1267691
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаКонспектыПамятка "Использование метода введения новой переменной"

Памятка "Использование метода введения новой переменной"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.


ПАМЯТКА

Приемы решения дробных рациональных уравнений.

1.

Использование алгоритма решения дробных рациональных уравнений.

При решении дробных рациональных уравнений целесообразно поступать по следующему алгоритму:

1. найти общий знаменатель дробей, входящих в уравнение, предварительно разложив знаменатели на множители;

2. умножить обе части уравнения на общий знаменатель;

3. решить получившееся целое уравнение;

4. исключить из его корней те, которые обращают в нуль общий знаменатель.

hello_html_1ef143fd.gifНОЗ: 2х(2 – х)

hello_html_m666a5578.gif

4х + х(2 – х) = 8;

х2 – 6х + 8 = 0;

D = b2 – 4ac = (-6)2 - 4·1·8 = 36 – 32 = 4 > 0, уравнение имеет 2 корня;

hello_html_4b7e7f4b.gif;

hello_html_5418f48e.gif;

hello_html_m5a8623a0.gif;

hello_html_m4c4dddac.gif;

х = 3 ± 1;

х1 = 3 – 1; х2 = 3 + 1;

х1 = 2; х2 = 4.

Проверка.

Если х = 2, то 2х(2 – х) = 2·2(2 – 2) = 0, не является корнем уравнения.

Если х = 4, то 2х(2 – х) = 2·4(2 – 4) ≠ 0.

Ответ: 4 (с учетом проверки).

2.

Использование условия равенства дроби нулю для уравнений вида hello_html_7c80c1d4.gif.

Решение уравнений основано на следующем утверждении: дробь hello_html_218b1e5a.gif равна нулю тогда и только тогда, когда ее числитель равен нулю, а знаменатель отличен от нуля (на 0 делить нельзя!).

Решение уравнения вида hello_html_7c80c1d4.gifпроводится в два этапа:

1. решить уравнение f(x)=0;

2. выяснить для каждого корня, обращается ли при найденном значении переменной х знаменатель дроби g(x) в нуль;

3. если g(x)=0, то полученный корень уравнения f(x)=0 не является корнем исходного уравнения.

hello_html_669ed09.gif;

1. Решим уравнение:

2 – 5х + 3 = 1;

D = b2 – 4ac = (-5)2 - 4·2·3 = 25 – 24 = 1 > 0, уравнение имеет 2 корня.

hello_html_4b7e7f4b.gif;

hello_html_m398a7c6f.gif;

hello_html_1d4dcc01.gif;

hello_html_m5836049.gif; hello_html_m209246bc.gif;

х1 = 1; х2 = 1,5.

2. Выполним проверку (не обращает ли каждый из найденных корней в нуль знаменатель).

Если х = 1; то 9х – 13,5 = 9·1 – 13,5 ≠ 0;

Если х = 1,5; то 9х–13,5= 9·1,5–13,5=13,5-13.5=0, не является корнем уравнения.

Ответ: 1 (с учетом проверки).

3.

Использование основного свойства пропорции для уравнений вида hello_html_m3cdd9634.gif .

Решение уравнений основано на следующем утверждении: в пропорции hello_html_m5f81e4aa.gif произведение крайних членов равно произведению ее средних членов. Т.е. ad = bc.

Решение уравнения вида hello_html_m3cdd9634.gifпроводится в два этапа:

1. решить уравнение f(x)·q(x)= g(x)·p(x);

2. выяснить для каждого корня, обращаются ли при найденном значении переменной х знаменатели дробей g(x) и q(x) в нуль;

3. если g(x)=0 или q(x)=0, то полученный корень уравнения f(x)·q(x)= g(x)·p(x) не является корнем исходного уравнения.


hello_html_2e4dc4f.gif;

1. Решим уравнение:

(х – 2)(х – 4) = (х + 2)(х + 3);

х2 – 4х – 2х + 8 = х2 + 3х + 2х + 6;

- 6х + 8 – 5х – 6 = 0;

- 11х = -2;

х = -11: (-2);

hello_html_m71f78637.gif.

2. Выполним проверку (не обращает ли найденный корень в нуль знаменатели дробей).

Если hello_html_m116b117c.gif; то х + 2 = hello_html_11ab9a62.gif + 2 ≠ 0;

Если х =hello_html_11ab9a62.gif; то х - 4 = hello_html_11ab9a62.gif - 4 ≠ 0


Ответ: hello_html_11ab9a62.gif (с учетом проверки).

4.

Использование метода введения новой переменной.

Дробные рациональные уравнения решаются с помощью введения новой переменной.

hello_html_97e01d9.gif;

Введем новую переменную, обозначив х2 + 2х – 3 через у. Тогда исходное уравнение сведется к уравнению с переменной у.

Пусть у = х2 + 2х – 3, тогда х2 + 2х – 8 = (х2 + 2х – 3) – 5 = у – 5 и уравнение примет вид

hello_html_5c114e67.gif;

hello_html_4cac15a7.gif;

hello_html_m310c7eb2.gif;

24у = (15 + 2у)(у – 5);

24у = 15у – 75 + 2у2 - 10у;

24у - 15у + 75 - 2у2 + 10у= 0;

- 2у2 + 19у + 75= 0;

2 - 19у - 75= 0;

D = b2 – 4ac = (-19)2 - 4·2·(-75) = 361 + 600 = 961 > 0, уравнение имеет 2 корня;

hello_html_m5da62dd.gif;

hello_html_m1370b38.gif;

hello_html_m41d5b781.gif;

hello_html_m5c90fab5.gif; hello_html_2e93a67e.gif;

у1 = - 3; у2 = 12,5.

Выполним проверку (не обращает ли каждый из найденных корней в нуль знаменатель).

Если у = -3; то у – 5 = -3 – 5 ≠ 0;

Если у = 12,5; то у – 5 = 12,5 – 5 ≠ 0.

Т.к. у = х2 + 2х – 3, то получим уравнения:

х2 + 2х – 3 = -3 и х2 + 2х – 3 = 12,5.

Решая уравнение х2 + 2х – 3 = 12,5; получим:

hello_html_m2efcb8aa.gif; hello_html_m2531b7ee.gif.

Решая уравнение х2 + 2х – 3 = -3; получим:

х3 = -2; х4 = 0.

Т.о. найдены четыре корня заданного уравнения.

hello_html_671f14a3.gif

hello_html_m7c8dd476.gif

Общая информация

Номер материала: ДВ-184856

Вам будут интересны эти курсы:

Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.