Инфоурок Математика Другие методич. материалыОтличие геометрии Евклида от геометрии Лобачевского

Отличие геометрии Евклида от геометрии Лобачевского

Скачать материал

 

 

 

 

 

 

Исследование и анализ геометрии Евклида и Лобачевского по математике

 

                                                   на тему:

 

«Отличие геометрии Лобачевского от геометрии Эвклида»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2023 г

 

 

СОДЕРЖАНИЕ

 

 

 

ВВЕДЕНИЕ………………………………………………………………………3

 

1.   Библиографические сведения………….…………………………………….4

1.1.        Биография Евклида…………………………………………………….4

1.2.        Биография Н.И. Лобачевского………………………………………...5

 

2.   Постулаты Евклида…………………………………………………………...6

 

3.        Возникновение геометрии Лобачевского………………………………….8

 

4.        Фактические элементы отличия геометрии Лобачевского от Геометрии

Евклида...................………………………………………………………………10

 

5.   Этапы развития геометрии………...……..…………………………………..12

 

ЗАКЛЮЧЕНИЕ………………………………………………………….………14

 

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА И ИНФОРМАЦИОННЫЕ РЕСУРСЫ………………………………………………………………………..15


ВВЕДЕНИЕ

 

Изучение одного из самых интересных и сложных разделов математики мы начали еще в начальной школе на примере нахождения площадей и периметра таких фигур квадрат и прямоугольник. Также мы находили радиусы и диаметры у круга, искали объем у куба. Хотя выполняли все это, практикуя простые формулы умножения и деления. Более детальное изучение этого раздела мы начали в 7 классе. Однако, мы изучали геометрию Евклида - античного математика, который является основоположником этой науки. Но был человек предложивший более свежий и альтернативный взгляд на древнюю науку. Этого человека звали Николай Иванович Лобачевский. Его псевдогеометрия произвела фурор. Это произошло в 1868 году, когда итальянский математик и физик Эудженио Бальтрами выпустил статью об объяснениях геометрии Лобачевского. В этой работе Бельтрами дал прозрачное геометрическое доказательство непротиворечивости новой геометрии, точнее того что геометрия Лобачевского противоречива тогда и только тогда, когда противоречива геометрия Евклида.

Однако, эту геометрию приняли не сразу, и по-разному. Поэтому ее лишь поверхностно изучают в школьных учебниках геометрии. Многие люди либо не знают о существовании геометрии Лобачевского, либо знают очень мало.

Поэтому цель моей работы вытекает из прошлого предложения - повысить интерес к Геометрии Лобачевского, а также простым языком разъяснить старшеклассникам и студентам главные отличия двух геометрий. Задачами я обозначил: повышение интереса к науке, а также умение различать геометрии Евклида и Лобачевского.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.     Библиографические сведения:

1.1.Биография Евклида.

Евклид (365 - 300 до н. э.) – известный древнегреческий математик. Родился в Афинах (по другим данным, в Тире). О жизни учёного наверняка известно лишь то, что он был учеником Платона, а расцвет его деятельности пришёлся на время царствования в Египте Птолемея I Сотера (IV в. до н. э.). Имя Евклида упоминается в письме Архимеда к друзьям, например, к философу Досифею («О шаре и цилиндре»). Некоторые биографические данные сохранились на страницах арабской рукописи XII в.: «Евклид, сын Наукрата, известный под именем Геометра, учёный старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».

Во времена Птолемея Александрия, столица Египетского царства, была крупным культурным центром, чтобы возвеличить своё государство, Птолемей призвал в страну учёных и поэтов, создав для них храм муз - Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономическая башня, комнаты для уединённой работы и, главное, великолепная Александрийская библиотека.

В числе приглашённых оказался и Евклид, основавший здесь математическую школу и создавший для своих учеников фундаментальный труд по геометрии под общим названием «Начала» (около 325 г. до н. э.). В нём изложены основы планиметрии, стереометрии, теории чисел, алгебры, описаны методы определения площадей и объёмов и т. д.«Начала» состоят из 13 книг. Частично они представляют собой обработку трактатов греческих математиков V-IV вв. до н. э. Ни одна научная книга не пользовалась такой популярностью, говорили даже, что после Библии это самый популярный письменный памятник древности. «Начала» копировали на папирусе; пергаменте, бумаге, а потом и типографским способом (впервые в 1533 г. в Базеле, Швейцария). Вплоть до XX в. книга считалась базовым учебником по геометрии не только для школ, но и для университетов.

Ещё одно значительное сочинение Евклида «Данные» представляет собой введение в геометрический анализ. Учёному принадлежат также произведения «Явления», посвященные элементарной сферической астрономии, «Оптика», содержащая учение о перспективе, и «Катоптрика», в которой излагается теория отражений в зеркалах, а также небольшой трактат «Сечения канона», включающий десять задач о музыкальных интервалах, сборник задач по делению площадей фигур «О делениях», который дошёл до нас в арабском переводе.

Умер Евклид предположительно в Александрии.

 

1.2 Биография Н.И. Лобачевского.

Н.И. Лобачевский окончил Казанский университет. В 1814 г. он приступил к чтению лекций по теории чисел. Вскоре Лобачевский взялся за переустройство университетской библиотеки и университетского музея, находившихся в хаотическом состоянии. Со смертью Александра I дела обернулись к лучшему. Специальный уполномоченный правительства для преднамеренного преследования Казанского был уволен. Нуждаясь в политической и моральной поддержке своей деятельности университете, новый попечитель обеспечил назначение в 1827 году уже профессора Лобачевского ректором, он занимал эту должность в течение 19 лет.

Математик был теперь главой университета, но эта должность отнюдь не была синекурой. Под его умелым руководством весь штат был реорганизован, были привлечены лучшие люди, преподавание было либерализовано, несмотря на официальные препятствия, была построена библиотека, соответствующая высшему уровню научных требований, были организованы механические мастерские для изготовления научных инструментов, которые требовались для исследований и преподавания, была основана и оборудована обсерватория - любимое детище энергичного ректора. Даже ректорское достоинство не удерживало Лобачевского от работы руками в библиотеке и музее, когда он чувствовал, что его помощь необходима. Университет был его жизнью, и он любил его. Кажется невероятным, что Лобачевский, так сильно перегруженный преподавательскими и административными обязанностями, мог находить время для научной работы. Он создал один из величайших шедевров всей математики – неевклидову геометрию и поставил веху в человеческом мышлении. Он трудился над этим с перерывами не менее 20 лет. Его первое публичное сообщение по этой теме было сделано на физико-математическом факультете Казанского университета в 1826 году и затем представлено в статье «Новые начала геометрии с полной теорией параллельных» («Учёные записки Казанского университета», 1835 г.).

Европейские учёные узнали о работах Лобачевского лишь в 1840 г., и уже в 1842 г. он был избран членом-корреспондентом Гёттингенского научного общества.

Лобачевскому принадлежит также ряд работ по математическому анализу. Он дал общее определение функциональной зависимости. В алгебре известен его метод приближённого решения уравнений любой степени; учёный первым в России опубликовал курс высшей алгебры.

В Казанском университете Лобачевский читал лекции по астрономии и проводил астрономические наблюдения. Благодаря его энтузиазму при университете была построена новая обсерватория, одна из лучших по тому времени. Она начала работать в 1838 г., на год раньше Пулковской (ныне Главная астрономическая обсерватория РАН, близ Петербурга).

В 1846 году его грубо лишили должностей профессора и ректора университета, хотя тогда он был полон физических и умственных сил, более чем когда-либо он был способен продолжать свои математические исследования. Отвратительная неблагодарность властей сломила Лобачевского. Он оставил все надежды снова стать кем-то в университете, который своей научной славой почти целиком был обязан его усилиям, и после этого появлялся в нем только случайно, чтобы помочь на экзаменах. Хотя его зрение быстро ухудшалось, он был еще способен к интенсивному математическому мышлению. Он все еще любил университет. Его здоровье пошатнулось, когда умер его сын; но он все еще надеялся, что сможет принести некоторую пользу. В 1855 году университет праздновал свое пятидесятилетие. Лобачевский лично присутствовал на торжествах и принес юбиляру экземпляр «Пангеометрии» - завершающей научной работы его жизни. Эта работа не была написана его собственной рукой: он диктовал ее, так как в то время был уже слепым. Через несколько месяцев, 24 февраля 1856 года, 62-х лет от роду, Николай Иванович Лобачевский умер.

В 1883-1886 гг. Казанский университет издал «Полное собрание сочинений по геометрии Лобачевского». В 1893 г. в честь столетия со дня рождения Лобачевского ему воздвигли памятник в Казани на собранные по международной подписке средства. В 1895 г. Казанское физико-математическое общество учредило премию имени Лобачевского за выдающиеся работы в области геометрии. Эту награду поныне присуждает Российская академия наук.

 

2.     Постулаты Евклида

Евклидова геометрия — это геометрическая теория, основанная на системе аксиом, которая была впервые изложена в третьем веке до нашей эры великим древнегреческим математиком Евклидом в грандиозном научном труде «Начала».

Система аксиом Евклида базируется на основных геометрические понятиях таких, как точка, прямая, плоскость, движение, а также на следующие отношения: «точка лежит на прямой на плоскости», «точка лежит между двумя другими».

В «Началах» Евклид представил следующую аксиоматику:

·         От всякой точки до всякой точки можно провести прямую:

 

 


·         Ограниченную прямую можно непрерывно продолжать по прямой:

 

 


·         Из всякого центра всяким раствором может быть описан круг:

 

 

 

 

 


·         Все прямые углы равны между собой:

 

 

 


·         Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых:

 

 

 

 


Тщательное изучение аксиоматики Евклида во второй половине XIX века показало её неполноту. В 1899 году Д. Гилберт предложил первую строгую аксиоматику евклидовой геометрии. Впоследствии еще не раз ученые предпринимали попытки усовершенствовать аксиоматику евклидовой геометрии. Кроме аксиоматики Гилберта, известными считаются: аксиоматики Тарского и аксиоматики Биргофа, которая состоит всего лишь из 4 аксиом.

В современной трактовке система аксиом Евклида может быть разделена на пять групп:

·         Аксиомы сочетания. Во-первых, через каждые две точки можно провести прямую и притом только одну. Во-вторых, на каждой прямой лежат по крайней мере две точки. При этом существуют хотя бы три точки, которые не лежат на одной прямой. В-третьих, через каждые три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну. В-четвертых, на каждой плоскости есть по крайней мере три точки, а также существуют хотя бы четыре точки, не лежащие в одной плоскости. В-пятых, если две точки данной прямой лежат на данной плоскости, значит и сама прямая лежит на этой плоскости. В-шестых, если две плоскости имеют общую точку, то, следовательно они имеют и общую прямую.

·         Аксиомы порядка. Во-первых, если точка В лежит между А и С, то все три лежат на одной прямой. Во-вторых, для каждых точек А, В существует такая точка С, что В лежит между А и С. В-третьих, из трёх точек прямой только одна лежит между двумя другими. В-четвертых, если прямая пересекает одну сторону треугольника, значит она пересекает при этом и другую его сторону или проходит через вершину (отрезок AB определяется как множество точек, лежащих между А и В; аналогично определяются стороны треугольника).

·         Аксиомы движения. Во-первых, движение ставит в соответствие точкам точки, прямым прямые, плоскостям плоскости, сохраняя принадлежность точек прямым и плоскостям. Во-вторых, два последовательных движения вновь дают движение, и для всякого движения есть обратное. В-третьих, если даны точки А, A’ и полуплоскости A, A‘, ограниченные продолженными полупрямыми а, а’, которые исходят из точек А, A’, то существует единственное движение, переводящее А, а, A в A’, a’, A’ (полупрямая и полуплоскость легко определяются на основе понятий сочетания и порядка).

·         Аксиомы непрерывности. Во-первых, как гласит аксиома Архимеда, всякий отрезок можно перекрыть любым отрезком, откладывая на первом его достаточное количество раз (откладывание отрезка осуществляется движением). Во-вторых, согласно аксиоме Кантора: если дана последовательность отрезков, вложенных один в другой, то все они имеют хотя бы одну общую точку.

·         Аксиома параллельности Евклида: через точку А вне прямой а в плоскости, проходящей через А и а, можно провести лишь одну прямую, не пересекающую а.

Евклидова геометрия стала результатом систематизации и обобщения наглядных представлений человека об окружающем мире. Углубленное проникновение в суть геометрии привело к более абстрактному пониманию науки. Более поздние достижения и открытие показали, что наши представления о пространстве являются априорными, то есть чисто умозрительные. Таким образом было поставлено под сомнение существование единственной геометрии, бурное развитие физики и астрономии, доказало, что евклидова геометрия описывает структуру окружающего пространства, но вовсе не способна описать свойства пространства, связанные с перемещениями тел со скоростями, близкими к световой. Русский математик Н. И. Лобачевский разработал новую неевклидову геометрию, которая приблизилась к реальному описанию физического пространства.

 

3.     Возникновение геометрии Лобачевского:

Лобачевского геометрия - геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В Лобачевского геометрия вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит чрезвычайно привычным представлениям. Тем не менее как эта аксиома, так и вся Лобачевского геометрия имеет вполне реальный смысл. Лобачевского геометрия была создана и развита Н. И. Лобачевским, который впервые сообщил о ней в 1826. Лобачевского геометрия называется неевклидовой геометрией, хотя обычно термину «неевклидова геометрия» придают более широкий смысл, включая сюда и др. теории, возникшие вслед за Лобачевского геометрия и также основанные на изменении основных посылок евклидовой геометрии. Лобачевского геометрия называется специально гиперболической неевклидовой геометрией (в противоположность эллиптической геометрии Римана).

Лобачевского геометрия представляет теорию, богатую содержанием и имеющую применение как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще. С современной точки зрения можно дать, например, следующее определение Лобачевского геометрия на плоскости: она есть не что иное, как геометрия внутри круга на обычной (евклидовой) плоскости, лишь выраженная особым образом. Именно, будем рассматривать круг на обычной плоскости и внутренность его,

 

 


                                                                                                     

                                                                                                       K                                                                    

 

 

 

 

 

 


т. е. круг, за исключением ограничивающей его окружности, назовем «плоскостью». Модель Клейна плоско­сти Лобачевского строится внутри некоторого круга К. «Точками» называются обычные точки, находящи­еся внутри круга К, а пря­мыми — хорды окружнос­ти S, ограничивающей круг К. Параллельные прямые изображаются хордами, пересекающимися на окружности S; непересекающиеся хорды — это сверх­параллельные (расходящиеся) прямые. Можно показать, что на этой модели выполняются все аксиомы геометрии Лобачевского, т. е. все, кроме последней, аксиомы евкли­довой геометрии и сформулированная выше аксиома па­раллельности Лобачевского. Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому Лобачевского геометрия иными словами, всякое утверждение Лобачевского геометрия на плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Аналогично, Лобачевского геометрия в пространстве может быть определена как геометрия внутри шара, выраженная в соответствующих терминах («прямые» — хорды, «плоскости» — плоские сечения внутренности шара, «равные» фигуры — те, которые переводятся одна в другую преобразованиями, переводящими шар сам в себя и хорды в хорды). Таким образом, Лобачевского геометрия имеет совершенно реальный смысл и столь же непротиворечива, как геометрия Евклида. Описание одних и тех же фактов в разных терминах или, напротив, описание разных фактов в одних и тех же терминах представляет характерную черту математики. Она ясно выступает, например, когда одна и та же линия задаётся в разных координатах разными уравнениями или, напротив, одно и то же уравнение в разных координатах представляет различные линии.

Источником Лобачевского геометрия послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида (под этим номером утверждение, эквивалентное приведённой выше аксиоме о параллельных, фигурирует в списке постулатов в «Началах» Евклида). Этот постулат, ввиду его сложности в сравнении с другими, вызвал попытки дать его доказательство на основании остальных постулатов. Вопрос о V постулате Евклида, занимавший геометров более двух тысячелетий, был решен Лобачевским. Это решение сводится к тому, что постулат не может быть доказан на основе др. посылок евклидовой геометрии и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий. Лобачевский сделал об этом сообщение в 1826, а в 1829—30 напечатал работу «О началах геометрии» с изложением своей теории. В 1832 была опубликована работа венгерского математика Я. Больяй аналогичного содержания. Как выяснилось впоследствии, немецкий математик К. Ф. Гаусс также пришёл к мысли о возможности существования непротиворечивой неевклидовой геометрии, но скрывал её, опасаясь быть непонятым. Хотя Лобачевского геометрия развивалась как умозрительная теория и сам Лобачевский называл её «воображаемой геометрией», тем не менее, именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решен вопрос о её реальном смысле, логической непротиворечивости.

 

4.     Фактические элементы отличия геометрии Лобачевского от геометрии Евклида.

1) Лобачевского геометрия изучает свойства «плоскости Лобачевского» (в планиметрии) и «пространства Лобачевского» (в стереометрии). Плоскость Лобачевского — это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем — расстояния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского. Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла Лобачевского геометрия состояла в нахождении моделей плоскости и пространства Лобачевского, т. е. в нахождении таких объектов, в которых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии Лобачевского геометрии.

2) В Лобачевского геометрия не существует подобных, но неравных треугольников; треугольники равны, если их углы равны. Поэтому существует абсолютная единица длины, т. е. отрезок, выделенный по своим свойствам, подобно тому как прямой угол выделен своими свойствами. Таким отрезком может служить, например, сторона правильного треугольника с данной суммой углов.

3) Сумма углов всякого треугольника меньше p и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность p — (a + b + g), где a, b, g — углы треугольника, пропорциональна его площади.

4) Через точку О, не лежащую на данной прямой а, проходит бесконечно много прямых, не пересекающих а и находящихся с ней в одной плоскости; среди них есть две крайние b, b`, которые и называются параллельными прямой а в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) а общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек) (рис. 1,3). Угол ее между прямой b (или b`) и перпендикуляром из О на а — т. н. угол параллельности — по мере удаления точки О от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель b с одной стороны (а b` с противоположной) асимптотически приближается к а, а с другой — бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).

5) Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.

6) Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.

7) Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.

8) Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность — предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

9) Длина окружности не пропорциональна радиусу, а растет быстрее.

10) Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от p; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2p, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы Лобачевского геометрия переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай Лобачевского геометрии.

Лобачевского геометрия продолжает разрабатываться многими геометрами; в ней изучаются: решение задач на построение, многогранники, правильные системы фигур, общая теория кривых и поверхностей и т. п. Ряд геометров развивали также механику в пространстве Лобачевского. Эти исследования не нашли непосредственных применений в механике, но дали начало плодотворным геометрическим идеям. В целом Лобачевского геометрия является обширной областью исследования, подобно геометрии Евклида.

 

5.     Этапы развития геометрии.

В развитии геометрии можно указать четыре основных периода, переходы между которыми обозначали качественное изменение геометрии.

Первый - период зарождения геометрия как математической науки - протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае - зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки геометрии, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве. Этот процесс привёл, наконец, к качественному скачку. Геометрия превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались.

Второй период развития геометрии. Известны упоминания систематические изложения геометрии, среди которых данное в 5 в. до н. э. Гиппократом Хиосским. Сохранились же и сыграли в дальнейшем решающую роль появившиеся около 300 до н. э. "Начала" Евклида. Ещё в Греции к ней добавляются новые результаты, возникают новые методы определения площадей и объёмов (Архимед, 3 в. до н. э.), учение о конических сечениях (Аполлоний Пергский, 3 в. до н. э.), присоединяются начатки тригонометрии (Гиппарх, 2 в. до н. э.) и геометрия на сфере (Менелай, 1 в. н. э.). Упадок античного общества привёл к сравнительному застою в развитии геометрии, однако она продолжала развиваться в Индии, в Средней Азии, в странах арабского Востока. Возрождение наук и искусств в Европе повлекло дальнейший расцвет геометрии. Принципиально новый шаг был сделан в 1-й половине 17 в. Р. Декартом, который ввёл в геометрию метод координат. Метод координат позволил связать геометрия с развивавшейся тогда алгеброй и зарождающимся анализом. Применение методов этих наук в геометрию породило аналитическую геометрию, а потом и дифференциальную. Геометрия перешла на качественно новую ступень по сравнению с геометрией древних: в ней рассматриваются уже гораздо более общие фигуры и используются существенно новые методы.

Третий период развития геометрии. Аналитическая геометрия изучает фигуры и преобразования, задаваемые алгебраическими уравнениями в прямоугольных координатах, используя при этом методы алгебры. Дифференциальная геометрия, возникшая в 18 в. в результате работ Л. Эйлера, геометрия Монжа и др., исследует уже любые достаточно гладкие кривые линии и поверхности, их семейства (т. е. их непрерывные совокупности) и преобразования. Её название связано в основном с её методом, исходящим из дифференциального исчисления. К 1-й половине 17 в. относится зарождение проективной геометрии в работах Ж. Дезарга и Б. Паскаля. Она возникла из задач изображения тел на плоскости; её первый предмет составляют те свойства плоских фигур, которые сохраняются при проектировании с одной плоскости на другую из любой точки. Окончательное оформление и систематическое изложение этих новых направлений геометрии были даны в 18 - начале 19 вв. Эйлером для аналитической геометрии (1748), Монжем для дифференциальной геометрия (1795), Ж. Понселе для проективной геометрии (1822), причём само учение о геометрическом изображении (в прямой связи с задачами черчения) было ещё раньше (1799) развито и приведено в систему Монжем в виде начертательной геометрии. Во всех этих новых дисциплинах основы (аксиомы, исходные понятия) геометрии оставались неизменными, круг же изучаемых фигур и их свойств, а также применяемых методов расширялся.

Четвёртый период в развитии геометрия открывается построением Н. И. Лобачевским в 1826 новой, неевклидовой геометрия , называемой теперь Лобачевского геометрией. Независимо от Лобачевского в 1832 ту же геометрию построил Я. Больяй (те же идеи развивал К. Гаусс, но он не опубликовал их). Лобачевский рассматривал свою геометрию как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование. Переворот в геометрии, произведённый Лобачевским, по своему значению не уступает ни одному из переворотов в естествознании, и недаром Лобачевский был назван "Коперником геометрии". В его идеях были намечены три принципа, определившие новое развитие геометрии. Первый принцип заключается в том, что логически мыслима не одна евклидова геометрия , но и другие "геометрии". Второй принцип - это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой геометрии. Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой геометрии. Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой геометрии, т.к. она определяется логической состоятельностью (непротиворечивостью) этой геометрии. Точно так же в отношении любой геометрической теории нужно различать их физическую и математическую истинность; первая состоит в проверяемом опытом соответствии действительности, вторая - в логической непротиворечивости. Лобачевский дал, т. о., материалистическую установку философии математики

ЗАКЛЮЧЕНИЕ

 

История неевклидовской геометрии – самый замечательный пример Математической Идеи. Для нас эта история интересна вдвойне, т. к. ее главный участ­ник — гениальный русский математик Николай Ивано­вич Лобачевский.

А началась эта история примерно 2300 лет назад, когда греческий математик Евклид написал книгу под названием «Начала». В ней он систематизировал все имевшиеся к тому времени сведения по геометрии и из­ложил их с таким непревзойденным педагогическим мастерством, что на протяжении тысячелетий «Начала» были лучшим учебником по геометрии.

Евклид предложил метод, который теперь называет­ся Аксиоматическим и широко применяется в математике и других науках. Суть его состоит в том, что при изложении некоторой теории в самом начале формули­руется ряд утверждений, называемых Аксиомами, ис­тинность которых считается несомненной. Аксиомы должны быть достаточно простыми и соответствовать нашему опыту. А дальнейшее развитие теории состоит в доказательстве теорем, вытекающих толь­ко из заданных аксиом.

Вместе с тем, переоценить значение открытия Лобачевского не­возможно. Никакой другой математический результат не имел столько значительных последствий. Благодаря открытию геометрии Лобачевского возникли новые важнейшие области математики: основания геометрии, основания математики, математическая логика. Мате­матики поняли силу аксиоматического метода и стали его широко применять во всех разделах математики и даже в физике. Далее, поскольку возник новый матема­тический объект — система аксиом — появились и спе­циальные методы его исследования, так называемая ме­таматематика. Бурно развилась теория алгоритмов, тесно связанная с математическими основами функциони­рования электронно-вычислительных устройств. В итоге было подвергнуто анализу все здание математики.

На основании изложенного, следует, что все методы показывают, что на великом дереве математики может быть и не так много плодов, но каждый из них, созрев, продвига­ет человечество на шаг вперед.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Использованная литература и информационные ресурсы

1. Глейзер математики в школе. VII-VIII классы. – М.: Просвещение, 1982.

2.  Евклид. Начала. Перевод и комментарии -Волтовского. М.: Просвещение, 1950.

3.  Лобачевский // серия «Жизнь замечательных людей» - М. «Молодая гвардия», 1965.

4.  Лобачевский и его геометрия. Пособие для учащихся. – М.: Просвещение, 1970.

5.  Основания геометрии. Градштейна. М.: Просвещение, 1948.

6.  Самин великих ученых. – М.:Вече, 2002.

7.  Широков очерк основ геометрии Лобачевского // М.: Наука, 1983.

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Отличие геометрии Евклида от геометрии Лобачевского"

Настоящий материал опубликован пользователем Измайлова Вероника Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Скачать материал
    • 13.11.2023 1410
    • DOCX 125.6 кбайт
    • 15 скачиваний
    • Оцените материал:
  • Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Измайлова Вероника Николаевна
    Измайлова Вероника Николаевна

    учитель математики

    • На сайте: 6 лет и 5 месяцев
    • Подписчики: 0
    • Всего просмотров: 7079
    • Всего материалов: 11

    Об авторе

    Категория/ученая степень: Первая категория
    Место работы: ГБОУ Школа № 651 Невского района Санкт-Петербурга

Тема урока: Пятый постулат Евклида. Конспект

Файл будет скачан в форматах:

  • pdf
  • docx
530
36
21.01.2025

Материал разработан автором:

Разработок в маркетплейсе: 162
Покупателей: 1 923

Об авторе

Категория/ученая степень: Первая категория
Место работы: МБОУ «Ильинская средняя школа» Сакского района Республики Крым
Здравствуйте. Я рада вас приветствовать на своём сайте. Работаю в школе больше 6 лет, за время работы накопился большой опыт, которым хочу поделиться с вами. От учителя, особенно живущего в наше время перемен и новых открытий, справедливо требовать, чтобы жизнь его служила примером детям и их родителям. Я стараюсь все эти требования в своей работе соблюдать и выполнять. Ведь учитель свободен, как поэт, художник, музыкант, как любая творческая личность. Он рассказывает и учит тому, что знает и любит сам. "Если учитель имеет только любовь к делу, он будет хороший учитель. Если учитель имеет только любовь к ученику, как отец, мать, - он будет лучше того учителя, который прочел все книги, но не имеет любви ни к делу, ни к ученикам. Если учитель соединяет в себе любовь к делу и к ученикам, он - совершенный учитель". - Л. Толстой Быть может, на страничках этого сайта, вы найдёте для себя полезную и нужную информацию. Я буду рада.
Подробнее об авторе

Настоящая методическая разработка опубликована пользователем Кулик Александра Александровна. Инфоурок является информационным посредником

Тема урока: Пятый постулат Евклида. Цель урока: Усвоение новых знаний о пятом постулате Евклида и его роли в геометрии. Задачи урока: 1. Познакомить учащихся с аксиомой параллельных прямых и её следствиями. 2. Развить умение применять полученные знания при решении задач. 3. Сформировать интерес к изучению геометрии. 4. Воспитывать аккуратность, внимательность, трудолюбие.

Краткое описание методической разработки

Тема урока: Пятый постулат Евклида.

Цель урока: Усвоение новых знаний о пятом постулате Евклида и его роли в геометрии.

Задачи урока:

1. Познакомить учащихся с аксиомой параллельных прямых и её следствиями.

2. Развить умение применять полученные знания при решении задач.

3. Сформировать интерес к изучению геометрии.

4. Воспитывать аккуратность, внимательность, трудолюбие.

Развернуть описание
Смотреть ещё 5 615 курсов

Методические разработки к Вашему уроку:

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

иногда мы задаемся меняются ли научные подходы к постулатам, пользуемся ли мы до сих пор достижениями великих математиков и добавлются ли новые реалии

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

7 239 321 материал в базе

Скачать материал

Другие материалы

Презентация по математике на тему «Среднее арифметическое. Среднее значение величины» (5 класс)
  • Учебник: «Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.
  • Тема: § 36. Среднее арифметическое. Среднее значение величины
  • 13.11.2023
  • 233
  • 7
«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.
Технологическая карта урока «Среднее арифметическое. Среднее значение величины» (5 класс)
  • Учебник: «Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.
  • Тема: § 36. Среднее арифметическое. Среднее значение величины
  • 13.11.2023
  • 126
  • 1
«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Оформите подписку «Инфоурок.Маркетплейс»

Вам будут доступны для скачивания все 217 516 материалов из нашего маркетплейса.

Мини-курс

Путь к эмоциональной зрелости: от внутреннего ребенка к осознанному родителю

2 ч.

699 руб.
Подать заявку О курсе

Мини-курс

Психология детско-родительских отношений: от тревожности к здоровому взаимодействию

2 ч.

699 руб.
Подать заявку О курсе
  • Этот курс уже прошли 34 человека

Мини-курс

Преодоление депрессии: путь к психологическому благополучию

4 ч.

699 руб.
Подать заявку О курсе
  • Сейчас обучается 71 человек из 33 регионов
  • Этот курс уже прошли 55 человек
Смотреть ещё 5 615 курсов