Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Открытый урок по теме "Решение логарифмических уравнений".

Открытый урок по теме "Решение логарифмических уравнений".

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs


Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Цели конкурса: повысить интерес учеников к математике, усилить внутреннюю мотивацию, веру в себя и свои силы. Ученики отвечают на задания прямо на сайте конкурса, учителю не нужно распечатывать задания. Для каждого ученика конкурс по математике «Поверь в себя» - это прекрасная возможность проявить себя и раскрыть свой потенциал.

Подробнее о конкурсе - https://urokimatematiki.ru/

  • Математика

Поделитесь материалом с коллегами:

hello_html_190e626f.gifОткрытый урок по теме "Решение логарифмических уравнений".

11-й классс учитель Мурзагулова А.Н

05.12.2012г



Учебный план – 5 часов в неделю (из них 3 – алгебра и начала анализа; 2 – геометрия )

Класс: 11

Тип урока: комбинированный.

Цели урока:

Дидактическая:

1) продолжить формирование ЗУН при решении логарифмических уравнений;

2) систематизировать методы решения логарифмических уравнений;

3) учить применять полученные знания при решении заданий повышенной сложности;

4) совершенствовать, развивать и углублять ЗУН по данной теме;

Развивающая:

1) развивать логическое мышление, память, познавательный интерес;

2) формировать математическую речь;

3) вырабатывать умение анализировать и сравнивать;

Воспитательная:

1) воспитывать аккуратность при оформлении сложных задач, трудолюбие;

2) воспитывать умению выслушивать мнение других.

3) воспитывать самостоятельность при выборе жизненного пути, будущей профессии.

Этапы урока и их содержание

время

деятельность

учителя

учащегося

Организационный момент

Доброе утро, ребята!

Сегодня мы с вами вернемся в мир удивительный и прекрасный – в мир математических уравнений.

Еще в курсе начальной школы перед вами возникали проблемы: как найти неизвестный множитель, если известно произведение и второй множитель? Как найти длину диагонали, если еще Пифагор доказал, что она не соизмерима со стороной? На протяжении 10 лет обучения в школе нам на помощь приходили уравнения. Самые различные виды уравнений изучались вами на уроках математики.

Какие виды уравнений знаете вы? (рациональные, дробно-рациональные, иррациональные, тригонометрические, логарифмические, показательные)

11 класс – это ответственный этап жизненного пути, год окончания школы, и конечно же, год когда подводятся итоги самых важных тем изучаемых вами на уроках алгебры.

И мы сегодня урок посвятим решению логарифмических уравнений.

Нашей задачей с вами будет: СИСТЕМАТИЗИРОВАТЬ МЕТОДЫ РЕШЕНИЯ ЛОГАРИФМИЧЕСКИХ УРАВНЕНИЙ.

2 мин

 

 

 

 

 

 

 

 

 

формулировка темы, цели урока

 

 

 

 

 

 

вопрос

 

 

 

 

 

 

 

 

 

 

 

ответ

Устный опрос

Что значит решить уравнение?(найти все значения переменной, при которых уравнение обращается в верное числовое равенство или доказать, что таких значений нет.)

Что такое корень уравнения? ( значение переменной, при которой уравнение обращается в верное числовое равенство)

Какие уравнения называют логарифмическим?(уравнения, в которых переменная содержится под знаком логарифма, называют логарифмическими)

Какие методы решения логарифмических уравнений вы уже рассматривали на уроках алгебры 

(1. метод решения с помощью определения;

2. метод потенцирования;

3. метод введения вспомогательной переменной)

Рассмотрим более подробно каждый из методов

Решим устно несколько уравнений используя определение логарифма, но прежде вспомним определение логарифма.(Логарифмом положительного числа b по положительному и отличному от 1 основанию а, называется показатель степени, в которую надо возвести а, чтобы получить число b ).

Log 4 x = 2 (x = 16 )

Log 5 x = - 2 (x = 1/25 )

Log 0,5 x = 2 (x = 1/4 )

Log x 4 = 2 (x = 2 )

Log x 5 = 1 (x = 5 )

Log ( - 4) = (- 4) ( решений нет )

Log x 1 = 0 (x – любое положительное, х больше или равно 1 )

6 мин

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

вопрос

 

 

 

вопрос

 

вопрос

 

вопрос

 

 

 

 

вопрос

пример проектируется на проектор

 

ответ

 

 

 

ответ

 

ответ

 

ответ

 

 

 

 

ответ

устное решение, ответ

Этап закрепления и совершенствования ЗУН

Метод потенцирования

log 2 (3x – 6 ) = log 2 ( 2x – 3 )

log 6 (14 – 4x ) = log 6 (2x + 2 )

log 0,5 (7x – 9 ) = log 0,5 (x – 3 )

log 0,2 (12x + 8 ) = log 0,2 ( 11x + 7 )

Метод введения вспомогательной переменной

1. log 2 2 x - 4log2 x + 3 = 0

2. lg 2 x3 – 10 lg x + 1 = 0

3. 3 log20,5 x + 5log0,5 x – 2 = 0

4. 2 log20,3 x – 7log0,3 x – 4 = 0

Но кроме этих методов, есть и другие методы решения логарифмических уравнений. Это метод решения логарифмического уравнения с переходом к другому основанию. Рассмотрим решение такого уравнения, но прежде вспомним формулу перехода к логарифму по другому основанию. (log a b = http://festival.1september.ru/articles/500079/Image427.gif, где а>0, b>0, c>0, a больше или равно 1, c больше или равно 1 )

log2 x + log 4 x + log 16 x = 7

используя свойство http://festival.1september.ru/articles/500079/Image428.gif, где а>0, b>0, , a больше или равно 1, n больше или равно 0 получаем

log2 x + 0,5logx + 0,25logx = 7

1,75 log2 x = 7

log 2 x = 4

x = 16

ОТВЕТ : 16

Какие методы мы применяли для решения логарифмических уравнений? (1. метод решения с помощью определения; 2. метод потенцирования; 3. метод введения вспомогательной переменной 4. метод перехода к новому основанию)




12 мин

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

учитель

 

 

 

 

 

вопрос

 

4 ученика у доски, каждая группа решает пример свой

4 ученика у доски, каждая группа решает пример свой

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ответ

Работа в группах

Выполним небольшую самостоятельную работу. Перед вами карты с логарифмическими уравнениями. Решив их найдите на маленьких карточках корень уравнения или сумму корней, накройте уравнение карточкой, в результате этой работы у каждой группы получится слово. Распределяйте уравнения соответственно тому уровню с которым каждый из вас может справиться. Работа групповая, эффективно распределяя роли в группе, вы сможете выполнить эту работу быстрее других команд. Максимум отведенного времени 10 минут.

Какие ключевые слова получились у вас? (ЮПИТЕР, САТУРН, ВЕНЕРА, ПЛУТОН).

Какими методами вы решали уравнения?

Как вы думаете, почему при решении логарифмических уравнений получились именно такие ключевые слова, показывающие правильность вашего решения?

(Открытие Логарифма было связано в первую очередь с быстрым развитием астрономии в XVI в., уточнением астрономических наблюдений и усложнением астрономических выкладок).

Поэтому, ребята, в век развития космического строения, развития компьютерной техники изучение темы “Логарифмические уравнения” очень актуально.

Отгадывание чайнворда по теме.


10 мин

 

 

 

 

 

 

 

 



3 мин























2мин

 

объяснение задания

 

 

 

 

 



 

вопрос

вопрос

 

Работа в группах

 

 

 

 

 

 

 

ответ

ответ

Домашнее задание

Однако, не только для космических расчетов мы изучаем эту тему. Очевидные трудности возникнут и в других областях, если мы не будем уметь решать логарифмические уравнения, таких как финансовое и страховое дело.

Ваше домашнее задание будет найти области применения логарифмов и решения логарифмических уравнений.

А также упражнения из сборника экзаменационных работ № 4.89, 4.90

4.107, 4.108

6.7, 6.8

2 мин

 

 

 

 

 

 

 

 

 

 

Итог урока

Сегодня на уроке мы рассматривали различные методы решения логарифмических уравнений, решение которых от вас, ребята, требует хороших теоретических знаний, умений применять их не практике, требует внимания, трудолюбия и сообразительности. Именно по этой причине логарифмические уравнения, неравенства и системы логарифмических уравнений (вы будете их решать на следующих уроках), выносятся на вступительные экзамены в ВУЗы.

А сейчас, мне бы хотелось прочитать стихотворение.

Математика – основа и царица всех наук,
И тебе с ней подружиться я советую, мой друг.
Ее мудрые законы, если будешь выполнять,
Свои знанья приумножишь,
Станешь ты их применять.
Сможешь по морю ты плавать,
Сможешь в космосе летать.
Дом построить людям сможешь:
Будет он сто лет стоять.
Не ленись, трудись, старайся,
Познавая соль наук
Все доказывать пытайся,
Но не покладая рук.
Станет пусть бином Ньютона
Для тебя, как друг родной,
Как в футболе Марадонна,
В алгебре он основной.
Синус, косинус и тангенс
Должен знать ты на зубок.
И конечно же котангенс,–
Это точно, мой дружок.
Если это все изучишь,
Если твердо будешь знать,
То, возможно, ты сумеешь
Звезды в небе сосчитать

Сегодня на уроке все очень хорошо работали.

Молодцы, ребята!

3 мин

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Оценки за урок

 





Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Автор
Дата добавления 08.10.2015
Раздел Математика
Подраздел Конспекты
Просмотров484
Номер материала ДВ-041335
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх