Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Планирование темы "Квадратные уравнения"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Планирование темы "Квадратные уравнения"

библиотека
материалов




Утверждено на заседании ОД

от «05» июня 2015 г.

Протокол № 12 от « 5» июня 2015г.

Руководитель ОД

«Математика, информатика и ИКТ»

Хорошая В.Н _______________




Министерство обороны Российской Федерации

Федеральное государственное казенное общеобразовательное учреждение

«Московское суворовское военное училище

Министерства обороны Российской Федерации»




Отдельная дисциплина

«Математика, информатика и ИКТ»


Методическая разработка по теме:

«квадратные уравнения»





пРЕПОДАВАТЕЛЬ од

«МАТЕМАТИКА, икт И ИНФОРМАТИКА»

чИРИКОВА Е.е.



Г. МОСКВА

2015




Аннотация.



Цель данной работы показать один из способов обобщения и систематизации знаний по теме «Квадратные уравнения» в курсе алгебры 8 класса


Задачи:

  1. Проанализировать формирование умения решать квадратные уравнения до изучения данного модуля и определить роль и место данного модуля в курсе алгебры 8 класса.

  2. Предложить конкретное тематическое планирование по данному модулю.

  3. Предложить разработки наиболее важных уроков из данного модуля с описанием технологий.
















Содержание


1

Аннотация. Цели и задачи методической разработки.

2

2

Пояснительная записка

4

3

Как формируются умения решать квадратные уравнения в курсе алгебры.

5

4

Тематическое планирование

6

5

Технологическая карта урока

10

6.

Контрольная работа по теме «Квадратные уравнения»

15

7

Приложение. Урок по теме «Теорема Виета»

19

8

Список литературы

23



Пояснительная записка


Данная методическая разработка составлена по модулю «Квадратные уравнения» на основе примерной программы основного общего образования по математике 2014, федерального компонента государственного стандарта общего образования, УМК под редакцией А.Г. Мордковича с учетом требований к математической подготовке учащихся .

Тема «Квадратные уравнения» - основная тема курса алгебры 7 – 11 классов. Навык решения квадратных уравнений необходим каждому ученику для итоговой аттестации за курс основной и старшей школы. Умение решать квадратные уравнения является одним из базовых умений для приобретения новых (см. Приложение 1).

Умение решать квадратные уравнения начинает формироваться ещё в 6 - 7 классах и к моменту начала изучения темы «Квадратные уравнения» дети умеют решать уравнения графически и выделением полного квадрата.

Во втором полугодии 8 класса идет завершение процесса обучения решению квадратных уравнений. При изучении темы происходит обобщение знаний учащихся по двум вопросам: квадратные уравнения и рациональные уравнения (см. Приложение 2). Автор учебного пособия ставит в центр темы рациональные уравнения, а в конце изучения темы возвращается к решению квадратных уравнений (рассматривает дополнительные формулы корней, теорему Виета).

Считаю целесообразным поменять изучение материала в главе 4 «Квадратные уравнения», чтобы провести систематизацию способов решения квадратных уравнений и рассмотреть вопрос о выборе оптимального способа решения квадратного уравнения. Осуществление выбора способа решения предполагает анализ эффективности его применения, происходит осмысление выполняемой работы, таким образом, обеспечивается глубина и прочность знаний учащихся. Выбор можно осуществить только при наличии нескольких способов решения, поэтому в представленном поурочном планировании я изменила последовательность изучения параграфов в данной теме.

Концепция математической подготовки учащихся предполагает, что знания ученик должен добывать сам, поэтому считаю, что на уроках целесообразно организовывать исследовательскую работу, к которой я отношу и осуществление выбора оптимального способа для решения квадратного уравнения.

Данная разработка конкретизирует тематическое планирование, представленное авторами УМК и раскрывает содержание уроков, исходя из образовательных целей урока, предлагается выбор образовательной технологии.

Полагаю, что данная разработка может быть полезна молодым специалистам, которые ещё не владеют содержанием программы, и тем учителям, кто только начинает работать по УМК под редакцией А.Г. Мордковича.




Как формируются умения решать квадратные уравнения в курсе алгебры.


Формирование умения решать квадратные уравнения начинается еще в 7 классе. Учащиеся знакомятся со следующими методами решения:

1. Решение квадратных уравнений с помощью разложения на множители;

а) по формулам сокращенного умножения: hello_html_m18224da6.gif; hello_html_m5fc5cc48.gif;

hello_html_5aabad15.gif

б) вынесением общего множителя за скобки: hello_html_m304eec7a.gifhello_html_39bcdcee.gif

hello_html_39bcdcee.gif х(ax + b)=0 hello_html_39bcdcee.gif x=0 или ax+b = 0;

в) способом группировки: х2 – 2х – 4х + 8 = 0 hello_html_39bcdcee.gif

hello_html_39bcdcee.gif (х – 2)(х – 4) = 0 hello_html_39bcdcee.gif х – 2 =0 или х – 4 = 0 hello_html_39bcdcee.gifх=2 или х=4.

2. Графический метод решения квадратных уравнений:

вводятся функции у=х2 и у=kx+b, их графики строятся в одной системе координат, находят точки пересечения данных графиков. Абсциссы этих точек являются корнями уравнения. Если точек пересечения нет, то уравнение корней не имеет.


В 8 классе изучение темы начинается с ввода квадратичной функции. Рассматриваются функции у=ах2; у=ах2 hello_html_m78531b32.gifm; y=a(x hello_html_m78531b32.gifn)2; их свойства и графики. Учащиеся учатся строить графики с помощью элементарных преобразований. Затем, графическим способом решаются квадратные уравнения:

  • пересечение параболы у=х2 и прямой у= - bxc;

  • пересечением параболы с осью Ох;

  • пересечение гиперболы и прямой.

Далее вводится понятие квадратного корня и уравнение решается выделением полного квадрата.

После этого автор УМК рассматривает формулы корней квадратного уравнения и теорему Виета.










Тематическое планирование по модулю

«Квадратные уравнения»

Цели: Изучение темы «Квадратные уравнения» на ступени основного общего образования направлено на достижение следующих целей:

hello_html_39bcdcee.gifовладение системой знаний и умений по теме «Квадратные уравнения», необходимых для продолжения изучения курса алгебры;

hello_html_39bcdcee.gifинтеллектуальное развитие: формирование критичности мышления, элементов алгоритмической культуры, способности к преодолению трудностей, способности к осуществлению оптимального способа решения уравнений;

hello_html_39bcdcee.gifформирование представлений о методах решения квадратных уравнений и об уравнении, как средстве моделирования явлений и процессов;

hello_html_39bcdcee.gifвоспитание качеств личности, необходимых человеку для развития его способностей, в том числе коммуникативных.

урока по теме

Тема урока

Модуль «Квадратные уравнения»

1.

Основные понятия квадратного уравнения

2.

Графический способ решения квадратного уравнения

3.

Решение неполных квадратных уравнений.

4.

Алгоритм решения полного квадратного уравнения с использованием формулы корней

5.

Решение квадратных уравнений по алгоритму с использованием формулы корней.

6.

Решение квадратных уравнений, приводимых к виду квадратного

7.

Урок – зачёт по теме «Решение полных и неполных квадратных уравнений».

8.

Формула корней квадратного уравнения с четным вторым коэффициентом.

9.

Теорема Виета.

10.

Применение теоремы Виета

11.

Решение квадратных уравнений различными способами.

12.

Построение математических моделей с использованием квадратных уравнений.

13.

Контрольная работа по теме: Квадратные уравнения».

Модуль «Рациональные и иррациональные уравнения»

14.

Понятие рациональных уравнений

15.

Решение рациональных уравнений.

16.

Рациональные уравнения, как математические модели реальных ситуаций.

17.

Решение задач, выделением трех этапов математического моделирования

18.

Самостоятельная работа по теме «Рациональные уравнения».

19.

Иррациональные уравнения.

20.

Решение иррациональных уравнений

21.

Урок повторения и обобщения знаний по теме «Рациональные и иррациональные уравнения».

22.

Контрольная работа по теме «Рациональные и иррациональные уравнения».

Поурочное тематическое планирование по модулю «Квадратные уравнения»



уро-ка по теме

Тема урока

Дидакти-ческая задача урока

Требования к математической подготовке учащихся из федерального компонента государственного стандарта


Тип урока

Технология

Повторить к уроку

Задание в классе

Домашнее задание

Дидакти-

ческое оснащение урока


Знать / понимать



уметь



применять

А

В – С

А

В – С

1.

Основные понятия квадратного уравнения

Ввести понятия: квадратное уравнение, полное, неполное, приведенное, неприведенное. Научить коэффициенты и вид уравнения. Приводить алгебраическое уравнение второй степени к стандартному виду квадратного уравнения. Представить два вида классификации квадратных уравнений.

Существо понятия алгоритма, как используются математические формулы, уравнения, примеры их применения для решения математических и практических задач

Решать квадратные уравнения и сводящиеся к ним, решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений по формулировке задачи.

Использовать знания и умения в практической деятельности и повседневной жизни: выполнение расчетов по формулам, моделирование практических ситуаций , построение моделей с использованием аппарата алгебры.

Обобщение и систематизация знаний

Традиционное обучение с элементами модульного обучения.


764, 766, 769, 771, 776

775, 768

767, 770, 777, п.19, стр. 112 – 113



2.

Графический способ решения квадратного уравнения

Рассмотреть различные варианты реализации графического способа решения квадратного уравнения. Формировать умение выбирать оптимальный способ решения.

Обобщение и систематизация умений и навыков применения графического способа

Традиционное обучение с элементами модульного обучения.

Выделение полного квадрата. Элементарные преобразования графика

квадратичной функции. Формулы вершены параболы



778, 780 п.19, стр. 115 – 119

797


3.

Решение неполных квадратных уравнений

Формировать умение решать неполные квадратные уравнения различного вида и уравнений к ним приводимых.



Закрепление новых знаний

Разноуровневая дифференсация

Разложение на множители. Понятие квадратного корня

779 – 781, 784, 786

788, 792, 795

782, 799 п.19, стр. 114 – 115

794, 800

С – 26

4.

Алгоритм решения полного квадратного уравнения с использованием формулы корней

Показать способ решения полных квадратных уравнений с использованием формулы корней. Объяснить понятие и смысл дискриминанта Научить использовать алгоритм для решения квадратных уравнений по формуле корней.


Изучение новых знаний

традиционное обучение, в

форме лекции

Основные понятия кв. уравнения, разложение на множители, выделение полного квадрата.

804, 807, 809, 811

817, 818

805, 808 п.20, стр. 120 - 127

819


5.

Решение квадратных уравнений по алгоритму

Формировать умение решать квадратные уравнения по алгоритму. Рассмотреть решения квадратных уравнений различного уровня сложности.

Закрепление новых знаний

Разноуровневая дифференсация

Формулы дискриминан-

та и корней кв. уравнения

814, 816

819, 820

815 п. 20 стр. 127 – 129

821

С – 27

6.

Решение уравнений, приводимых к виду квадратного.

Познакомить учащихся с методом «замены переменной». Научить решать биквадратные уравнения. Формировать умение вводить новую переменную для решения алгебраических уравнений.



Комплексное применение новых знаний и умений

традиционное обучение

Формулы сокращенного умножения, раскрытие скобок, формулы корней и D.

833, 838, 836

837

834, 836

839

Т – 6

7.

Урок-зачёт по теме «Решение полных и неполных квадратных уравнений»

Диагностика уровня усвоения знаний и умений каждого учащегося на данном этапе обучения.


Проверка и корректировка знаний

Технология уровневого

развития




810, 846

840

дом. к/р

Карточки с заданиями

8.

Формула корней квадратного уравнения с четным вторым коэффициентом

Вывести формулу корней для решения квадратного уравнения с четным вторым коэффициен-том. Формировать умение решать квадратные уравнения, используя различные формулы.

Изучение новых знаний

традиционное обучение, в

форме лекции

Формулы корней и D.

937, 951, 941

953

936, 939

п.23, стр. 147 – 149

952

С – 31









Технологическая карта

Урок: изучение нового материала

Технология: организация исследовательской деятельности

Тема урока: «Теорема Виета»

Цели урока: Создать условия для развития у школьников умений использовать научные методы познания (наблюдение, гипотеза, эксперимент)

Обеспечить развитие умения применять данную теорему для решения различных задач.

Содействовать воспитанию взаимопонимания и настойчивости для достижения результата.

Оборудование: доска, тетрадь, карточки с кроссвордом для определения темы.


Структурные единицы урока

время

Деятельность учителя

Деятельность ученика


Совместная деятельность

Что происходит с точки зрения реализации исследовательской деятельности

1.

Организацион-ный момент.

2 мин

Учитель сообщает ученикам, в какой технологии будет построен урок, что на уроке будут выбраны «лучшие теоретики и практики»







2.

Актуализация знаний

10 мин.

Раздает карточки с кроссвордом и предлагает определить тему урока. Помогает ученикам, у которых возникли затруднения.


Совместно с учащимися формируются цели урока и намечает план работы.

Решают задания, определяют и озвучивают тему урока по ключевому слову кроссворда.




Познакомиться с теоремой Виета. Научиться применять данную теорему на практике. Воспитывать взаимопонимание и настойчивость для достижения результатов.


Определяется тема урока, намечается план работы.






Повторяют материал, необходимый для работы на уроке.

Создается образ результата исследовательской деятельности, и намечается путь его достижения.

3.

Изучение нового материала

19 мин

Предлагает по вариантам выполнить задание №1. Найти сумму корней и их произведение, заполнить таблицы.

Помогает ученикам, у кого возникли затруднения.

Проверяет, записывает фамилии 3-ех учеников на доску.





2) Предлагает выполнить задание № 2.



Проверяет, записывает фамилии 3-ех учеников на доску.





Предлагает сформулировать теорему Виета.

Фиксирует фамилия, справившихся учеников.




Задает задание: составить план доказательства теоремы.

Корректирует и помогает.


Предлагает доказать теорему

Проверяет.


По данным, заполненной на доске таблицы, выявляются лучшие теоретики. Оценивает их работу.


Задает вопрос: «Где можно использовать данную теорему?» При затруднении, просит рассмотреть задания после параграфа и сделать вывод.


Прикрепляет на доску, заранее приготовленные на карточках, возможные варианты ответов.




1) Решают приведенное квадратное уравнение по формуле корней, заполняют таблицу, ищут закономерность, делают вывод.


Ученики, закончившие работу первыми, подходят к учителю.


Озвучивают полученные результаты.


2) Решают неприведенное квадратное уравнение, заполняют таблицу, делают вывод.

Ученики, закончившие работу первыми, подходят к учителю.


Озвучивают полученные результаты.


Работая в парах, учащиеся письменно формулируют теорему.

Обсуждают формулировку, приходят к выводу.


В парах составляется план (письменно), затем выносится на обсуждение.



Письменно доказывают теорему.







Отвечают на вопрос (фронтально)

а)проверка в решении кв. уравнений;

б)быстрое решение уравнений;

в)составление уравнений по заданным корням;

г)Решение уравнений с параметрами;

д)Разложение на множители, сокращение дробей.












Один из учеников записывает результаты на доске.

Поэтапно делается вывод о сумме и произведении корней квадратного уравнения





Один из учеников записывает результаты на доске.








Один из учеников записывает план доказательства на доске.


Один из учеников доказывает теорему Виета на доске.















Систематизируется теоретический материал.

Идет поиск закономерности.












Формируется умение провести аналогию














Получение предварительного «продукта» (результата) исследовательской деятельности.












Исследуется и оценивается результат деятельности, его практическая значимость.

4.

Закрепление нового материала.

10 мин

Предлагает выбрать и решить самостоятельно задачи, которые понятны.


Собирает тетради.

По результатам самостоятельной работы и выполненного домашнего задания, на следующем уроке будет назван «лучший практик»

Решают в тетрадях по выбору № 960; 965; 968; 970 все (а,б)

Формируются навыки применения теоремы Виета.

Выявляется уровень усвоения темы.





Мотивация к выполнению задания







Мотивирование на продолжение работы по применению полученного продукта.

5.

Подведение итогов

2 мин

Просит учащихся ответить на вопрос: «Что нового они сегодня узнали?


Применение теоремы мы рассмотрим на следующем уроке.

Отвечают на вопрос.



6.

Домашнее задание

2 мин

Дает пояснения по д/з

Записывают дом. задание в дневник № 964, 967 – уровень А; № 971, 972 – уровень В и С.



Контрольная работа № 6

по теме «Квадратные уравнения»



Пояснительная записка

Контрольная работа, предлагаемая автором УМК, не отвечает требованиям к итоговой аттестации выпускников, а именно:

  • нарушается принцип вариативности;

  • не создаются условия для проявления творческой инициативы, для осуществления рационального решения задачи;

  • задачи, определяемые стандартами, усложнены, что не позволяет объективно продиагностировать уровень усвоения знаний.


Поэтому предлагаю заменить контрольную работу, предложенную автором УМК по данной теме.

Данная контрольная работа позволяет продиагностировать уровень усвоения темы (задания 1(а,б); 2(а,б,в) – задания базового уровня)

Задание 2(в) может быть выполнено двумя способами, предполагает выбор решения.

Содержание работы дает возможность выбора заданий, для выполнения контрольной работы на отметку «5».
























Содержание контрольной работы и методические пояснения


1 вариант


2 вариант


Пояснение

  1. Сколько корней имеет уравнение? (Ответ поясните)

аhello_html_438e1b6b.gif) х2 – 2х +2 = 0; а) х2 + 5х + 3 = 0;

б) 2 – 4х + 1 = 0. б) 2 – 2х + 5 = 0.


Проверяет: умение учащихся определять коэффициенты квадратного уравнения; знание формулы дискриминанта и его смысл.

  1. Решите уравнение.

аhello_html_438e1b6b.gif) 2 + 6х = 0; а) 10х2 + 5х = 0;

б) 2 – 1 = 0; б) 6 – 6х2 = 0;

в) х2 – 10х + 25 = 0. в) х2 + 6х + 9 = 0.




Проверяет умение решать неполные кв. уравнения вида ах2+ bх=0 и ах2+ с=0

Третье задание позволяет выбирать способ решения (применить формулу сокращенного умножения)


  1. Решите уравнение.

hello_html_438e1b6b.gifа) х2 – 8х + 7 = 0; а) х2 – 4х – 5 = 0;

б) (3х + 1)(х – 2) = 6; б) (4х – 3)(4 – х) = 3

в) (х2+1)2–15=2(х2+1) в) (8–х2)2–10=9(8 – х2)



Проверяет умение решать полное кв. уравнение и уравнения к ним приводимые по различным формулам (дискриминанта и корней или формулы корней кв. уравнения с четным вторым коэффициентом, заменой переменной).



  1. Сократите дробь.

hello_html_438e1b6b.gifhello_html_25b6aa48.gifhello_html_m4db710f3.gif




Проверяет умение раскладывать квадратный трехчлен на множители, знание правил сокращения дробей.


  1. Найдите коэффициент k и второй корень уравнения

хhello_html_m262ea49d.gif2kх – 3 =0, х2 + 6х + k = 0,

если один из если один из корней

корней равен 3. равен –2.




Проверяет знание теоремы Виета и умение ее применять.

  1. Решите задачу, выделяя три этапа математического моделирования.

hello_html_mb689f5b.gif

Периметр прямо- Периметр прямоуголь-

угольника равен ника равен 28 см, а его

32 см, а его пло- площадь равна 48 см2.

щадь 60 см2. Найдите длину боль-

Найдите длину шей стороны прямо-

меньшей сторо- угольника.

ны прямоуголь-

ника.

Проверяет умение составлять три этапа математического моделирования.



Критерии оценок

Оценивание контрольной работы осуществляется по принципу «сложения»: оно зависит от числа заданий, которые ученик выполнил верно. При этом рекомендуется исходить из следующих критериев, проверенных на практике и учитывающих типичные ситуации, возникающие на контрольных работах.

Отметка «3» выставляется, если ученик верно выполнил1, 2 и 3(а) задание или 1, 2 + два уравнения из 3 с недочетами, или одной ошибкой.

Верное выполнение четырех заданий оценивается отметкой «4».

Отметка «5» выставляется, если ученик выполнил верно любые 5 заданий. При этом отметка не снижается, если ученик не приступил к выполнению одного из шести заданий или же допустил при его выполнении ошибку.


Решение контрольной работы.

I вариант


1. а) х2 – 2х + 2= 0; б) 4х2 – 4х + 1 = 0;

D=b2 – 4ac D=b2 – 4ac

D=(- 2)2 – 4.2= - 4 D=(- 4)2 – 4.4.1=0

D<0 , уравнение имеет D=0, уравнение имеет

два корня один корень


2. а) 2 + 6х =0; б) 4х2 – 1 = 0; в) х2 – 10х + 25 = 0

3х(х + 2)=0 4х2 = 1 (х – 5)2 = 0

х=0 или х + 2 =0 х2 = hello_html_6a148f9f.gif х – 5 = 0

х= - 2 х =hello_html_m3e77a4f8.gif х = 5


Ответ: 0; - 2. Ответ: hello_html_m533d156a.gif Ответ: 5


3. а) х2 – 8х + 7 = 0; б) (3х + 1)(х – 2) = 6

k = - 4; х1,2 = hello_html_m7fe20083.gif2 – 6х + х – 2 – 6 = 0

х1 = hello_html_m4721d5a1.gif2 – 5х – 8 = 0


х2 = hello_html_m5c4f0264.gifD=b2 – 4ac ; D=(- 6)2- 4.3.(- 8)

Ответ: - 1; 7 D=121; х1,2=hello_html_m1ed40670.gif

Можно решить по формуле D. х1= hello_html_m224b2792.gif

х2= hello_html_m26540030.gif

Ответ: hello_html_13829f18.gif.


в) 2+1)2–15=2(х2+1)

Пусть х2+1= t; t2 – 15 – 2t =0

D=b2 – 4ac ; D= (-2)2 – 4.1.(-15)=64

t1,2=hello_html_m1ed40670.gif ; t1=hello_html_45c9a0d0.gif; t2=hello_html_4a00779f.gif (можно по формуле корней со вторым четным коэффициентом)

х2+1=5 или х2+1= - 3

х2 = 4 х2 = - 4

х = hello_html_2b6a8a69.gif корней нет

Ответ: - 2; 2.

4. hello_html_25b6aa48.gif=hello_html_m3fbf7ec9.gif Для разложения трехчлена на множители пользуемся решением 3(а).


5. х2kх – 3 =0; х1 = 3

По теореме Виета х1.х2= - 3 hello_html_1b730b13.gifх2 = - 1;

x12 = - k hello_html_1b730b13.gif - k = 2; k = - 2.


6. Пусть х (см) – меньшая сторона прямоугольника.

Тогда 16 – х (см) – большая сторона прямоугольника,

х(16 – х) (см2) – площадь прямоугольника, а по условию площадь 60 см2, составим уравнение.

х(16 – х)=60

- х2 + 16х – 60 = 0 hello_html_39bcdcee.gif х2 – 16х + 60 = 0

х1 = 10; х2 = 6

Ответ: 6 см – меньшая сторона прямоугольника.


Задание 1

Задание 2

Задание 3

Задание 4

Задание 5

Задание 6

а) D<0 , два корня.

б) D=0, один корень

а) 0; - 2.

б) hello_html_m533d156a.gif.

в) 5.

а) - 1; 7

б) hello_html_13829f18.gif

в) - 2; 2

hello_html_m1e8d8f5f.gif

х2 = - 1;

k = - 2

6 см




2 вариант


Задание 1

Задание 2

Задание 3

Задание 4

Задание 5

Задание 6

а) D > 0, два корня.

б) D<0, корней нет

а) hello_html_601db834.gif

б) hello_html_m3895d22c.gif

в) – 3;

а) – 1; 5.

б) hello_html_m17e5673c.gif.

в) – 3; 3.

hello_html_46028ad6.gif

х = – 4 ; k = 24.

8 см







Приложение

К уроку по теме «Теорема Виета».


Актуализация знаний. (на парту)

Задание 1. Разгадать кроссворд.


1














2











3









4














5










6










7








1.Название числа в произведении числа и одной или нескольких переменных.

  1. Равенство, содержащее переменную.

  2. Всякое значение переменной, при которой уравнение обращается в верное равенство.

  3. Выражение х2 – 4ас, для квадратного уравнения.

  4. Квадратное уравнение, где один из коэффициентов b или с равен 0 .

  5. Один из способов задания функции.

  6. Словосочетание в алгебре «Математическая …».


Задача – шарада.

Выполните задание и узнайте второе слово темы, вписывая буквы, соответствующие ответу в предложенную таблицу:

задания

1

2

3

4

5

Буква







  1. Чему равен дискриминант квадратного уравнения х2+ 5х + 6=0

  2. Сколько корней имеет уравнение х2 + 5х + 6 = 0

  3. Найдите сумму корней уравнения х2 + 5х + 6 = 0

  4. Найдите произведение корней уравнения х2 + 5х + 6 = 0

  5. Один из корней уравнения х2 + 5х + с=0 равен 2. Найдите значение с.



Ответы:

Т

Е

А

В

И

6

- 5

- 14

1

2





Изучение нового материала.

Задание 2.

1) решите уравнение 1 вариант: х2–х–6 = 0; 2 вариант: х2–8х–20=0. Найдите сумму корней и их произведение. Результаты запишите в таблицу:


a

b

c

X1

X2

X1+X2

X1 X2

1 вариант








2 вариант








Найдите закономерность и сделайте вывод.

Задание 3.

2) Решите уравнения ( по вариантам) 2 – 9х+10=0; 5х2+12х+7=0

Найдите сумму корней и их произведение. Результаты запишите в таблицу:


а

b

c

X1

X2

hello_html_7330fed.gif

X1+X2

hello_html_m38172f96.gif

X1.X2

1 вариант










2 вариант










Найдите закономерность и сделайте вывод.

Задание 4. Работая в парах

1.Сформулируйте теорему.

  1. Составьте план доказательства.

3. Попытайтесь доказать теорему.


Выбираем «Лучшего теоретика» На доске таблица:

Вывод по таблице 1

Вывод по таблице 2

Формулировка теоремы Виета (письменно)

План доказательства теоремы.

Доказательство теоремы

1.

2.

3.

1.

2.

3.

1.

2.

3.

1.

2.

3.

1.

2.

3.

Ученики, первые справившиеся с заданиями, подходят к учителю, а тот проверяет правильность выполнения и заносит их фамилии в таблицу. Затем дети озвучивают свои записи, остальные – слушают и обсуждают.


Фронтально. Для чего нам может пригодиться данная теорема?

        1. Для проверки корней кв. уравнений:

        2. Для нахождения корней кв. уравнения (без вычисления D;

        3. Для составления уравнения по заданным корням;

        4. Для решения уравнений с параметрами;

        5. Для разложения на множители кв. трехчлена и сокращения дробей (заготовки ответов учитель крепит на доску)


Закрепление нового материала.

960; 965; 968; 970 все под (а, б) Выберите и решите самостоятельно те задачи, которые вам понятны.

Сдают тетради. По результатам самостоятельной работы и выполнения домашнего задания выбирают «лучшего практика», поэтому учащиеся еще могут себя проявить.


Подведение итогов.

Рассмотрение задач на применение теоремы Виета мы продолжим на следующем уроке


Домашнее задание.

964; 967 – уровень А.

971, 972 – уровень В и С.






Оформление доски:






Дом.

Задание:

Таблица 1






















Таблица 2





























Теорема

Формули-ровка:




План доказа-тельства:

Виета


Доказа-тельство теоремы:



Т 1

Т 2

Ф

П

Д







Магнит-ная доска:





Ответы к заданиям урока:

1) Кроссворд

1к

о

э

ф

ф

и

ц

и

е

н

т




2у

р

а

в

н

е

н

и

е



3к

о

р

е

н

ь




4д

и

с

к

р

и

м

и

н

а

н

т



5н

е

п

о

л

н

о

е



6ф

о

р

м

у

л

а




7з

а

д

а

ч

а




1.Название числа в произведении числа и одной или нескольких переменных.

  1. Равенство, содержащее переменную.

  2. Всякое значение переменной, при которой уравнение обращается в верное равенство.

  3. Выражение х2 – 4ас, для квадратного уравнения.

  4. Квадратное уравнение, где один из коэффициентов b или с равен 0 .

  5. Один из способов задания функции.

  6. Словосочетание в алгебре «Математическая …».





2) Задача – шарада.

  1. Чему равен дискриминант квадратного уравнения х2+ 5х + 6=0 (1)

  2. Сколько корней имеет уравнение х2 + 5х + 6 = 0 (2)

  3. Найдите сумму корней уравнения х2 + 5х + 6 = 0 ( - 5)

  4. Найдите произведение корней уравнения х2 + 5х + 6 = 0 (6)

  5. Один из корней уравнения х2 + 5х + с=0 равен 2. Найдите значение с. (-14)



Ответы:

Т

Е

А

В

И

6

- 5

- 14

1

2





Заключение.


Концепция математической подготовки учащихся предполагает, что знания ученик должен добывать сам, поэтому считаю, что на уроках целесообразно организовывать исследовательскую работу, к которой я отношу и осуществление выбора оптимального способа для решения квадратного уравнения.

Данная разработка конкретизирует тематическое планирование, представленное авторами УМК и раскрывает содержание уроков, исходя из образовательных целей урока, предлагается выбор образовательной технологии.

Полагаю, что данная разработка может быть полезна молодым специалистам, которые ещё не владеют содержанием программы, и тем учителям, кто только начинает работать по УМК под редакцией А.Г. Мордковича.

Список литературы:


  1. А.Г.Мордкович, П.В.Семенов. Алгебра-9. Часть 1. Учебник.

  2. А.Г.Мордкович и др. Алгебра-9. Часть 2. Задачник.

  3. А.Г.Мордкович. Алгебра-9. Методическое пособие для учителя.

  4. Л.А.Александрова. Алгебра-9. Контрольные работы.

  5. Л.А.Александрова. Алгебра-9. Самостоятельные работы.

  6. Л.А.Александрова. Алгебра-9. Тематические проверочные работы

в новой форме.

  1. Е.Е.Тульчинская. Алгебра-9. Блицопрос.

  2. В.В.Шеломовский. Алгебра-9. Электронный помощник.





Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 12.09.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров376
Номер материала ДA-041232
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх