Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015

Опубликуйте свой материал в официальном Печатном сборнике методических разработок проекта «Инфоурок»

(с присвоением ISBN)

Выберите любой материал на Вашем учительском сайте или загрузите новый

Оформите заявку на публикацию в сборник(займет не более 3 минут)

+

Получите свой экземпляр сборника и свидетельство о публикации в нем

Инфоурок / Математика / Конспекты / План конспект урока по теме "Объем шара и площадь сферы"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

План конспект урока по теме "Объем шара и площадь сферы"

библиотека
материалов



Министерство образования и науки Краснодарского Края

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ


Краснодарского Края


«КРАСНОДАРСКИЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ»












План-конспект урока:

«Объем шара и площадь сферы».











Преподаватель математики

Хромых А.Н.





Тема урока: Объем шара и площадь сферы

Цели урока:

образовательные:

обобщить и систематизировать знания обучающихся по теме «Тела вращения»; вывести формулу объема шара и площади сферы.

воспитательные:

показать, что источник возникновения изучаемой темы – реальный мир, что она возникла из практических потребностей; воспитание вычислительных навыков;

показать связь с историей; воспитание самостоятельности; воспитание стремления к самореализации.

развивающие:

совершенствование, развитие, углубление знаний, умений и навыков по теме; развитие пространственного воображения; развитие мыслительной деятельности: умения анализировать, обобщать, классифицировать.

Тип урока: Комбинированный

Методы и приемы: словесный, наглядный, фронтальный, индивидуальный, проблемный

Технологии:

Оборудование: учебник геометрии 10-11класс, автор Л.С.Атанасян; мультимедейный проектор; модели тел вращения (шар, цилиндр, конус); презентация.

 План урока.

1.Организационный момент
2.Повторение.
3.Изучение нового материала.

4.Решение кроссворда
5.Первичное осмысление и закрепление новых знаний (практическая работа) – 15 минут.

6.Решение задач

7.Постановка домашнего задания

8.Подведение итогов урока

Ход урока

I. Организационный момент.

Сообщить тему урока, сформулировать цели урока.

II. Актуализация опорных знаний.

Теоретический опрос (фронтальная работа с обучающимися)

1) Устная работа. Соотнесите название фигуры и формулу объема и площади поверхности тел.1.Цилиндр. 2.Конус. 3.Усеченный конус. 4. Шар.

 

V=1/3SОСНH=1/3∏R2      V=SОСНH=πR2H V=1/3∏H(R2+r2+Rr) S=4 πR2

hello_html_74152ca.jpghello_html_5df5ecb4.jpg hello_html_20fe3d98.jpg

                                                                                                

                                                            

 III. Изучение новой темы.

Сегодня мы с вами выведем формулу для вычисления объема шара.

Вспомните, определение шара и его элементов.

Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не больше данного R.

Радиусом шара называют всякий отрезок, соединяющий центр шара с точкой шаровой поверхности.

Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара.

Концы любого диаметра шара называются диаметрально противоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара.

Теорема: Объем шара равен hello_html_m3f474f8e.gif

Доказательство:

Мы уже знаем, что можно вычислять  объёмы  тел с помощью интегральной формулы

V=hello_html_abd5e7e.gif

Давайте посмотрим, как это можно сделать для вывода формулы  объема   шара.

(Учитель объясняет вывод формулы  объёма   шара  с помощью формулы, ученики делают записи в тетрадях).


Рассмотрим шар радиуса R с центром в точке О и выберем ось ОХ произвольным образом (рис192).Сечение шара плоскостью, перпендикулярной к оси ОХ и проходящий через точку М этой оси, является кругом с центом в точке М. Обозначим радиус этого круга через r, а его площадь через S(х), где х абсцисса точки М. Выразим S(х) через х и R. Из прямоугольного треугольника ОМС находим  hello_html_4f3a2e64.gif. Тогда hello_html_7abdfefc.gif, где hello_html_m5375bf2f.gifhello_html_m30887263.gif

Так как  hello_html_m648d6aed.gif, то заменяя r через выражение  hello_html_m7c1128ae.gif   получим hello_html_md1c4056.gif  

Заметим, что эта формула верна для любого положения точки М на диаметре АВ, т.е. для всех х, удовлетворяющих условию hello_html_m5375bf2f.gif

Применяя основную формулу для вычисления объемов тел при а= -R, b=R, получим

  hello_html_m534c9c2c.gif

Теорема доказана.

 В практических приложениях часто указывается диаметр шара, поэтому в процессе решения задач полезно знать формулу hello_html_m6fad8f31.gif, где D – диаметр шара

Решение кроссворда

IV.Формирование умений и навыков учащихся.

 ПРОБЛЕМНАЯ ЗАДАЧА: При уличной торговле арбузами весы отсутствовали. Однако выход был найден: арбуз диаметром 3 дм приравнивали по стоимости к трём арбузам диаметром 1 дм.

Что вы возьмете? Правы ли были продавцы 

Решение:

 Необходимо найти объемы данных арбузов.

hello_html_413cfe86.gif

hello_html_1daa024b.gif и таких арбузов три, значит их общий объем равен hello_html_m579086f4.gif

  

 Задача (Архимеда): На надгробном камне могилы Архимеда в Сиракузах изображен цилиндр с вписанным в него шаром. Это символ открытия формул объема шара и площади сферы, а также важного вывода, что «объем шара, вписанного в цилиндр в …раз меньше объема цилиндра и что также относятся площади поверхностей этих тел». Найдите отношение объема цилиндра к объему шара и отношение площади поверхности цилиндра к площади поверхности шара.

 Дано: в цилиндр вписан шар

Найти: отношение объёмов цилиндра и шара, отношение площадей поверхностей

 РЕШЕНИЕ:

hello_html_6b9928b9.gif

hello_html_181b8381.gif

                                                                                                                               Ответ:1,5

Одним из своих наивысших достижений Архимед считал доказательство того, что объём шара в полтора раза меньше объёма описанного около него цилиндра. Недаром шар, вписанный в цилиндр, был высечен на надгробии Архимеда в Сиракузах.

ПРАКТИЧЕСКАЯ РАБОТА «Вычисление объёмов тел вращения»

Задачи :

1.Около шара описан цилиндр, площадь поверхности

 которого равна 18. Найдите площадь поверхности шара.

Решение: (Опираемся на открытие Архимеда)

 

Ответ: 12

 

2.Площадь поверхности шара уменьшили 9 раз. Во сколько раз уменьшился объем шара?

Решение:       

Пусть радиус первого шара R, а уменьшенного r.

Поверхность шара  S1 = 4пR2,    стала  S2 = 4пR2/9 = 4п (R/3)2 = 4пr2  

Видим, что r =hello_html_238797bc.gif, т.е. радиус уменьшился в 3 раза.

Объем V1= 4/3 ПR3,   а объем V2= 4/3 пr3 = 4/3 п(R/3)3 =4/3 пR3 /27  =  V1 / 27.

Ответ:27

V. Итог урока.

 Оценить работу обучающихся на уроке и выставить оценки.

 На сегодняшнем уроке мы с вами вывели формулу  объема шара, выяснили, что данные тела имеют широкое практическое применение и сделали небольшое открытие, которое еще в 3 веке до нашей эры сделал Архимед.

Беседа по следующим вопросам:

Что было интересного сегодня на уроке?

Что вызвало трудности?

Какие умения приобрели сегодня?

Где могут пригодиться эти умения?

Домашнее задание.

П.82, №710


 

Домашнее задание.hello_html_7ec7d3db.jpg

П.82 № 710, II уровень №713



Автор
Дата добавления 31.05.2016
Раздел Математика
Подраздел Конспекты
Просмотров402
Номер материала ДБ-105273
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх