Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Планирование по математике к учебнику Г.К. Муравина.
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Планирование по математике к учебнику Г.К. Муравина.

библиотека
материалов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.

1. Рабочая программа учебного предмета «Математика. 5 класс» разработана на основе авторской программы к линии учебников Г.К.Муравина, К.С.Муравина, О.В.Муравиной «Математика: рабочие программы. 5-9 классы: учебно-методическое пособие/О.В.Муравина.-3-е изд.,испр.-М.:Дрофа,2015.-126с.» (М.: Дрофа, 2013) и в соответствии с Образовательной программой МБОУ «Карамышевская СОШ».

Основные положения Пояснительной записки рабочей программы разработаны на основе следующих документов:

-Федеральный государственный образовательный стандарт основного общего образования / Министерство образования и науки РФ. — М.: Просвещение, 2011. (Стандарты второго поколения.) Приказ Министерства образования и науки РФ от 17.12.2010. № 1897.

-Примерная основная образовательная программа основного общего образования (протокол от 8 апреля 2015 г. № 1/15)

Срок реализации программы 2015-2020гг.

Обучение математике является важнейшей составляющей основного общего образования и призвано развивать логическое мышление и математическую интуицию обучающихся, обеспечить овладение ими умениями в решении различных практических и межпредметных задач. Математика входит в предметную область «Математика и информатика».

Основными целями курса математики 5–9 классов в соответствии с Федеральным государ-ственным образовательным стандартом основного общего образования являются: «осознание значения математики… в повседневной жизни человека, формирование представлений о социаль-ных, культурных и исторических факторах становления математической науки; формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления».

Дополнительно в авторской рабочей программе обозначаются следующие цели: развитие личности школьника средствами математики, подготовка его к продолжению обучения и к самореализации в современном обществе.

Достижение перечисленных целей предполагает решение следующих задач:

формирование мотивации изучения математики, готовности и способности учащихся к саморазвитию, личностному самоопределению, построению индивидуальной траектории в изучении предмета;

формирование у обучающихся способности к организации своей учебной деятельности посредством освоения личностных, познавательных, регулятивных и коммуникативных универсальных учебных действий;

формирование специфических для математики стилей мышления, необходимых для полноценного функционирования в современном обществе, в частности логического, алгоритмического и эвристического;

освоение в ходе изучения математики специфических видов деятельности, таких как построение математических моделей, выполнение инструментальных вычислений, овладение символическим языком предмета и др.;

формирование умений представлять информацию в зависимости от поставленных задач в виде таблицы, схемы, графика, диаграммы, использовать компьютерные программы, Интернет при её обработке;

овладение учащимися математическим языком и аппаратом как средством описания и исследования явлений окружающего мира;

овладение системой математических знаний, умений и навыков, необходимых для решения задач повседневной жизни, изучения смежных дисциплин и продолжения образования;

формирование научного мировоззрения;

воспитание отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Содержание курса математики строится на основе системно-деятельностного подхо-да, принципов разделения трудностей, укрупнения дидактических единиц, опережающего формирования ориентировочной основы действий, принципов позитивной педагогики.

Системно-деятельностный подход предполагает ориентацию на достижение цели и основного результата образования – развитие личности обучающегося на основе освоения универсальных учебных действий, познания и освоения мира, активной учебно-познавательной деятельности, формирование его готовности к саморазвитию и непрерывному образованию; разнообразие индивидуальных образовательных траекторий и индивидуального развития каждого обучающегося.

Основополагающие принципы:

1

Принцип разделения трудностей.

Концентрация внимания на обучении отдельным компонентам математической деятельности. Правильно и последовательно подбираются компоненты для обучения.

Учебный материал алгоритмического характера сопровождается системой творческих заданий, где каждое последующее задание опирается на результат предыдущего, применяется сформированное умение, новое знание. Как результат формируется весь алгоритм действия.

2

Принцип укрупнения дидактических единиц

Совместное изучение взаимосвязанных действий, операций, теорем.

3

Принцип опережающего формирования ориентировочной основы действия (ООД)

ООД заключается в формировании у обучающегося представления о цели, плане и средствах осуществления некоторого действия. Полная ООД обеспечивает систематически безошибочное выполнение действия в некотором диапазоне ситуаций. ООД составляется учениками совместно с учителем в ходе выполнения системы знаний. Отдельные этапы ООД включаются в опережающую систему упражнений, что даёт возможность подготовить базу для изучения нового материала и увеличивает время на его усвоение.

4

Принципы позитивной педагогики.

Педагогика сопровождения, поддержка и сотрудничество учителя с учеником. Интеллектуальная атмосфера гуманистического образования. Формирование у обучающихся критичности, здравого смысла и рациональности. Воспитание уважением, свободой, ответственностью и участием. В процессе обучения передаются, усваиваются и вырабатываются приёмы жизненного роста как цепь процедур самоидентификации, самоопределения, самоактуализации и самореализации, в результате которых формируется творчески позитивное отношение к себе, к социуму и к окружающему миру в целом.


Общая характеристика учебного предмета, курса.

Курсы математики для 5—6 классов и алгебры для 7—9 классов складываются из следующих содержательных компонентов: арифметики, алгебры, элементов комбинаторики и теории вероятностей, статистики и логики.

В 5—6 классах основное внимание уделяется арифметике и формированию вычислительных навыков, наглядной геометрии, в 7—9 классах — алгебре и элементам комбинаторики, теории вероятностей, статистики и логики.

В своей совокупности они учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием целина информационно ёмком и практически значимом материале.

В курсе алгебры выделяются основные содержательные линии: арифметика, алгебра, функции, вероятность и статистика, логика и множества, математика в историческом развитии.

Раздел «Арифметика» призван способствовать приобретению практических навыков вычис-лений, необходимых для повседневной жизни. Он служит базой для всего дальнейшего изучения математики, способствует логическому развитию информированию умения пользоваться алгори-тмами. Развитие понятия о числе в основной школе связано с изучением натуральных, целых, рациональных и иррациональных чисел, формированием представлений о действительных числах.

Раздел «Алгебра» нацелен на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Основным понятием алгебры является «рациональное выражение».

В разделе «Функции» важной задачей является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации. Изучение этого материала способствует освоению символическим и графическим языками, умению работать с таблицами.

Раздел «Вероятность и статистика» является обязательным компонентом школьного образования, усиливающим его прикладное значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности —умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащимся осуществлять рассмотрение разных случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы стохастического мышления.

Раздел «Логика и множества» служит цели овладения учащимися элементами математической логики и теории множеств, что вносит важный вклад в развитие мышления и математического языка.

Раздел «Математика в историческом развитии» способствует повышению общекультурного уровня школьников, пониманию роли математики в общечеловеческой культуре, значимости математики в развитии цивилизации и современного общества. Время на изучение этого раздела дополнительно не выделяется, усвоение его не контролируется, хотя исторические аспекты вплетаются в основной материал всех разделов курса.


Место учебного предмета, курса в учебном плане.

Федеральный базисный учебный план на изучение математики в 5—6 классах отводит 5 ч в неделю в течение двух лет, всего 350 уроков. На издание алгебры в 7—9 классах основной школы выделяется 3 ч в неделю в течение трёх лет обучения, всего 315 уроков. Учебное время может быть увеличено до 4 уроков в неделю за счёт вариативной части базисного плана.

Форма и метод обучения

Формы обучения: очная, самостоятельная работа учащихся (под контролем преподавателя и без), лекция, семинар, практическое занятие в аудитории, экскурсия, факультатив, консультация, зачет, экзамен, индивидуальная, фронтальная, индивидуально-групповая. Они могут быть направ-лены как на теоретическую подготовку учащихся, например, лекция, семинар, экскурсия, конфе-ренция, «круглый стол», консультация, разные виды самостоятельной работы учащихся, так и на практическую: практические занятия, разные виды проектирования, все виды практики, а также творческие работы.

Общедидактическими методами являются:

объяснительно-иллюстративный,

репродуктивный (воспроизведение),

проблемное изложение,

частично-поисковый (эвристический),

исследовательский .

Обучение математике является важнейшей составляющей основного общего образования и призвано развивать логическое мышление и математическую интуицию учащихся, обеспечить овладение учащимися умениями в решении различных практических и межпредметных задач. Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешколь-ной жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И, наконец, все больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, био-логия, психология и многое другое). Таким образом, расширяется круг школьников, для которых математика становится профессионально значимым предметом.


СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА.


Cодержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.

Элементы теории множеств и математической логики

Согласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.

Множества и отношения между ними

Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.

Операции над множествами

Пересечение и объединение множеств. Разность множеств, дополнение множества. Интерпретация операций над множествами с помощью кругов Эйлера.

Элементы логики

Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Высказывания

Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).

Содержание курса математики в 5–6 классах

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Делители и кратные

Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.

Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби

Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

Отношение двух чисел

Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты

Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Диаграммы

Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пира-мида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Мно-гогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур.

История математики

Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему hello_html_8111c6a.gif?

Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.

Содержание курса математики в 7–9 классах

Алгебра

Числа

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказа-тельств в алгебре. Иррациональность числа hello_html_4df6bfe9.gif. Применение в геометрии. Сравнение иррациональ-ных чисел. Множество действительных чисел.

Тождественные преобразования

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения

Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Квадратный трехчлен, разложение квадратного трехчлена на множители.

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.

Квадратные корни

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

Уравнения и неравенства

Равенства

Числовое равенство. Свойства числовых равенств. Равенство с переменной.

Уравнения

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Квадратное уравнение и его корни

Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного урав-нения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Вие-та. Решение квадратных уравнений:использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида hello_html_3848c767.gif, hello_html_m3dd80791.gif.

Уравнения вида hello_html_1b8ed95d.gif.Уравнения в целых числах.

Системы уравнений

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Системы неравенств

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

Функции

Понятие функции

Декартовы координаты на плоскости. Формирование представлений о метапредметном поня-тии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графи-ка линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция

Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции hello_html_mac2d225.gifhello_html_m7c4f1826.gif. Гипербола.

Графики функций. Преобразование графика функции hello_html_23e909.gif для построения графиков функций вида hello_html_m146e0aa3.gif.

Графики функций hello_html_7451015c.gif, hello_html_7a338828.gif,hello_html_m3d83b40f.gif, hello_html_19d5bf3d.gif.

Последовательности и прогрессии

Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

Решение текстовых задач

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Статистика

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных вели-чин. Распределение вероятностей. Математическое ожидание. Свойства математического ожи-дания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чи-сел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

Геометрия

Геометрические фигуры

Фигуры в геометрии и в окружающем мире

Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».

Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, круг.

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.

Многоугольники

Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.

Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки.

Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.

Окружность, круг

Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.

Геометрические фигуры в пространстве (объемные тела)

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

Отношения

Равенство фигур

Свойства равных треугольников. Признаки равенства треугольников.

Параллельно­сть прямых

Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.

Перпендикулярные прямые

Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.

Подобие

Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Взаимное расположение прямой и окружности, двух окружностей.

Измерения и вычисления

Величины

Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.

Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.

Представление об объеме и его свойствах. Измерение объема. Единицы измерения объемов.

Измерения и вычисления

Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины ок­ружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.

Расстояния

Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.

Геометрические построения

Геометрические построения для иллюстрации свойств геометрических фигур.

Инструменты для построений: циркуль, линейка, угольник. Простейшие построения цирку-лем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,

Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.

Деление отрезка в данном отношении.

Геометрические преобразования

Преобразования

Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.

Движения

Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.

Векторы и координаты на плоскости

Векторы

Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.

Координаты

Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

Применение векторов и координат для решения простейших геометрических задач.

История математики

Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.

Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.

Геометрия и искусство. Геометрические закономерности окружающего мира.

Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.


Планируемые результаты


МАТЕМАТИКА. АЛГЕБРА. ГЕОМЕТРИЯ

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

понимать особенности десятичной системы счисления;

оперировать понятиями, связанными с делимостью натуральных чисел;

выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

сравнивать и упорядочивать рациональные числа;

выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

познакомиться с позиционными системами счисления с основаниями, отличными от 10;

углубить и развить представления о натуральных числах и свойствах делимости;

научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

использовать начальные представления о множестве действительных чисел;

оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

использовать в ходе решения задач элементарные представления, связанные с приближенными значениями величин.

Выпускник получит возможность:

понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные, работать с формулами;

выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов; применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения

Выпускник научится:

решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

понимать и использовать функциональные понятия и язык (термины, символические обозначения);

строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

понимать и использовать язык последовательностей (термины, символические обозначения);

применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.


Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

строить развёртки куба и прямоугольного параллелепипеда;

определять по линейным размерам развёртки фигуры линейные размеры самой фигуры, и наоборот;

вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

углубить и развить представления о пространственных геометрических фигурах;

научиться применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры

Выпускник научится:

пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

научиться решать задачи на построение методом геометрического места точек и методом подобия;

приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

вычислять длину окружности, длину дуги окружности;

вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

вычислять площади многоугольников, используя отношения равновеликости и равносоставленной;

применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

овладеть координатным методом решения задач на вычисления и доказательства;

приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

овладеть векторным методом для решения задач на вычисления и доказательства;

приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».

Требования к уровню подготовки учащихся, личностные, метапредметные и предметные результаты освоения конкретного учебного предмета, курса.


Программа предполагает достижение выпускниками основной школы следующих личностных, метапредметных и предметных результатов.

В личностных результатах сформированность:

ответственного отношения к учению, готовность и способность обучающихся к самореализации и самообразованию на основе развитой мотивации учебной деятельности и личностного смысла изучения математики, заинтересованность в приобретении и расширении математических знаний и способов действий, осознанность построения индивидуальной образовательной траектории;

коммуникативной компетентности в общении, в учебно-исследовательской, творческой и других видах деятельности по предмету, которая выражается в умении ясно, точно,грамотно излагать свои мысли в устной и письменной речи,выстраивать аргументацию и вести конструктивный диалог,приводить примеры и контрпримеры, а также понимать и уважать позицию собеседника, достигать взаимопонимания,сотрудничать для достижения общих результатов;

целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.Сформированность представления об изучаемых математических понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений;

логического мышления: критичности (умение распознавать логически некорректные высказывания), креативности (собственная аргументация, опровержения, постановка задач, формулировка проблем, исследовательский проект и др.).

В метапредметных результатах сформированность:

способности самостоятельно ставить цели учебной и исследовательской деятельности, планировать, осуществлять, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями её выполнения;

умения самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

умения находить необходимую информацию в различных источниках (в справочниках, литературе, Интернете),представлять информацию в различной форме (словесной,табличной, графической, символической), обрабатывать,хранить и передавать информацию в соответствии с познавательными или коммуникативными задачами;

владения приёмами умственных действий: определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых и причинно-следственных связей, построения умозаключений индуктивного,дедуктивного характера или по аналогии;

умения организовывать совместную учебную деятельность с учителем и сверстниками: определять цели, распределять функции, взаимодействовать в группе, выдвигать гипотезы, находить решение проблемы, разрешать конфликты на основе согласования позиции и учёта интересов, аргументировать и отстаивать своё мнение.

В предметных результатах сформированность:

умений работать с математическим текстом, точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический, табличный), доказывать математические утверждения;

умения использовать базовые понятия из основных разделов содержания (число, функция, уравнение, неравенство, вероятность, множество, доказательство и др.);

представлений о числе и числовых системах от натуральных до действительных чисел; практических навыков выполнения устных, письменных, инструментальных вычислений, вычислительной культуры; представлений о простейших геометрических фигурах, пространственных телах и их свойствах; и умений в их изображении;

умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов простейших геометрических фигур;

умения использовать символьный язык алгебры, приёмы тождественных преобразований рациональных выражений, решения уравнений, неравенств и их систем; идею координат на плоскости для интерпретации решения уравнений, неравенств и их систем; алгебраического аппарата для решения математических и нематематических задач;

умения использовать систему функциональных понятий, функционально-графических представлений для описания и анализа реальных зависимостей;

представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

приёмов владения различными языками математики(словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

умения применять изученные понятия, аппарат различных разделов курса к решению межпредметных задач и задач повседневной жизни.






Тематическое планирование по математике в 5 классе.



Изменения в программе :3 ч направлены на повторении курса 1-4 классов и по 1ч добавлены на темы « Геометрические фигуры», « Равенство фигур», «Измерение углов». Внесение данных измене-ний позволить охватить весь изучаемый материал по программе, повысить уровень обученности уча-щихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся. Программа рассчитана на 35 или 34 учебные недели, уменьшая на 5ч время резерва в конце программы, планирования.

урока

Наименование разделов, тем

Ча-

сы

Характеристика основных видов деятельности

1-3

Повторение курса начальной школы

3


Г1

Натуральные числа и нуль

27+3


4-8

Десятичная система счисления

4

Описывать свойства натурального ряда. Читать и записывать натуральные. Находить сумму цифр числа и сумму разрядных слагаемых

9-12

Сравнение чисел

4

Сравнивать и упорядочивать натуральные числа.Читать равенства, строгие и нестрогие неравенства. Различать и называть равенства и неравенства, строгие и нестрогие неравенства, двойные неравенства. Опровергать утверждения с помощью контрпримера. Решать задачи на увеличение и уменьшение на несколько единиц, а также увеличение и уменьшение в несколько раз.

13-16

Шкалы и координаты

4

Читать и записывать единицы измерения длины и массы. Снимать показания приборов.Выражать одни единицы измерения длины и массы в других единицах.Строить на координатном луче точки по заданным координатам; определять координаты точек

17

Контрольная работа №1 «Натуральные числа»

1


18-22

Геометрические фигуры

6

Различать и называть геометрические фигуры: точка, прямая, отрезок, луч, угол, прямоугольник, квадрат, многоугольник, окружность.

Распознавать на чертежах, рисунках в окружающем мире геометрические фигуры, конфигурации фигур (плоские, пространственные). Приводить примеры аналогов геометрических фигур в окружающем мире.

Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге.

Измерять с помощью инструментов и сравнивать длины отрезков. Строить отрезки заданной длины с помощью линейки и циркуля. Выражать один единицы измерения длины через другие.

23-26

Равенство фигур

4

Находить и называть равные фигуры. Построение равных фигур с помощью кальки. Изображать равные фигуры.

Исследовать и описывать свойства диагоналей прямоугольника, используя эксперимент, наблюдение, измерение, моделирование.

Решать задачи на нахождение длин отрезков, периметров многоугольников

27-32

Измерение углов

6

Измерять с помощью инструментов и сравнивать величины углов.Строить с помощью транспортира углы заданной величины. Находить на рисунке смежные и вертикальные углы.Исследовать сумму углов в треугольнике, используя эксперимент, наблюдение, измерение, моделирование.

33

Контрольная работа №2 «Геометрические фигуры»

1


Г2

Числовые и буквенные выражения

29


34-39

Числовые выражения и их значения

6

Читать и записывать числовые выражения. Выполнять вычисления с натуральными числами, находить значение выражения. Исследовать простейшие числовые закономер-ности, проводить числовые эксперименты. Анализировать текст задачи, моделировать условие с помощью схем, составлять план решения, записывать решения с пояснениями, оценивать полученный ответ, проверяя ответ на соответствие условию.

40-45

Площадь прямоугольника

6

Вычислять значения степеней. Находить значение числового выражения, содержащего степени чисел. Пользоваться таблицами квадратов и кубов чисел. Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и прямоугольника. Выражать одни единицы измерения площади через другие. Решать задачи на нахождение площадей квадратов и прямоугольников. Исследовать площадь прямоугольников с заданным периметром. Исследовать простейшие числовые закономерности, проводить.

46-49

Объем прямоугольного параллелепипеда

4

Изготавливать пространственные тела из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра и конуса.Соотносить пространственные фигуры с их проекциями на плоскость.Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.Решать задачи на нахождение объемов кубов и прямоугольных параллелепипедов

50

Контрольная работа №3 «Числовые выражения. Объем прямоугольного параллелепипеда»

1


51-56

Буквенные выражения

6

Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач. Вычислять числовое значение буквенного выражения при заданных значениях букв. Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения. Составлять буквенные выражения по условиям задач

57-61

Формулы и уравнения

5

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам. Использовать знания о зависимостях между величинами (скорость, время, расстояние; работа, производительность, время и т.п.) при решении текстовых задач.Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами действий.Анализировать текст задачи, моделировать условие с помощью схем, таблиц; составлять план решения, записывать решения с пояснениями, оценивать полученный ответ, проверяя ответ на соответствие условию

62

Контрольная работа №4 «Формулы и уравнения»

1


Г3

Доли и дроби

13


63-68

Понятие о долях и дробях

6

Моделировать в графической, предметной форме понятия и свойства, свя-занные с понятием обыкновенной дроби. Читать и записывать дроби. Строить на координатной прямой точки по заданным координатам, пред-ставленным в виде обыкновенных дробей; определять координаты точек .Решать задачи на части (нахождение части от целого и целого по его части)

69-71

Сложение и вычитание дробей с равными знаменателями. Умножение дроби на натуральное число

3

Складывать и вычитать дроби с равными знаменателями. Умножать дроби на натуральные числа.Исследовать закономерности с обыкновенными дробями, проводить числовые эксперименты.

72-74

Треугольники

3

Проводить высоты в произвольных треугольниках. Вычислять площади треугольников.Находить сумму углов треугольника

75

Контрольная работа №5 «Доли и дроби»

1


Г4

Действия с дробями

28


76-80

Дробь как результат деления натуральных чисел

5

Выполнять сложение и вычитание со смешанными числами.

Переводить неправильную дробь в смешанное число и обратно.

Решать задачи на дроби

81-84

Деление дроби на натуральное число. Основное свойство дроби

4

Делить дроби на натуральные числа. Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действия с обыкновенными дробями. Сокращать дроби

85-87

Сравнение дробей

3

Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Применять сравнение дробей при решении задач

88

Контрольная работа №6 «Дроби»

1


89-92

Сложение и вычитание дробей

4

Складывать и вычитать дроби с разными знаменателями.

Применять сложение и вычитание дробей при решении задач.

Исследовать закономерности с обыкновенными дробями, проводить числовые эксперименты

93-96

Умножение на дробь

4

Умножать натуральное число и дробь на дробь. Решение задач на нахождение дроби от числа. Применять приемы умножения на 5, на 25, на 50, на 125

97-102

Деление на дробь

6

Делить дроби и смешанные числа. Решать задачи на части (нахождение части от целого, целого по его известной части, какую часть составляет одна величина от другой).Выполнять все действия с дробями

103

Контрольная работа №7 «Действия с дробями»

1


Г5

Десятичные дроби

42


104-106

Понятие десятичной дроби

3

Записывать и читать десятичные дроби. Умножать и делить на 10, 100, 1000 и т.д.Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных. Строить на координатной прямой точки по заданным координатам, представленных в виде десятичных дробей; определять координаты точек

107-110

Сравнение десятичных дробей

4

Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями. Исследовать закономерности с десятичными дробями,

111-114

Сложение и вычитание десятичных дробей

4

Складывать и вычитать десятичные дроби.

Находить сумму разрядных слагаемых десятичных дробей.

115

Контрольная работа №8 «Сложение и вычитание десятичных дробей»

1


116-120

Умножение десятичных дробей

5

Умножать десятичные дроби.

Применять умножение десятичных дробей к решению задач

121-124

Деление десятичной дроби на натуральное число

4

Делить десятичные дроби на натуральное число. Решение задач с использованием деления десятичной дроби на натуральное число

125

Контрольная работа №9 «Умножение десятичных дробей. Деление десятичной дроби на натуральное число»

1


126-127

Бесконечные десятичные дроби

2

Читать и записывать десятичные периодические дроби. Находить десятичные приближения обыкновенных дробей. Выполнять прикидку и оценку вычислений. Проводить несложные исследования, связанные с десятичными дробями, опираясь на числовые эксперименты.

128-130

Округление чисел

3

Округлять десятичные дроби. Выполнять прикидку и оценку в ходе вычисления

131-133

Деление на десятичную дробь

3

Выполнение всех арифметических действий с десятичными и обыкновенными дробями. Решение задач с десятичными и обыкновенными дробями.

134

Контрольная работа №10 «Деление на десятичную дробь»

1


135-140

Процентные расчеты

6

Объяснять, что такое процент. Представлять проценты в дробях и дроби в процентах. Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Решать задачи на проценты

141-144

Среднее арифметическое чисел

4

Находить среднее арифметическое чисел. Выполнять практические работы по нахождению средней длины шага, среднего роста учеников класса, скорости чтения и др

145

Контрольная работа №11 «Проценты. Среднее арифметическое чисел»

1


Г6

Повторение.

22


146-152

Натуральные числа и нуль

7

Округлять натуральные числа. Пользоваться таблицами квадратов и кубов чисел. Пользоваться римской системой счисления.

Выполнять арифметические действия с натуральными числами и нулем

153-159

Обыкновенные дроби

7

Выполнять действия с обыкновенными дробями. Пользоваться справочными материалами, предметным указателем, списком дополнительной литературой учебника

160-166

Десятичные дроби

7

Выполнять действия с натуральными числами, обыкновенными и десятичными дробями

167

Итоговая контрольная работа

1


168-175

Резерв времени

8



hello_html_m1953e8b4.png

hello_html_5d800ff9.png

hello_html_5d800ff9.png

hello_html_m790275ff.png

hello_html_551e07c0.png

hello_html_41ed558.png

hello_html_41ed558.png

hello_html_3335e5a8.png

hello_html_3335e5a8.png


hello_html_m79bb5448.png

hello_html_m2d66cdb1.png

hello_html_425de6db.png

hello_html_425de6db.png

hello_html_327a6426.png

hello_html_327a6426.png

hello_html_mb96396f.png

hello_html_m2b8ea9bf.png

hello_html_m2d80d4d5.png

hello_html_m2d80d4d5.png

hello_html_m68fb9793.png

hello_html_m68fb9793.png

hello_html_22887512.png



hello_html_m4f556ba0.png


hello_html_m7239d8f3.png


hello_html_1ffb7a26.png

hello_html_1ffb7a26.png

hello_html_74aa92ee.png

hello_html_74aa92ee.png


hello_html_942b869.png

hello_html_m6a303eb8.png


hello_html_m6a303eb8.png

hello_html_mda392af.png

hello_html_581c817c.png


hello_html_m249c9a75.png

hello_html_46b4f4b1.png

hello_html_m5c0d2306.png

hello_html_m5c0d2306.png

hello_html_7018730c.png

hello_html_7018730c.png

hello_html_m7e3eef89.png

hello_html_1c3433a9.png

hello_html_1c3433a9.png

hello_html_m27ebac60.png

hello_html_m45bf3aa0.png


hello_html_110b1485.png

hello_html_110b1485.png

hello_html_m15b91319.png

hello_html_m11369a71.png

hello_html_m11369a71.png

hello_html_m40263f5f.png

hello_html_m40263f5f.png

hello_html_19fae0f9.png

hello_html_27f1929d.png

hello_html_27f1929d.png

hello_html_75bb1a74.png

hello_html_5ef2e86f.png

hello_html_m693a4573.png

hello_html_m693a4573.png

hello_html_2934f3a.png

hello_html_6bae739a.png

hello_html_6bae739a.png

hello_html_6c76846c.png

hello_html_6c76846c.png

hello_html_3a37a594.png

hello_html_m2d4d772e.png

hello_html_m2d4d772e.png

hello_html_m7ffbaeaa.png

hello_html_99a89fb.png


Учебно-методического и материально-технического обеспечения образовательной деятельности. hello_html_52723323.png

hello_html_52723323.png

hello_html_234760ea.png

hello_html_6d845456.png

hello_html_38abed1e.png

hello_html_m38253182.png

hello_html_m6649ccd.png

hello_html_526940cc.png

hello_html_526940cc.png

















Характеристика контрольно-измерительных материалов



Проверка знаний, умений и навыков учащихся осуществляется посредством устных и письменных форм.

Устные формы контроля: беседы вопрос — ответ, устные вычислительные навыки, чтение наизусть правил, формулировок формул, алгоритмов решения различных заданий, решения заданий у доски с последующим комментарием и другое.

Письменные формы: тесты на проверку понимания и запоминания материала, контрольные работы промежуточной и тематической проверки ЗУН, самостоятельные работы, дифференцированные задания, индивидуальные карточки, домашние задания.

Математические диктанты. В диктантах оцениваются не только знания ученика, но и умение его работать на слух и за ограниченное время. Математические диктанты учат рабо-тать быстро, а это в жизни очень пригодится. Оценки выставляются на усмотрение учителя и ученика.

Тесты предложены двух видов: на установление истинности утверждений и на выбор правильного ответа. Первые проверяют умение семиклассников обосновывать или опровергать утверждения. Такие тесты позволяют акцентировать внимание школьников на формулировках определений, свойств, законов и др. математических предложений, а также развивают точность, логичность и строгость их математической речи. На их выполнение отводится от 3 до 5 минут.

Тесты второго вида (с выбором ответа из трех или четырех вариантов) проверяют усвоение материала каждого пункта, в той последовательности, в которой он там представлен. Тесты содержат по 10 заданий, их можно предлагать целиком или частями, в зависимости от объема пройденного материала к моменту проведения. На выполнение каждого задания теста отводится около 1 минуты.

Оценка теста проводится следующим образом: верно выполнено 9-10 заданий – оценка «5», 7-8 заданий – оценка «4», 5-6 заданий – оценка «3», менее 5 заданий – оценка «2».

Самостоятельные работы содержат от 4 до 6 заданий и рассчитаны примерно на 15-20 минут. Для итогового повторения составлены тематические самостоятельные работы. Выставление оценок за самостоятельную работу проводится, когда материал достаточно отработан.

Контрольные работы составлены по крупным блокам материала или главам учебника, есть итоговая контрольная работа. В каждой работе по 5-6 заданий, первые три из них соответствуют уровню обязательной подготовки, последние задания, более продвинутые по уровню сложности. На выполнение контрольной работы отводится 30-35 минут, остальное время урока используется для разбора заданий, вызвавших трудности. С учетом конкретных условий учитель может вносить в тексты контрольных работ коррективы.

Домашние контрольные работы. Домашние контрольные работы составлены к каждому параграфу. Включают в себя по 4-5 заданий разного уровня сложности

Нормы оценки знаний, умений и навыков


Оценка письменных контрольных работ обучающихся по математике.


Ответ оценивается отметкой «5», если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок;

в решение нет математических ошибок (возможна одна не точность, описка, которая не является следствием незнания или непонимания учебного материала);

Отметка «4» ставится в следующих случаях:

работа выполнена полностью, но обоснования шагов решения недостаточны ( если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущена одна ошибка ил есть два – три недочета в выкладках, рисунках, чертежах или графиках ( если эти виды работ не являлись специальным объектом проверки);

Отметка «3» ставится, если:

допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.


Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что обучающийся на обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствует о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких – либо других заданий.


Оценка устных ответов обучающихся по математике


Ответ оценивается отметкой «5», если:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации про выполнение практического задания;

продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

отвечал самостоятельно, без наводящих вопросов учителя;

возможна одна две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложение допущены небольшие пробелы, не исказившие математическое содержание ответа;

допущены один – два недочета при освещение основного содержания ответа, исправленные после замечания учителя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя;

Отметка «3» ставится в следующих случаях:

неполно раскрыто содержание материала 9 содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала ( определены «Требования к математической подготовке учащихся» в настоящей программе по математике);

имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

ученик не справился с применением теории в новой ситуации при выполнение практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков;

Отметка «2» ставится в следующих случаях:

не раскрыто основное содержание учебного материала;

обнаружено не знание учеником большей или наиболее важной част учебного материала;

допущены ошибки в определение понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. Или ученик обнаружил полное не знание и непонимание изученного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу


Общая классификация ошибок.


При оценке знаний, умений и навыков учащихся следует учитывать все ошибки ( грубые и не грубые) и недочеты.

Грубыми считаются ошибки:

- незнание определения основных понятий, законов, правил, величин, единиц их измерения;


- незнание наименования единиц измерения;

- неумение выделить в ответе главное;- неумение применять знания, алгоритмы для решения задач;- неумение делать выводы и обобщения;

- неумение читать и строить графики;

- неумение пользоваться первоисточниками, учебником и справочниками потеря контроля или сохранение постороннего корня;

- отбрасывание без объяснений одного из них;

- разнозначные им ошибки;

- вычислительные ошибки, если они не являются опиской;

- логические ошибки;

К негрубым ошибкам следует отнести:

- неточности формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного- двух из этих признаков второстепенными;

- неточность графика;

- нерациональный метод решения задачи или недостаточно продуманный план ответа ( нарушение логики, подмена отдельных основных вопросов второстепенными);

- нерациональные методы работы со справочной и другой литературой;

- неумение решать задачи, выполнять задания в общем виде;

Недочетами являются:

- нерациональные приемы вычислений и преобразований;

- небрежное выполнение записей, чертежей, схем, графиков.


Критерии оценивания математических диктантов.

Оценки за работу выставляются с учетом числа верно решенных заданий .

Число верных ответов

Оценка


10 5

9,8 4

7,6,5 3

Менее 5 2


Критерии оценивания тестовых работ.


При оценке учитывается:

аккуратность работы

работа выполнена самостоятельно или с помощью учителя или учащихся.

Оценка «5» ставится за работу, выполненную практически полностью без ошибок. (90% — 100%)

Оценка «4» ставится, если выполнено 70 % до 90 % всей работы.

Оценка «3» ставится, если выполнено 50 %-до 70% всей работы.

Оценка «2» ставится, если выполнено менее 50 % всей работы.

Учебно-методическое обеспечение предмета

Наименование объектов и средств материально-технического обеспечения


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 28.02.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров173
Номер материала ДВ-492230
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх