Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Открытый урок по алгебре в 9 классе
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Открытый урок по алгебре в 9 классе

библиотека
материалов

hello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifОткрытый урок по алгебре в 9 классе по теме:

« Четная и нечетная функции»


Учебник и задачник А.Г. Мордкович Алгебра 9 класс.

Урок подготовила и провела Зургамбаева Н.О.

Цели: формирование понятий: « симметричное множество», « четная функция», «нечетная функция», научить исследовать функцию на четность, определять по графику четность и нечетность функции, научит строить четные и нечетные функции, проверка усвоения новых знаний умений и навыков.

А также развитие общеучебных навыков: устной и письменной речи, умения задавать вопросы, слушать других, понимать и оценивать, развитие познавательных процессов (внимание, восприятие, памяти, представления и воображения).


Оборудование: кодоскоп, распечатанные пленки для него: определение симметричного множества, решение примера 4, четная и нечетная функция, графики и система координат.

На каждого ученика карточка с алгоритмом и для самостоятельной работы.

Структура урока: 1. Орг. момент.

2.. Подготовка к изучению нового материала и постановка цели урока

  1. Изучение нового материала + закрепление

  2. Подведение итогов урока

  3. С.Р.

Так как в этот день в классе два урока алгебры , то домашнее задание будет дано на втором уроке


Тип урока: изучение и закрепление нового материала

Так как в этот день в классе два урока алгебры , то домашнее задание будет дано на втором уроке



1. Орг. момент.

Приветствие класса, проверка присутствующих в классе.


2. Подготовка к изучению нового материала и постановка цели урока (беседа).

? Что такое область определения функции?

? Как она обозначается?

? Какие элементы называют противоположными:

? Приведите примеры


До сегодняшнего дня мы с вами обсуждали только те свойства функции, которые были вам знакомы. Но запас свойств будет пополняться. Сегодня мы с вами рассмотрим еще два свойства.


Записываем: число, классная работа тема урока: « Четная и нечетная функции»


3. Изучение нового материала и первичное закрепление

А) Для этого нам понадобится новое понятие: «Симметричное множество»

Как вы думаете, что это за множество?

(Обсуждение).



Записываем: Если числовое множество Х вместе с каждым своим элементом х

содержит и противоположный элемент – х, то Х называют симметричным множеством.

(Это же определение выводится через кодоскоп)

Определите симметричное множество или нет: (-2; 2), [ -5; 5], [0; hello_html_m1fbc7767.gif), (hello_html_2f511dde.gif), (-2; 3), [-5; 5).

Б) Рассмотрим алгоритм исследование функции на четность. ( каждому ученику раздаются карточки с алгоритмом)

Алгоритм исследования функции на четность


да

нет

да

нет

да

Область определения функции y = f(x) симметричное множество?




Функция не является

ни четной, ни нечетной

2. Найти f (–x)



3. Верно ли, что f (x ) = f ( – x)





4. Найти f (x)



Функция четная



5. Верно ли, что f (x) = f ( – x)


нет



Функция нечетная

Функция не является

ни четной, ни нечетной






Разделим тетрадную страницу на 4 колонки и впишем в них 4 примера.

( Работа выполняется строго по пунктам алгоритма: сначала 1 шаг в первом примере, затем 1 шаг во втором примере, 1 шаг в третьем примере, 1 шаг в четвертом, потом второй шаг в 1 примере и.т.д. Первый пример учитель делает, второй – учитель с подсказкой учеников, третий - ученик, четвертый самостоятельно без проверки).

f(x) =3 x2+x4

1. D( f )– симметричное множество

2. f(–x) =3 (–x)2+(–x)4 = 3x2+x4

3. f (– x) = f(x)

Функция четная


f(x) = х(5 – x2)

1. D( f )– симметричное множество

2. f(–x) = –х(5 – (– x)2)

3. f (– x) hello_html_7eeb9f88.gif f(x)

4. f (x) = –(5 – x2)

5. f( – x) = – f(x)

Функция нечетная


f(x) =4 x6x2

1. D( f )– симметричное множество

2. f(–x) = 4xx2

3. f (– x) = f(x)

Функция четная


f(x) = x7+2x3

1. D( f )– симметричное множество

2. f(–x) = (–x)7+2(–x)3 = –x7–2x3

3. f (– x) = f(x)

4. – f (x) = –(x7+2x3) = – x7– 2x3

5. f( – x) = – f(x)

Функция нечетная




Давайте проверим как вы самостоятельно решили 4 пример ( сверка с готовым решением по кодоскопу).

В) Рассмотрим более сложные задания ( ученики у доски)

1) f(x) = x3– 3x + 1

2) f(x) = hello_html_m7b63fab4.gif

3) f(x) = hello_html_m64fcf48f.gif [–2; 2),

4) f(x)=3hello_html_m2d53250.gif–2 x4


Г) Теперь обсудим геометрический смысл свойства четности и свойства нечетности функции.


Пусть у = f(x) — четная функция, т. е. f(-x) = f(x) для любого х hello_html_m79f24a27.gif D{f). hello_html_5695a4cd.jpg

Рассмотрим две точки графика функции: А(х; f(x)) и В(-х; f(-x)). Так как f(-x) = f(x), то у точек А и В абсциссы являются противоположными числами, а ординаты одинаковы. Эти точки симметричны относительно оси у.

Таким образом, для каждой точки А графика четной функции у = f(x) существует симметричная ей относительно оси у точка В того же графика.

Это означает, что


Записываем : График четной функции симметричен относительно оси ординат.

(Это же определение выводится через кодоскоп)

Верно и обратное утверждение.

Сформулируйте его.


Записываем: Если график функции симметричен относительно оси ординат, то функция четная.

(Это же определение выводится через кодоскоп)


Пусть у = f(x) — нечетная функция, т. е. f(-x) = -f(x) для любого х hello_html_m79f24a27.gif D{f). Рассмотрим две точки графика функции: А(х; f(x)) и В(-х; f(-x)). Так как f(-x) = -f(x), то у точек А и В абсциссы являются противоположными числами и ординаты являются противоположными числами. Эти точки симметричны относительно начала координат. hello_html_m78726f7e.jpg

Таким образом, для каждой точки А графика нечетной функции у = f(x) существует симметричная ей относительно начала координат точка В того же графика.

Это означает, что


Записываем : График нечетной функции симметричен относительно начала координат.

(Это же определение выводится через кодоскоп)


Верно и обратное утверждение.

Сформулируйте его


Записываем : Если график функции симметричен относительно начала координат, то функция нечетная.

(Это же определение выводится через кодоскоп)


  1. № 283, 284 устно по чертежам

  2. 285 в тетради самостоятельно. Проверка через кодоскоп



4. Итоги

1) Подведем итог: ( фронтальный опрос)

? Какое множество называют симметричным

? С какими новыми свойствами мы свойствами познакомились

? Назовите этапы алгоритма исследования функции на четность

? Продолжите фразы:

  • график четной функции симметричен относительно…

  • если график функции симметричен относительно оси ординат…

  • график нечетной функции симметричен относительно…

  • если график функции симметричен относительно начала координат…


2) Самостоятельная работа по теме: Безимени-6


Вариант 1

1. Исследовать на четность функциюy = x ( x4 + 1 )

2. На рисунке изображена часть графика четной функции. Достройте график этой функции



Вариант 2

1. Исследовать на четность функцию y = x3 hello_html_m16f86b26.gifБезимени-5

2. На рисунке изображена часть графика нечетной функции. Достройте график этой функции




Самостоятельная работа на карточках по вариантам. Сдается на оценку.



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 29.02.2016
Раздел Математика
Подраздел Конспекты
Просмотров237
Номер материала ДВ-494169
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх