Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Планирование по алгебре и геометрии 9 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Планирование по алгебре и геометрии 9 класс

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Алгебра 9 клас.doc

библиотека
материалов


Пояснительная записка


Рабочая программа по алгебре для 9 класса основной общеобразовательной школы составлена на основе

  • федерального компонента Государственного стандарта основного общего образования по математике (Стандарт основного общего образования по математике //Математика в школе. – 2004г., №4),

  • программы общеобразовательных учреждений «Алгебра 7-9 классы», составитель Т.А. Бурмистрова, (Москва: «Просвещение», 2009),

  • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2016-17 учебный год

  • инструктивно-методического письма «О преподавании учебного предмета Математика» в образовательных учреждениях Хабаровского края в 2016/2017 уч. г.»

Данная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Программа соответствует учебнику «Алгебра» для девятого класса образовательных учреждений /Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова, Москва: «Просвещение», 2009год, дидактические материалы по алгебре для 9 класса /Ю.Н.Макарычев, Н.Г.Миндюк, Л.М.Короткова, М.: Просвещение, 2010 год.

Преподавание ведется по первому варианту – 3 часа в неделю, всего 102 часа. В программе может произойти изменение количества часов по темам из-за проведения диагностических и тренировочных работ в формате ОГЭ в системе СтатГрад. Планируется проведение трех диагностических и четырех тренировочных работ. Возможны расхождения в количестве часов на изучение отдельных тем и количеством самостоятельных работ.

Основными средствами контроля являются тематические контрольные работы. Предусматривается проведение 8 контрольных работ, одна из них – итоговая.

Цели изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса обучающиеся овладевают приёмами вычислений на калькуляторе.

Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.









ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ


В результате изучения курса алгебры 9 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где кhello_html_294e0f7c.gif0, у=кх+b, у=х2, у=х3, у =hello_html_m4df644c6.gif, у=hello_html_m7b6670b5.gif, у=ах2+bх+с, у= ах2+n у= а(х - m) 2 ), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;

Элементы логики, комбинаторики, статистики и теории
вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.


СОДЕРЖАНИЕ ПРОГРАММЫ

Вводное повторение (5 ч)

Глава 1. Свойства функций. Квадратичная функция (21 ч)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Степенная функция.

Основная цель - расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квад­ратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функций у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида hello_html_m3c35fedc.gif, hello_html_m52523033.gif. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Глава 2. Уравнения и неравенства с одной переменной (14 ч)

Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.

Основная цель- систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной. Сформировать умение решать неравенства вида ах2 + bх + с >0 или ах2 + bх + с < 0, где а ≠ 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Обучающиеся знакомятся с некоторыми специальными приёмами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + bх + с >0 или ах2 + bх + с < 0, где а ≠ 0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы, её расположение относительно оси ОХ).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Глава 3. Уравнения и неравенства с двумя переменными. (17 ч)

Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель- выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

Глава 4. Прогрессии (14 часов)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель -дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

Глава 5. Элементы комбинаторики и теории вероятностей (12 ч)

Комбинаторное правило умножения. Перестановки, размеще­ния, сочетания. Относительная частота и вероятность случайного события.

Основная цель- ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

6. Повторение (19 ч)

Основная цель - повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.




Основное содержание


Содержание курса алгебры 9 класса включает следующие тематические блоки:


повторение алгебры за курс 7-8 классов


5

1

2

Квадратичная функция

21

2

3

Уравнения и неравенства с одной переменной


14

1

4

Уравнения и неравенства с двумя переменными


17

1

5

Арифметическая и геометрическая прогрессии


14

2

6

Элементы комбинаторики и теории вероятностей


12

1

7

повторение курса алгебры за 7-9 класс


19

1


иТОГО

102

1 + 8


Поурочное тематическое планирование
по алгебре в 9 классе


урока п/п

пункта

Тема урока

Дата

по плану

Дата по факту



Повторение курса алгебры 7 – 8 классов
(5 ч)



1


Рациональные выражения и их преобразование.




2


Решение уравнений.




3


Решение неравенств и их систем.




4


Квадратные корни. Степень с целым показателем.




5


Вводная контрольная работа.






Глава 1. Квадратичная функция (21 ч)





§1. Функции и их свойства (4 ч)



6

1

Функция. Область определения и область значений функции.




7

1

Функция. Нахождение области определения и области значений функции.




8

2

Свойства функций.




9

2

Свойства функций.






§2. Квадратный трехчлен (5 ч)



10

3

Квадратный трехчлен и его корни.




11

4

Разложение квадратного трёхчлена на множители.




12

4

Разложение квадратного трёхчлена на множители.




13

4

Применение теоремы о разложении квадратного трехчлена на множители для преобразования выражений.



14



Контрольная работа №1 по теме «Свойства функций и квадратный трёхчлен»






§3. Квадратичная функция и ее график (8 ч)



15

5

Функция у = ах 2, ее график и свойства.




16

5

Функция у = ах 2, ее график и свойства.




17

6

График функции у = ах 2 + n , у = а(х - m) 2




18

6

График функции у = ах 2 + n , у = а(х - m) 2




19

7

Построение графика квадратичной функции.




20

7

Построение графика квадратичной функции.




21

7

Построение графика квадратичной функции.




22

7

Построение графика квадратичной функции.






§4. Степенная Функция. Корень n-й степени (4 ч)



23

8

Функция у=хnи ее свойства.




24

9

Корень n-й степени.




25

9

Корень n-й степени.




26


Контрольная работа №2 по теме «Квадратичная функция».






Глава II. Уравнения и неравенства с одной переменной (14 ч)





§5. Уравнения с одной переменной (7 ч)



27

12

Целое уравнение и его корни.




28

12

Целое уравнение и его корни.




29

12

Целое уравнение и его корни.




30

13

Дробные рациональные уравнения.




31

13

Дробные рациональные уравнения.




32

13

Дробные рациональные уравнения.




33

13

Дробные рациональные уравнения.






§6. Неравенства с одной переменной (7 ч)



34

14

Решение неравенств второй степени с одной переменной.




35

14

Решение неравенств второй степени с одной переменной.




36

15

Решение неравенств методом интервалов.




37

15

Решение неравенств методом интервалов.




38

15

Решение неравенств методом интервалов.




39

15

Решение неравенств методом интервалов.




40


Контрольная работа № 3 по теме «Уравнения и неравенства с одной переменной»





Глава 3. Уравнения и неравенства с двумя переменными (17 ч)





§7. Уравнения с двумя переменными и их системы
(12 ч)



41

17

Уравнение с двумя переменными и его график.




42

17

Уравнение с двумя переменными и его график.




43

18

Графический способ решения систем уравнений.




44

18

Графический способ решения систем уравнений.




45

19

Решение систем уравнений второй степени.




46

19

Решение систем уравнений второй степени.




47

19

Решение систем уравнений второй степени.




48

20

Решение задач с помощью систем уравнений второй степени.




49

20

Решение задач с помощью систем уравнений второй степени.




50

20

Решение задач с помощью систем уравнений второй степени.




51

20

Решение задач с помощью систем уравнений второй степени.




52

20

Решение задач с помощью систем уравнений второй степени.






§8. Неравенства с двумя переменными и их системы

(5 ч)



53

21

Неравенства с двумя переменными.




54

21

Неравенства с двумя переменными.




55

22

Системы неравенств с двумя переменными.




56

22

Системы неравенств с двумя переменными.




57


Контрольная работа № 4 по теме « Уравнения и неравенства с двумя переменными»






Глава 4. Арифметическая и геометрическая прогрессии (14 ч)





§9. Арифметическая прогрессия (7 ч)



58

24

Последовательности.





59

25

Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии.




60

25

Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии.




61

26

Формула суммы первых n членов арифметической прогрессии.




62

26

Формула суммы первых n членов арифметической прогрессии.




63

26

Формула суммы первых n членов арифметической прогрессии.




64


Контрольная работа № 5 по теме «Арифметическая прогрессия»






§10. Геометрическая прогрессия (7 часов)



65

27

Определения геометрической прогрессии. Формула n-го члена геометрической прогрессии.




66

27

Определения геометрической прогрессии. Формула n-го члена геометрической прогрессии.




67

28

Формула суммы первых n членов геометрической прогрессии.




68

28

Формула суммы первых n членов геометрической прогрессии.




69

28

Формула суммы первых n членов геометрической прогрессии.




70

28

Формула суммы первых n членов геометрической прогрессии.




71


Контрольная работа №6 по теме «Геометрическая прогрессия»






Глава 5. Элементы комбинаторики и теории вероятностей (12 ч)





§11. Элементы комбинаторики (8 ч)



72

30

Примеры комбинаторных задач.




73

30

Примеры комбинаторных задач.




74

31

Перестановки.




75

31

Перестановки.




76

32

Размещения.




77

32

Размещения.




78

33

Сочетания.



79

33

Сочетания.






§12. Начальные сведения из теории вероятностей
(4 ч)



80

34

Относительная частота случайного события.




81

35

Вероятность равновозможных событий.




82


Решение задач.




83


Контрольная работа № 7 по теме « Элементы комбинаторики и теории вероятностей»






Повторение курса алгебры за 7- 9 кл.( 19 ч)



84


Нахождение значения числового выражения. Проценты.




85


Степень с целым показателем.




86


Разложение целого выражения на множители.




87


Преобразование выражений, содержащих степень и арифметический корень.




88


Тождественные преобразования рациональных алгебраических выражений.




89


Тождественные преобразования дробно-рациональных и иррациональных выражений.




90


Линейные, квадратные и биквадратные уравнения.




91


Дробно - рациональные уравнения.




92


Решение текстовых задач на составление уравнений.




93


Решение систем уравнений.




94


Решение текстовых задач на составление систем уравнений.




95


Линейные неравенства с одной переменной и системы линейных неравенств с одной переменной.




96


Неравенства и системы неравенств с одной переменной второй степени.



97


Решение неравенств методом интервалов.




98


Функция, ее свойства и график.




99


Чтение графиков функций. Кусочно-заданные функции.




100


Решение текстовых задач на проценты.




101


Итоговая контрольная работа № 7.




102


Анализ итоговой контрольной работы.




Литература


  1. Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра. Учебник для 9 класса общеобразовательных учреждений. М., «Просвещение», 2010.


  1. Бурмистрова Т.А. Алгебра 7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2008.


  1. Стандарт основного общего образования по математике//«Вестник образования» -2004 - № 12 - с.107-119.


  1. Жохов В.И., Макарычев Ю.Н., Миндюк Н.Г. Дидактические материалы по алгебре для 9 класса – М.: Просвещение, 2009


  1. Алгебра, сборник заданий для подготовки к государственной итоговой аттестации в 9 классе, Л.В.Кузнецова, С.В.Суворова, Е.А.Бунимович и др., М.: Просвещение, 2016 год.


  1. Алгебра. 9 класс. Итоговая аттестация-2016. Под редакцией Ф. Ф. Лысенко.- Ростов–на Дону: Легион, 2016.


  1. Дидактические материалы по алгебре для 9 класса, Ю.Н.Макарычев, Н.Г.Миндюк, Л.М.Короткова, М.: Просвещение, 2008 год.


  1. Алгебра. 9 кл.: поурочные планы по учебнику Ю.Н. Макарычева и др. / ават-сост. С.П. Ковалева. – Волгоград: Учитель, 2008


  1. Поурочное планирование по алгебре: 9 класс: к учебнику Ю.Н. Макарычева и др. / Т.М. Ерина. – М.: Издательства «Экзамен», 2008

























Выбранный для просмотра документ геометрия-9.docx

библиотека
материалов


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Настоящая программа по геометрии для основной общеобразовательной школы 9  класса составлена на основе федерального компонента государственного стандарта основного  общего образования , примерных программ по математике  ,примерной программы общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян,   В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008)

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Цель изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Общая характеристика учебного предмета

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе геометрии 9 класса  обучающиеся учатся выполнять действия над векторами, как направленными отрезками, что важно для применения векторов в физике; знакомятся с использованием векторов и метода координат при решении геометрических задач; развивается умение обучающихся применять тригонометрический аппарат при решении геометрических задач; расширяется знание обучающихся о многоугольниках; рассматриваются понятия длины окружности и площади круга и формулы для их вычисления; знакомятся обучающиеся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений; даётся более глубокое представление о системе аксиом планиметрии и аксиоматическом методе; даётся начальное представление телах и поверхностях в пространстве; знакомятся обучающиеся с основными формулами для вычисления площадей; поверхностей и объемов тел.

Количество учебных часов: в год – 68 часов (2 часа в неделю, всего 68 часов)

Формы промежуточной и итоговой аттестации: контрольные работы, самостоятельные работы, тесты.

Уровень обучения – базовый.

Срок реализации рабочей учебной программы – один учебный год.

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

ОСНОВНОЕ  СОДЕРЖАНИЕ

Вводное повторение

Глава 9,10.  Векторы. Метод координат.

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число):

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Глава 11.   Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольники (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение для векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

Глава 12. Длина окружности и площадь круга.

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2л-угольника, если дан правильный л-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

Глава 13. Движения.

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движении основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

Повторение. Решение задач.

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса.

Требования к уровню подготовки обучающихся  в 9 классе

В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овладевали умениями общеучебного характераразнообразными способами деятельностиприобретали опыт:

        планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

        решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

        исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

        ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

        проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

        поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса геометрии 9 класса обучающиеся должны:

знать/понимать        

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

ГЕОМЕТРИЯ

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).






















Учебно-тематическое планирование

п/п

Наименование разделов и тем

Всего

часов

В том числе на:

примерное количество часов на самостоятельные работы учащихся






уроки

лабораторно-практические работы

контрольные работы


1

Повторение курса 8 класса

2




1

2

Векторы

12

11


1

4

3

Метод координат

10

9


1

3

4

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

14

13


1

4

5

Длина окружности и площадь круга

12

11


1

3

6

Движение

10

9


1

3

7

Повторение курса планиметрии

8

7


1

2


Итого:

68

62


6

20











Учебно-методическое обеспечение

п/п

Содержание

Класс

Автор

Издательство

Год издания

1

Программа

9

Т.А. Бурмистрова:

М.: Просвещение

2008

2

Учебник (основной)

9

Геометрия:   учеб,   для   7—9 кл. Л. С. Атанасян,   В. Ф. Бутузов, С. В. Кадомцев и др.

М.: Просвещение

2004-2008.

3

Учебные пособия: задачники, сборники дидактических материалов, пособия по проведению практических и лабораторных работ и т.д.

9

Зив Б. Г. Геометрия:   дидакт.   материалы  для   9 кл. / Б. Г. Зив, В. М. Мейлер.  

. — М.: Просвещение

2004—2008.















Календарно-тематическое планирование учебного материала

по геометрии 9 класса


п/п

дата

Тема урока

Тип урока

Элементы содержания

Требования к уровню подготовки обучающихся

Вид контроля, самост.

работы

Домашнее задание

план

факт

1


2

3

4

5

6

7


Вводное повторение (2 часа)







1



Повторение

УП

Повторение основного теоретического материала 8 класса и решение задач

Знать: основной теоретический материал за курс геометрии 8 класса.

Уметь: решать соответствующие задания

Теоретич. тест с послед. самопроверкой, решение задач по гот.черт.

Задачи по готовым чертежам

2



Повторение

УП

Повторение основного теоретического материала 8 класса и решение задач

Знать: основной теоретический материал за курс геометрии 8 класса.

Уметь: решать соответствующие задания

Проверка д/з, самот. решение  задач

Задачи на повторе-ние

Глава IX. Векторы (12 часов)








3



Понятие вектора. Равенст-во векторов

УИНМ

Понятие вектора, его начала и конца, нулевого вектора, длины вектора, коллинеарных, сонаправленных, противоположно направленных и равных векторов. Изображение и обозначение векторов.

Знать: понятия вектора, его начала и конца, нулевого вектора, длины вектора, коллинеарных, сонаправ-ленных, противоположно направленных и равных векторов.

Уметь: изображать и обозначать векторы; решать простейшие задачи по теме

Проверка д/з, самот. решение  задач

П. 76-77, вопр. 1-5.

739, 741, 746, 747

4



Откладывание вектора от дан-ной точки

УЗИМ

Проверка усвоения изученного материала. Обучение откладыванию вектора от одной точки. Решение задач

Знать: понятия вектора, его начала и конца, нулевого вектора, длины вектора, коллинеарных, сонаправ-ленных, противоположно направленных и равных векторов.

Уметь: изображать и обозначать векторы; откладывать вектор от данной точки; решать простейшие задачи по теме

Проверка д/з, инд.работа по карточкам, самот. решение  задач

П.76-78, вопр. 1-6, №748, 749, 752

5



Сумма двух векторов. Законы сложения векторов. Правило параллелограмма

К.У.

Понятие суммы векторов. Рассмотрение законов сложения двух векторов (правило треугольника и правило параллелограмма). Построение вектора, равного сумме двух векторов с использованием правил сложения векторов.

Знать: определение суммы двух векторов; законы сложения двух векторов (правило треугольника и правило параллелограмма).

Уметь: строить вектор, равный сумме двух векторов, используя пра-вила сложения векторов.

Проверка д/з,

с/р обуч. характера.

П.79-80, вопр.7-10.

753, 759(б), 763(б,в).

РТ №117

6



Сумма нескольких векторов

К.У.

Понятие суммы трех и более векторов. Построение вектора, равного сумме нескольких векторов, с исп. правила многоугольника. Решение задач

Знать: пон суммы трех и более векторов.

Уметь: строить вектор, равный сумме нескольких векторов, с исп. правило многоуг.; решать простейшие задачи по теме

Проверка д/з, инд. работа по карточкам, самост. решение задач

П. 81, вопр.11,

755, 760, 761

РТ №118

7



Вычитание векторов

К.У.

Понятия разности двух векторов, противоположных векторов. Построение вектора, равного разности двух векторов. Теорема о разности двух векторов. Теорема о разности двух векторов. Решение задач

Знать: определения разности двух векторов; теорему о разности двух векторов с док-вом.

Уметь: строить вектор, равный разности двух векторов; решать простейшие задачи по теме

Проверка д/з, самост решение задач

П.82, вопр.12,13.

757, 763 (а,г), 765, 767 (устно)

РТ №124

8



Решение задач «Сложение и вычитание векторов»

УЗИМ

Закрепление теоретического материала по теме. Решение задач

Знать: определение суммы двух векторов; законы сложения двух векторов (прав. треугольника и правило параллелограмма); понятия суммы трех и более векторов, противоположных векторов; теорему о разности двух векторов.

Уметь: строить вектор, равный сумме двух векторов, используя правила сложения

Теоретич. опрос, проверка д/з.

С/р

769, 770, 772

РТ № 135, 126

9



Умножение вектора на число

УИНМ

Понятие умножения вектора на число. Свойства умножения вектора на число. Закрепление изученного материала.

Знать: понятие умножения вектора на число; свойства умножения вектора на число.

Уметь: строить вектор, умноженный на число; решать задачи по теме

Проверка д/з, самост решение задач

П.83, вопр.14-17

781(б,в), 780 (а), 755, 776 (а,в,е)

10



Умножение вектора на число

УЗИМ

Закрепление теории об умножении вектора на число. Решение задач

Знать: понятие умножения вектора на число; свойства умножения вектора на число.

Уметь: строить вектор, умноженный на число; решать задачи по теме

Теоретич. опрос,

Инд.работа по карт, самост. решение задач,.

С/р

782, 784(б), 787

РТ № 131

11



Применение векторов к решению задач

К.У.

Работа над ошибками. Применение векторов к решению геометрических задач на конкретных примерах. Совершенствование навыков выполнения действий над векторами

Знать: определения сложения и вычитания векторов, умножения вектора на число; свойства действий над векторами.

Уметь: применять векторы к решению геометрических  задач; выполнять действия над векторами

Проверка д/з, самост решение задач

П.84,

789-791, 788 (устно)

12



Средняя линия трапеции

К.У.

Понятие средней линии трапеции. Теорема о средней линии трапеции. Решение задач на использование свойств средней линии трапеции.

Знать: понятие средней линии трапеции; теорему о средней линии трапеции с доказательством; свойства средней линии трапеции.

Уметь: решать задачи по теме

Самост решение задач

П.85

793, 795,798

РТ №137

13



Решение задач

У.П.

Систематизация ЗУН по теме. Совершенствование навыков решения задач на применение теории векторов. Подготовка к к/р

Знать: : определения сложения и вычитания векторов, умножения вектора на число; свойства действий над векторами; понятие средней линии трапеции; теорему о средней линии трапеции с доказательством; свойства средней линии трапеции.

Уметь: применять векторы к решению геометрических  задач; выполнять действия над векторами; решать задачи по теме.

Теоретич тест с последующей самопроверкой, самост. решение задач

Задачи контрольной работы подготовительного варианта

14



Контрольная работа 1. «Векторы»

Урок контроля ЗУН

Проверка знаний, умений, навыков по теме


Контроль-ная работа

Задания нет

Глава X. Метод координат (10 часов)








15



Разложе-ние вектора по двум данным неколли-ниарным векторам

УИНМ

Работа над ошибками. Лемма о коллинеарных векторах. Доказательство теоремы о разложении вектора по двух неколли-неарным векторам. Реше-ние задач на применение теоремы о разложении вектора по двум неколл-неарным векторам

Знать: лемму о коллинеарных векторах и теорему о разложении вектора по двух неколлине-арным векторам с доказательствами.

Уметь: решать задачи по теме

Самост. решение задач

П.86, вопр.1-3.

914(б,в),915

РТ №4

16



Координаты вектора

К.У.

Понятие координат вектора. Правила действий над веторами с заданными координатами. Решение простейших задач

Знать: понятие координат вектора; правила действий над векторами с заданными координатами.

Уметь: решать простейшие задачи методом координат

Теоретич. опрос, проверка д/з.

Самот. решение задач

П.87, вопрс.7-8

918, 926(б,г), 919

РТ №6,7

17



Простейшие зада-чи в коорди-натах

К.У.

Совершенствование навыков решения задач методом координат. Простейшие задачи в координатах, их применение при решении задач

Знать: формулы для нахождения координат середины отрезка, длины вектора по его координатам, расстояния между двумя точками.

Уметь: решать простейшие задачи методом координат

Проверка д/з, с/р провероч-ного характера

П. 88-89, вопр.9-13

930. 932, 936

РТ №11

18



Простейшие задачи в координатах

УЗИМ

Совершенствование навыков решения задач в координатах

Знать: понятие координат вектора; правила действий над векторами с заданными координатами; формулы для нахождения координат середины отрезка, длины вектора по его координатам, расстояния между двумя точками.

Уметь: решать простейшие задачи методом координат

Проверка д/з, инд. работа по карточкам, самост. решение задач

944, 949а,

РТ №16,17

19



Решение задач методом коорди-нат

УЗИМ

Совершенствование навыков решения задач в координатах

Знать: понятие координат вектора; правила действий над векторами с заданными координатами; формулы для нахождения координат середины отрезка, длины вектора по его координатам, расстояния между двумя точками.

Уметь: решать простейшие задачи методом координат

Проверка д/з, теоретич. опрос с самопроверкой,  инд. работа по карточкам, самост. решение задач, с/р

946, 950б, 951б

РТ №18

20



Уравне-ние окружности

К.У.

Понятие уравнения линии на плоскости. Вывод уравнения окружности. Решение задач методом координат

Знать: понятие уравнения линии на плоскости; вывод уравнения окружности.

Уметь: решать задачи по теме

Проверка д/з, матем. диктант, самост. решение задач

П.90-91, вопрс.15-17

959б,г, 962, 964а, 966б,г

21



Уравне-ние прямой

К.У.

Работа над ошибками. Вывод уравнения прямой. Применение уравнения прямой при решении задач

Знать: вывод уравнения прямой.

Уметь: решать задачи по теме

Теоретич. тест, инд работа по карточкам, самост решение задач

П.92, вопр.18-20

972в, 974, 976, 977

22



Уравнение прямой и окруж-ности. Решение задач

К.У.

Решение задач на применение уравнений окружности и прямой. Закрепление теории

Знать: формулы  уравнений окружности и прямой.

Уметь: решать задачи по теме

С/р

978, 979, 969б

РТ №23

23



Урок подготовки к к/р

У.П.

Систематизация ЗУН

Знать: понятие координат вектора; правила действий над векторами с заданными координатами; формулы для нахождения координат середины отрезка, длины вектора по его координатам, расстояния между двумя точками; уравнения окружности и прямой.

Уметь: решать простейшие задачи методом координат

Теоретич тест, самост решение задач

990, 992, 993, 996

24



К/р №2

Метод коорди-нат

Урок контроля ЗУН

Проверка ЗУН по теме


Контроль-ная работа

Задания нет

Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

(14 часов)








25



Синус, косинус, тангенс угла

УИЗМ

Понятия синуса, косинуса, тангенса для углов от 00 до 1800. Основное тригонометрическое тождество. Формулы для вычисления координат точки. Формулы приведе-ния hello_html_m36e7885e.png,  hello_html_m36019cf6.pnghello_html_m1932ce3e.png.

Знать: понятия синуса, косинуса, тангенса для углов от 00 до 1800; основ-ное тригонометрическое тождество; формулы для вычисления координат точки; формулы приведе-ния hello_html_m36e7885e.png,  hello_html_m36019cf6.pnghello_html_m1932ce3e.png.

Уметь: решать задачи по теме

Самост решение задач

П. 93-95, вопр. 1-6.

1011, 1014, 1015б

РТ №32

26



Синус, косинус, тангенс угла

К.У.

Совершенствование навы-ков нахождения синуса, косинуса, тангенса для углов от 00 до 1800. Использование основного тригонометрического тождества и формул для вычисления координаты точки

Знать: понятия синуса, косинуса, тангенса для углов от 00 до 1800; основ-ное тригонометрическое тождество; формулы для вычисления координат точки; формулы приведе-ния hello_html_m36e7885e.png,  hello_html_m36019cf6.pnghello_html_m1932ce3e.png.

Уметь: решать задачи по теме

Теоретич. тест, инд работа по карточкам, самост решение задач

1017(а,в); 1018 (б,г); 1019 (а,в).

РТ №34

27



Синус, косинус, тангенс угла

УЗИМ

Совершенствование навы-ков нахождения синуса, косинуса, тангенса для углов от 00 до 1800. Использование основного тригонометрического тождества и формул для вычисления координаты точки

Знать: понятия синуса, косинуса, тангенса для углов от 00 до 1800; основ-ное тригонометрическое тождество; формулы для вычисления координат точки; формулы приведе-ния hello_html_m36e7885e.png,  hello_html_m36019cf6.pnghello_html_m1932ce3e.png.

Уметь: решать задачи по теме

Решение задач по гот.черт-м, проверка д-з, с/р

РТ 35 и задачи самост. работы

28



Теорема о площади треуголь-ника

К.У.

Работа над ошибками. Теорема о площади тре-угольника, ее применение при решении задач

Знать: теорему о площади треугольника с доказательством.

Уметь: решать задачи по теме

Самост решение задач

П.96, вопр.7

1021, 1023, 1020(б,в).

РТ №40

29



Теоремы синусов и косину-сов

К.У.

Теоремы синусов и косинусов, их применение при решении задач. Закрепление теоремы о площади треугольника и совершенствование ее применения при решении задач

Знать: теоремы синусов и косинусов с доказательством.

Уметь: решать задачи по теме

Теоретич. опрос, проверка д/з., инд работа по карточкам.

Самот. решение задач

П.97-98, вопр. 8-9

1025б,д,ж,и)

РТ №42

30



Решение треуголь-ников

УЗИМ

Решение задач на использование теорем синусов и косинусов

Знать: теоремы синусов и косинусов.

Уметь: решать задачи по теме

Теорет опрос, проверка д/з, инд работа по карточкам, самост решение задач

П.99, вопр.10-11

1027, 1028, 1031

РТ №45

31



Решение треуголь-ников

К.У.

теорема синусов, ее применение при решении задач. Задачи на решение треугольников.

Знать: теоремы синусов и косинусов .

Уметь: решать задачи по теме

Теорет опрос, проверка д/з, инд работа по карточкам, самост решение задач

1033, 1034

РТ №47,48

32



Измерительные работы

К.У.

Методы измерительных  работ на местности. Применение теорем синусов и косинусов при измерительных работ

Знать: теоремы синусов и косинусов .

Уметь: решать задачи по теме

Проверка д/з, самост. решение задач

П. 100, вопр.11-12

1060(а,в)

1061(а,в), 1038

33



Обобщ. урок по теме: «Соотношения между сторонами и углами треугольника»

УЗИМ

Закрепление ЗУН учащихся по теме. Устранение знаниях  в

Знать: теорему о площади треугольника;

теоремы синусов и косинусов.

Уметь: решать задачи по теме

Теорет тест, с послед. самопроверкой, с/р

1057, 1058, 1062, 1063

34



Угол между вектора-ми. Ска-лярное произве-дение векторов.

К.У.

Понятие угла между векторами. Скалярное произведение векторов при решении задач.

Знать: понятие угла между векторами; определение скалярного произведения векторов .

Уметь: решать задачи по теме

Самостоятельное решение задач

П.101-102

Вопр.13-16

1040, 1042

РТ №50,53

35



Скаляр-ное произве-дение векторов в коорди-натах. Свойства скалярно-го произ-ведения

К.У.

Теорема о скалярном произведении двух векторов в координатах и ее свойства. Свойства скалярного произведения. Решение задач на применение скалярного произведения в координатах.

Знать: теорему о скалярном произведении векторов в координатах с доказательством и ее свойства; свойства скалярного произведения.

Уметь: решать задачи по теме

Проверка д/з, самостоятельное решение задач

П. 103-104

Вопр.17-20

1044б, 1047б

РТ № 54, 56

36



Скаляр-ное про-изведение и его свойства

УЗИМ

Закрепление знаний при решении задач

Знать: определение скаляр-ного произведения векто-ров, теорему о скалярном произведении двух векто-ров в координатах с дока-зательством и ее свойства; свойства скалярного произведения

Уметь: решать задачи по теме

Проверка д/з, инд работа по карт, самост решение задач

1049, 1050, 1052,

РТ №59

37



Обобщающий урок по теме

УП

Закрепление и проверка знаний обучающихся. Подготовка к к/р

Знать: определение скаляр-ного произведения векто-ров, теорему о скалярном произведении двух векто-ров в координатах с дока-зательством и ее свойства; свойства скалярного произведения ; теорему о площади треугольника; теоремы синусов и косинусов.

Уметь: решать задачи по теме


Задачи подготовительного варианта

38



К/р 3

Соотноше-ния между сторонами и углами треугольника. Скалярное произведе-ние векторов

Урок контроля ЗУН

Проверка ЗУН


Контроль-ная работа

Задания нет

Глава XII. Длина окружности и площадь круга (12 часов)








39



Правиль-ный многоу-гольник

УИНМ

Работа над ошибками. Повторение ранее изученного материала о сумме углов выпуклого многоугольника, свойстве биссектрисы угла, теоремы об окружности, описанной около треугольника. Формирование понятия правильного многоуголь-ника и связанных с ним понятий. Вывод формулы для вычисления угла правильного n-угольника

Знать: понятие правиль-ного многоугольника и связанных с ним понятий; вывод формулы для вычисления угла правильного n-угольника

Уметь: решать задачи по теме

Самост решение задач

П.105, вопр 1-2

1081в,г; 1083б,г

РТ № 61, 62

40



Окруж-ность, описан-ная около прав. многоуг. и вписан-ная в прав. многоуг.

К.У.

Повторение ранее изученных понятий, связанных с темой. Формулирование и доказательства теорем об окружностях: описанной около правильного многоуг. и вписанной в правильный многоуг.

Знать: теоремы об окружностях: описанной около правильного многоуг. и вписанной в правильный многоуг. с доказательствами.

Уметь: решать задачи по теме

Теоретич. опрос, инд работа по карт, самост решение задач

П.106-1-7

Вопр.3-4

1084(б,г,д,е), 1085, 1086

41



Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности

К.У.

Вывод формул, связывающих радиусы вписанной и описанной окружностей со стороной правильного многоугольника. Решение задач

Знать: вывод формул, связывающих радиусы вписанной и описанной окружностей со стороной правильного многоугольника.

Уметь: решать задачи по теме

Теоретич. опрос, инд работа по карт задачочкам, самост решение

П. 108, вопр. 5-7

1087 (3,5),1088 (2,5), 1093

РТ № 67,68

42



Решение задач по теме «Правиль-ный многоугольник»

К.У.

Способы построения правильных многоугольников. Решение задач на использование формул для вычисления площади правильного многоугольника, его стороны и радиусов вписанной и описанной окружностей

Знать: способы построения правильных многоугольников; решение задач на использование формул для вычисления площади правильного многоугольника, его стороны и радиусов вписанной и описанной окружностей

Уметь: строить правильные многоугольники; решать задачи по теме

Теоретич. опрос, с/р

П. 109

Вопр.6-7

1094(а,г) 1095,

РТ № 71

43



Длина окружности

К.У.

Вывод формулы, выражающей длину окружности через ее радиус и формулы для вычисления длины дуги с заданной градусной мерой

Знать: вывод формулы, выражающей длину окружности через ее радиус и формулы для вычисления длины дуги с заданной градусной мерой

Уметь: решать задачи по теме

Проверка д/з, самост решение задач

П.110, вопр. 8-10

1104(б,в), 1105 (а,в)

44



Длина окружности. Решение задач

УЗИМ

Решение задач на вычисление длины окружности и ее дуги

Знать: формулу, выражающую длину окружности через ее радиус; формулу  для вычисления длины дуги с заданной градусной мерой

Уметь: решать задачи по теме

Проверка д/з, с/р

1106, 1107, 1109

РТ № 77

45



Площадь круга и кругового сектора

К.У.

Работа над ошибками. Вывод ш площади круга и кругового сектора и их применение при решении задач

Знать: вывод формул площади круга и кругового сектора

Уметь: решать задачи по теме

Проверка д/з, инд. работа по карточкам, самост решение задач

П.111-112

Вопр.11-12

1114, 1116(а,б), 1117

46



Площадь круга и кругового сектора. Решение задач

УЗИМ

Решение задач на вычисление площади круга и сектора

Знать: формулы площади круга и кругового сектора.

Уметь: решать задачи по теме

Теоретич. опрос, самост. решение задач

1121, 1123, 1124,

РТ № 83

47



Обобщающий урок по теме

УЗИМ

Закрепление и проверка знаний

Уметь: решать задачи по теме

Теоретич. тест с послед самопроверкой, проверка д/з; с/р

1125, 1127, 1128

48



Решение задач по теме

УЗИМ

Работа над ошибками. Систематизация теоретических знаний по темам «Правильные многоугольники» и «Длина окружности. Площадь круга.»

Уметь: решать задачи по теме

Теоретич. тест с послед самопроверкой, самост решение задач

1129(а,в) 1130, 1131, 1135

49



Урок подготовки к к/р

УП

Закрепление и проверка знаний обучающихся. Подготовка к к/р

Знать: способы построения правильных многоуголь-ников; формулы для вычисления площади правильного многоуголь-ника, его стороны и ра-диусов вписанной и описанной окружностей; формулу, выражающей

 длину окружности через ее радиус; формулу для вычисления длины дуги с заданной градусной мерой; формулы площади круга и кругового сектора.

Уметь: строить правильные многоугольники; решать задачи по теме


1137-1139

50



К/р 4

Длина окружности. Площадь круга

Урок контро-ля ЗУН

Проверка ЗУН


Контроль-ная работа

Задания нет

Глава XIII. Движения (10 часов)








51



Отражение плоскости на себя. Понятие движения

УИНМ

Работа над ошибками. Понятие отображения плоскости на себя и движения. Осевая и центральная симметрия

Знать: понятие отображения плоскости на себя и движения; осевая и центральная симметрия

Уметь: решать задачи по теме


П.113-114

Вопр.1-6

1148а, 1149б

РТ № 86, 87

52



Свойства движения

К.У.

Свойства движений, осевой и центральной симметрии. Закрепление знаний при решении задач

Знать: свойства движений, осевой и центральной симметрии.

Уметь: решать задачи по теме

Теоретич опрос, индж работа по карточкам, самост решение задач

П.114-115 вопр.7-13

1150 (устно), 1153б, 1152а, 1159

РТ № 88

53



Решение задач по теме: «понятие движения. Осевая и центральная симметрия»

УЗИМ

Закрепление теоретичес-ких знаний по изучаемой теме и их использование при решении задач. Совер-шенстование навыков решения задач на построение фигур при осевой и центральной симметрии

Знать: определения и свойства движений, осевой и центральной симметрии.

Уметь: решать простейшие задачи по теме

Теоретич опрос, проверка д/з, с/р

№№1155, 1156, 1160, 1161

54



Параллель-ный перенос

К.У.

Понятие параллельного переноса. Доказательство того, что параллельный перенос есть движение. Решение задач с использованием параллельного переноса.

Знать: понятие параллельного переноса; доказательство того, что параллельный перенос есть движение.

Уметь: решать простейшие задачи по теме

Самостоя-тельное решение задач

П.116 вопр.14-15

1162, 1163, 1165

55



Поворот

К.У.

Понятие поворота. Построение геометрических фигур с использованием поворота. Доказательство того, что поворот есть движение.

Знать: понятие поворота; правила построение геометрических фигур с использованием поворота; доказательство того, что поворот есть движение.

Уметь: решать простейшие задачи по теме

Проверка д/з, инд работа по карт, самост. решение задач

П.117, вопр.16-17

1166(б), 1167

РТ № 91

56



Решение задач по теме: «Парал-лельный перенос. Поворот.»

УЗИМ

Закрепление теоретичес-ких знаний по изучаемой теме. Совершенствование навыков решения задач на построение с использованием параллельного переноса и поворота.

Знать: понятие парал-лельного переноса и пово-рота; правила построения геометрических фигур с использованием поворота и параллельного переноса.

Уметь: решать простейшие задачи по теме

Теоретич. опрос, с/р

Вопр.1-17

1170, 1171

57



Решение задач

УЗИМ

Закрепление теоретичес-ких знаний по изучаемой теме. Совершенствование навыков решения задач на построение с применением свойств движений.

Знать: понятия осевой и центральной симметрий, параллельного переноса и поворота; правила построения геометрических фигур с использованием осевой и центральной симметрий, поворота и параллельного переноса

Уметь: решать простейшие задачи по теме

Теоретич опрос, проверка д/з, с/р

1772, 1774(б), 1183

58



Решение задач

УЗИМ

Совершенствование навыков решения задач на построение с применением свойств движений.

Знать: понятия осевой и центральной симметрий, параллельного переноса и поворота; правила построения геометрических фигур с использованием осевой и центральной симметрий, поворота и параллельного переноса

Уметь: решать простейшие задачи по теме

Проверка д/з, самост. решение задач

1175, 1176, 1178

59



Урок подготовки к к/р

УП

Подготовка к контрольной работе

Знать: понятия движения, осевой и центральной симметрии, параллельного переноса и поворота; правила построения геометрических фигур с использованием осевой и центральной симметрии, поворота и параллельного переноса

Уметь: решать простейшие задачи по теме

Самост решение задач

Задачи подготов. Варианта

60



К/р 5

«Движе-ния»

Урок контро-ля ЗУН

Проверка ЗУН


Контроль-ная работа

Задания нет

Повторение курса планиметрии (8 часов)








61



Об аксиомах планимет-рии

УИНМ

Ознакомление с системой аксиом, положенных в основу изучения курса геометрии. Представление об основных этапах развития геометрии

Знать: аксиомы, положенные в основу изучения курса геометрии; основные этапы развития геометрии


Повт. гл I, вопр.1-21 (с.25-26), гл. III, вопр.1-15 (с.68)

62



Повторение по темам:

Начальные геометричские сведе-ния, Параллель-ные прямые

УП

Систематизация теорети-ческих  знаний по теме урока. Совершенствование навыков решения задач

Знать: свойства длин отрез-ков, градусных мер угла; свойство измерения углов; свойства смежных и вертикальных углов, перпендикулярных прямых; признаки и свойства параллельности двух прямых

Уметь: решать простейшие задачи по теме

Теоретич. тест с последующей самопроверкой, самост решение задач по готовым чертежам

Задачи на повторе-ние из дидакт. материала

63



Повторение темы: Треугольники

УП

Систематизация теорети-ческих  знаний по теме урока. Совершенствование навыков решения задач

Знать: признаки равенства треугольников, прямоугольных треугольников; теорему о сумме углов треугольник и ее следствия; теоремы о соотношениях между сторонами и углами треугольника; теорему о неравенстве треугольника; свойства прямоугольных треугольников; признак прямоугольного треугольника и свойство медианы прямоугольного треугольника; свойства медиан, биссектрис и высот треугольника; свойства равнобедренного и равностороннего треугольников.

Уметь: решать простейшие задачи по теме

Теоретич. тест с последующей самопроверкой, самост решение задач по готовым чертежам

Задачи на повторе-ние из дидакт. материала

64



Повторение темы: Треугольники

УП

Систематизация теорети-ческих  знаний по теме урока. Совершенствование навыков решения задач

Знать: признаки подобия треугольников; теорему об отношении площадей подобных треугольников; теорему о средней линии треугольника; свойство медиан треугольника; теорему о пропорциональных отрезках в прямоугольном треугольнике; свойство высоты прямоугольного треугольника, проведенной из вершины прямого угла;теоремы синусов и косинусов; теорему Пифагора.

Уметь: решать задачи по теме

Проверка д/з,  самост. решение задач

Задачи на повторе-ние из дидакт. материала

65



Повторение темы: Окруж-ность

УП

Систематизация теорети-ческих  знаний по теме урока. Совершенствование навыков решения задач

Знать: свойство касательной и ее признак; свойство отрезков касательных, проведенных из одной точки; теорему о вписанном угле и ее следствия; теорему об отрезках пересекающихся хорд; свойство биссектрисы углы и его следствия; теоремы об окружностях: вписанной в треугольник и описанной около треугольника; свойства описанного и вписанного четыреугольников; формулы для  вычисления радиусов вписанной и описанной окружностей; формулу, выражающую длину окружности через ее радиус; формулу для вычисления длины дуги с заданной градусной мерой; формулы площади круга и кругового сектора.

Уметь: решать простейшие задачи по теме

Теоретич. тест с последующей самопроверкой, самост решение задач по готовым чертежам

Задачи на повторе-ние из дидакт. материала

66



Повторение темы: Четыреху-гольники, Многоугольники

УП

УП

Систематизация теорети-ческих  знаний по теме урока. Совершенствование навыков решения задач

Знать: сумму углов выпуклого многоугольника, четырехугольника; определения, свойства и признаки прямоугольника, параллелограмма, трапеции, ромба и квадрата; теорему Фалеса; формулы для вычисления площади квадрата, прямоугольника, треугольника, параллелограмма, трапеции, ромба.

Уметь: решать задачи по теме

Теоретич. тест с последующей самопроверкой, самост решение задач по готовым чертежам

Задачи на повторе-ние из дидакт. материала

67



Повторение темы: Векторы. Метод координат. Движение

УП

Систематизация теорети-ческих  знаний по теме урока. Совершенствование навыков решения задач

Знать: определения сложения и вычитания векторов, умножения вектора на число; свойства действий над векторами; понятие координат вектора; правила действий над векторами с заданными координатами; формулы для нахождения координат середины отрезка, длины вектора по его координатам, расстояния между двумя точками; уравнения окружности и прямой.

Уметь: решать задачи по теме

самост решение задач по готовым чертежам

Задачи на повторе-ние из дидакт. материала

68



К/р 6

итоговая

Урок контро-ля ЗКН

Проверка ЗУН по курсу геометрии за 7-9 классы

Знать: основной теоретический материал за курс планиметрии по про-грамме для общеобразо-вательных школ.

Уметь: решать задачи по программе

Контрольный тест

Задания нет



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 13.10.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров112
Номер материала ДБ-257760
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх