Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Паурочный план "Квадрат суммы и квадрат разности двух выражений"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Паурочный план "Квадрат суммы и квадрат разности двух выражений"

библиотека
материалов

Дата

Предмет: алгебра

Тема урока: Квадрат суммы и квадрат разности двух выражений


 Цели урока:

  1. Познакомить учащихся с формулами сокращенного умножения (a+b)2=a2+2ab+b2 и (a-b)2=a2-2ab+b2 и доказать их справедливость с помощью геометрической иллюстрации и аналитически, используя умножение многочлена на многочлен.

  2. Развивать математическое мышление, познавательную деятельность, умение ставить перед собой задачу, находить ее решение, проверять правильность своих действий и объективно оценивать их.

  3. Воспитывать культуру общения, культуру речи, умение работать в группе и паре.

Ход урока

1. Организационный момент

2. Проверка домашнего задания

3. Изучение нового материала

Учитель: “Математику называют “царицей наук”, ей больше, чем какой– либо другой науке, свойственны красота, изящность и точность. Одно из замечательных качеств математики – любознательность. Мы продолжаем изучать тему “Умножение многочленов”. Ещё в глубокой древности было замечено, что некоторые многочлены можно умножать короче, быстрее, чем остальные. Так появились формулы сокращенного умножения

Их несколько. А сегодня на уроке нам предстоит сыграть роль исследователей и “открыть” две из них. Попробуйте сформулировать тему нашего сегодняшнего урока”.

Ученики: тема урока “Формулы сокращенного умножения”.

(а + b)= а2 + 2аb + b2

(а – b)= а2 – 2аb + b2.

4) Применение формулы “квадрат разности и квадрат суммы двух выражений”

Работа с учебником № 332-№338 (не четные)

6) Геометрическое обоснование формул сокращенного умножения

Первые общие утверждения о тождественных преобразованиях встречаются у древнегреческих математиков, начиная с шестого века до н.э. Среди математиков Древней Греции было принято выражать все алгебраические утверждения в геометрической форме.

Вместо сложения чисел говорили о сложении отрезков, произведение двух чисел истолковывали как площадь прямоугольника. Отказ от геометрической трактовки наметился у Диофанта Александрийского, жившего в 3 веке. В его работах появляются зачатки буквенной символики и специальных обозначений. Формулы квадрата суммы и разности двух выражений знали еще в Древнем Вавилоне, а древнегреческие математики знали ее геометрическое истолкование.

3. Подведение итога урока, выставление оценок.

4. Домашнее задание №332-№338 (четные) №339,№341



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 01.02.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров129
Номер материала ДВ-402828
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх