - 5х + 6 положительны, отрицательны, равны нулю. Найдите промежутки возрастания и убывания функции. Нaзaд Ответ: значения функции положительны при x>3 и x<2; Значения функции отрицательны при 2<x<3; Значения функции равны нулю при х=2 и х=3; Функция возрастает при х>2.5 и убывает при х<2,5.

№ слайда 7 Реши… 	 1 группа 2 группа 3 группа
Описание слайда:

Реши… 1 группа 2 группа 3 группа

№ слайда 8 Найти значение х, при которых квадратичная функция у=2х2 -5х+3 принимает знач
Описание слайда:

Найти значение х, при которых квадратичная функция у=2х2 -5х+3 принимает значение, равное 1. Назад

№ слайда 9 Найдите координаты точек пересечения параболы у = х2 + х - 12 с осями коорд
Описание слайда:

Найдите координаты точек пересечения параболы у = х2 + х - 12 с осями координат. Назад

№ слайда 10 Не строя график функции у = х2 – 4х + 6, найти ее наибольшее или наименьшее з
Описание слайда:

Не строя график функции у = х2 – 4х + 6, найти ее наибольшее или наименьшее значение. Назад

№ слайда 11 Используя программу Advanced Grapher… Решите графически неравенство Х2 + 2х –
Описание слайда:

Используя программу Advanced Grapher… Решите графически неравенство Х2 + 2х – 3 > 5. (начать) Назад

№ слайда 12  Решил? Дa! Нет
Описание слайда:

Решил? Дa! Нет

№ слайда 13 Получай!!!
Описание слайда:

Получай!!!

№ слайда 14 Получай!!!
Описание слайда:

Получай!!!

№ слайда 15 Успехов!!! До новых встреч!
Описание слайда:

Успехов!!! До новых встреч!

№ слайда 16 Тест Назад
Описание слайда:

Тест Назад

Название документа урок алгебры1.doc

Поделитесь материалом с коллегами:

Тема: Функция у = ах2 ( 1-й урок )


Цель:

  1. Выработать умение строить график функции у = ах2 и описывать ее свойства и особенности;

  2. Способствовать развитию наблюдательности, умения анализировать, сравнивать, делать выводы;

  3. Побуждать учащихся к само-, взаимоконтролю, вызывать у них потребность в обосновании своих высказываний.

Оборудование:

  1. Таблица с изображением графиков функций у = ах2 при а>0; а<0.

  2. Шаблоны графика у = х2


Ход урока

  1. 1. Сообщение темы и цели урока.

2. С помощью шаблона учащиеся строят график функции у = х2.

С помощью таблицы – график функции у = 2х2


х

-3

-2

-1

0

1

2

3

у

18

8

2

0

2

8

18


Сравнивают графики этих функций.

Вывод: График у = 2х2 получается растяжением графика функции у = х2 от оси 0х вдоль оси 0у в 2 раза.

  1. С помощью таблицы учащиеся строят график функции у = 1/2х2 и у = х2 и сравнивают их.

(Показ презентации. Презентация прилагается)

Вывод: График функции у = 1/2х2 получается сжатием графика у = х2 к оси Ох вдоль оси Оу в 2 раза.

  1. С помощью таблицы учащиеся строят графики функций у = -х2 и у = -2х2

Сравнивают их с графиками функций у = х2 и у = 2х2


Вывод: График функции у = ах2 при любом а ≠ 0 также называется параболой.

При а >0 ветви параболы направлены вверх при а <0 - вниз.


  1. Запись в тетради.


Свойства функции у = ах2



а > 0 а < 0

1). График функции – парабола, 1). График функции – парабола,

ветви параболы направлены вверх, ветви параболы направлены вниз,

проходит через начало координат, проходит через начало координат,

симметрична оси Оу. симметрична оси Оу.


2). Область определения – вся числовая 2). Область определения – вся числовая

ось (-∞; + ∞). ось (-∞; +∞).


3). Область значений – промежуток [ 0; +∞) 3). Область значений–промежуток(-∞;0]


4). Убывает на промежутке (-∞; 0] 4). Убывает на промежутке [0; +∞).


5). Возрастает на промежутке [0;+∞) 5). Возрастает на промежутке (-∞; 0]


- Назовите общие свойства функций у = ах2 при а >0 и а <0.


- Назовите различные свойства функций у = ах2 при а >0 и а <0.


- Как проще найти а для функций у = ах2 , если известен её график? (Определить по графику значение функции при х =1 или х = -1)


  1. Найти формулы для каждой из функций, изображенной на таблице. (у = 3х2 ; у = =1/3х2 ; у = х2 ; у = -3х2 ; у = -1/3х2 ).


  1. Закрепление темы. Тест в презентации.


(Проверка с помощью презентации.)


  1. Выполнение упражнения. №598 Найти коэффициент а, если парабола у = ах2 проходит через точку:

1). А (-1; 1); 2). В (2;1)

9. Разобрать задачу 4 §37 стр. 160

№599 (1 )

1). -2х2 ≤ -8;

Для того, чтобы решить неравенство: -2х2 ≤ -8, нужно найти те значения х , при

которых точки параболы у = -2х2 лежат ниже прямой у = -8.


Ответ: х є (-∞; -2] U [ 2;+∞ ].


  1. Домашнее задание: №597 (2,4), №598 (3,4), №599 (4)


Итог урока.

Перечислить свойства функции у = ах2 , если: а) а>0: б) а< 0



57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Автор
Дата добавления 11.01.2016
Раздел Математика
Подраздел Конспекты
Просмотров176
Номер материала ДВ-324808
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх