Инфоурок / Математика / Презентации / Первообразная. Интеграл

Первообразная. Интеграл

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Первообразная Интеграл МОУ Гимназия №3 Автор: Квашнина Лилия Викторовна
Содержание Понятие первообразной Неопределенный интеграл Таблица первообразны...
Понятие первообразной Функцию F(x) называют первообразной для функции f(x) на...
Примеры f(x) = 2x; F(x) = x2 F(x)= (x2) = 2x = f(x) f(x) = – sin x; F(x) =...
Неопределенный интеграл Неопределенным интегралом от непрерывной на интервале...
Примеры
Таблица первообразных f(x) F(x) F(x)
Три правила нахождения первообразных 1º Если F(x) есть первообразная для f(x)...
Физический смысл первообразной
Определенный интеграл – формула Ньютона-Лейбница. Геометрический смысл опреде...
Вычисление определенного интеграла
Площадь криволинейной трапеции a b x y y = f(x) 0 A B C D x = a x = b y = 0
Площадь криволинейной трапеции (1) a b x y y = f(x) 0 A B C D x = a x = b y = 0
a b x y y = f(x) 0 y = g(x) A B C D M P Площадь криволинейной трапеции (2)
a b x y y = f(x) 0 y = g(x) A B C D M P Площадь криволинейной трапеции (3)
Пример 1: вычислить площадь фигуры, ограниченной линиями y = x2, y = x + 2. x...
a b x y y = f(x) 0 y = g(x) A B C D с Е Площадь криволинейной трапеции (4)
Пример 2: 2 8 x y = (x – 2)2 0 A B C D 4 y 4
Пример 2:
19 1

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.


Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.


Список всех тестов можно посмотреть тут - https://infourok.ru/tests

Описание презентации по отдельным слайдам:

№ слайда 1 Первообразная Интеграл МОУ Гимназия №3 Автор: Квашнина Лилия Викторовна
Описание слайда:

Первообразная Интеграл МОУ Гимназия №3 Автор: Квашнина Лилия Викторовна

№ слайда 2 Содержание Понятие первообразной Неопределенный интеграл Таблица первообразны
Описание слайда:

Содержание Понятие первообразной Неопределенный интеграл Таблица первообразных Три правила нахождения первообразных Определенный интеграл Вычисление определенного интеграла Площадь криволинейной трапеции Площадь криволинейной трапеции (1) Площадь криволинейной трапеции (2) Площадь криволинейной трапеции (3) Площадь криволинейной трапеции (4) Пример (1) Пример (2)

№ слайда 3 Понятие первообразной Функцию F(x) называют первообразной для функции f(x) на
Описание слайда:

Понятие первообразной Функцию F(x) называют первообразной для функции f(x) на интервале (a; b), если на нем производная функции F(x) равна f(x): Операцию, обратную дифференцированию называют интегрированием.

№ слайда 4 Примеры f(x) = 2x; F(x) = x2 F(x)= (x2) = 2x = f(x) f(x) = – sin x; F(x) =
Описание слайда:

Примеры f(x) = 2x; F(x) = x2 F(x)= (x2) = 2x = f(x) f(x) = – sin x; F(x) = сos x F(x)= (cos x) = – sin x = f(x) f(x) = 6x2 + 4; F(x) = 2x3 + 4x F(x)= (2x3 + 4x) = 6x2 + 4 = f(x) f(x) = 1/cos2 x; F(x) = tg x F(x)= (tg x) = 1/cos2 x= f(x)

№ слайда 5 Неопределенный интеграл Неопределенным интегралом от непрерывной на интервале
Описание слайда:

Неопределенный интеграл Неопределенным интегралом от непрерывной на интервале (a; b) функции f(x) называют любую ее первообразную функцию. Где С – произвольная постоянная (const).

№ слайда 6 Примеры
Описание слайда:

Примеры

№ слайда 7 Таблица первообразных f(x) F(x) F(x)
Описание слайда:

Таблица первообразных f(x) F(x) F(x)

№ слайда 8 Три правила нахождения первообразных 1º Если F(x) есть первообразная для f(x)
Описание слайда:

Три правила нахождения первообразных 1º Если F(x) есть первообразная для f(x), а G(x) – первообразная для g(x), то F(x) + G(x) есть первообразная для f(x) + g(x). 2º Если F(x) есть первообразная для f(x), а k – постоянная, то функция kF(x) есть первообразная для kf(х).

№ слайда 9 Физический смысл первообразной
Описание слайда:

Физический смысл первообразной

№ слайда 10 Определенный интеграл – формула Ньютона-Лейбница. Геометрический смысл опреде
Описание слайда:

Определенный интеграл – формула Ньютона-Лейбница. Геометрический смысл определенного интеграла заключается в том, что определенный интеграл равен площади криволинейной трапеции, образованной линиями: сверху ограниченной кривой у = f(x),  и прямыми у = 0; х = а; х = b.

№ слайда 11 Вычисление определенного интеграла
Описание слайда:

Вычисление определенного интеграла

№ слайда 12 Площадь криволинейной трапеции a b x y y = f(x) 0 A B C D x = a x = b y = 0
Описание слайда:

Площадь криволинейной трапеции a b x y y = f(x) 0 A B C D x = a x = b y = 0

№ слайда 13 Площадь криволинейной трапеции (1) a b x y y = f(x) 0 A B C D x = a x = b y = 0
Описание слайда:

Площадь криволинейной трапеции (1) a b x y y = f(x) 0 A B C D x = a x = b y = 0

№ слайда 14 a b x y y = f(x) 0 y = g(x) A B C D M P Площадь криволинейной трапеции (2)
Описание слайда:

a b x y y = f(x) 0 y = g(x) A B C D M P Площадь криволинейной трапеции (2)

№ слайда 15 a b x y y = f(x) 0 y = g(x) A B C D M P Площадь криволинейной трапеции (3)
Описание слайда:

a b x y y = f(x) 0 y = g(x) A B C D M P Площадь криволинейной трапеции (3)

№ слайда 16 Пример 1: вычислить площадь фигуры, ограниченной линиями y = x2, y = x + 2. x
Описание слайда:

Пример 1: вычислить площадь фигуры, ограниченной линиями y = x2, y = x + 2. x y y = x2 y = x + 2 -1 2 A B O D C 2

№ слайда 17 a b x y y = f(x) 0 y = g(x) A B C D с Е Площадь криволинейной трапеции (4)
Описание слайда:

a b x y y = f(x) 0 y = g(x) A B C D с Е Площадь криволинейной трапеции (4)

№ слайда 18 Пример 2: 2 8 x y = (x – 2)2 0 A B C D 4 y 4
Описание слайда:

Пример 2: 2 8 x y = (x – 2)2 0 A B C D 4 y 4

№ слайда 19 Пример 2:
Описание слайда:

Пример 2:

Краткое описание документа:

На данный модуль отводится 7 часов.

Цели модуля:

  1. находить в простейших случаях первообразные функции;
  2. вычислять в простейших случаях значение интегралов;
  3. вычислять интегралы при нахождении площадей криволинейных трапеций, при решении геометрических задач.

Ожидаемые результаты:

учащиеся демонстрируют умение

  • находить первообразные для функций по заданному условию;
  • вычислять значения интегралов;
  • применять интеграл при нахождении площадей криволинейных трапеций;
  • применять интеграл к решению геометрических задач.

Общая информация

Номер материала: 286836

Похожие материалы