Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / План-конспект урока по геометрии в 7 классе по теме: «Медианы, биссектрисы и высоты треугольника»
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

План-конспект урока по геометрии в 7 классе по теме: «Медианы, биссектрисы и высоты треугольника»

библиотека
материалов

План-конспект урока по геометрии

в 7 классе по теме:

«Медианы, биссектрисы и высоты треугольника»


Цели урока:

- ввести понятие перпендикуляра, медианы, биссектрисы и высоты треугольника;

- научить применять эти понятия при решении различных задач;

- уметь различать в треугольнике, биссектрису, медиану и высоту;

- развивать эстетические навыки (точность и аккуратность построения) и интеллектуальные навыки (классификация, сравнение, анализ);

- воспитывать у учащихся любовь к предмету и диалоговую культуру.

Оборудование урока:  чертежные инструменты.

План урока.

  1. Организационный момент.

  2. Сообщение темы урока и постановка задач урока.

  3. Изучение нового материала.

  4. Физкультминутка.

  5. Закрепление полученных знаний.

  6. Итог урока.

  7. Домашнее задание.

ХОД УРОКА

I. Организационный момент.

- Проверить готовность учащихся к уроку;

- Отметить отсутствующих в классе.

II. Сообщение темы урока и постановка задач урока.

- На рисунке 1 какая изображена геометрическая фигура?

hello_html_7b39ff12.png

Рисунок 1

- Что называется треугольником?

- Какие элементы треугольника Вы знаете и сколько их у него?

- Назовите все виды треугольника, которые Вы знаете?

- Кто из Вас слышал о загадочном Бермудском треугольнике, в котором бесследно исчезают корабли и самолёты?


А ведь знакомый всем нам треугольник также таит в себе немало интересного и загадочного.


III. Изучение нового материала.

Медиана

- Начертите треугольник АВС;

- Найдите середину стороны АС;

- Отметьте середину отрезка АС, например, точкой М (рисунок 2);

- Вспомните, что называется серединой отрезка?

- Соедините точку М с вершиной треугольника В, полученный отрезок МВ называется медианой треугольника.

hello_html_28b46701.png

Рисунок 2

Определение. Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.

- Давайте теперь подумаем сколько медиан можно провести в треугольнике. Для этого ответьте на следующие вопросы: сколько сторон у треугольника и сколько вершин у него?

- Так сколько же медиан можно провести в треугольнике АВС?

- А теперь проведите все не достающие медианы в треугольнике АВС.

- Какое же свойство медиан Вы заметили?

Полученную точку называют центром тяжести треугольника. Запишите в тетрадях:

ВМ – медиана, АМ = МС

АТ– медиана, ВТ = ТС

СР– медиана, АР = РВ

О – точка пересечения медиан.

Высота

- Начертите треугольник АВС

- С помощью чертёжного угольника из вершины В проведите перпендикуляр ВН к прямой АС. Он называется высотой треугольника (рисунок 3).

- Записать на доске: ВН АС, Н АС.

hello_html_2a31b68e.png

Рисунок 3

Определение. Высотой треугольника называется перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противолежащую сторону.

- Сколько высот можно провести в треугольнике?

- А теперь постройте не достающие высоты в треугольнике АВС.

- Ответьте на вопрос: обладают ли высоты аналогичным свойством, что и медианы?

- Как построить высоты в тупоугольном треугольнике?

- А что будет являться в прямоугольном треугольнике высотой?

Биссектриса

- Давайте вспомним определение биссектрисы угла;

- Постройте снова треугольник АВС;

- Возьмите в руки транспортир и постройте биссектрису ВК угла В. Как мы видим она пересекает отрезок АС в точке К. Отрезок ВК называется биссектрисой угла В треугольника АВС (рисунок 4).

hello_html_m44c1a3e9.png

Рисунок 4

Определение. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину угла треугольника с точкой противоположной стороны треугольника.

- В треугольнике АВС постройте все три биссектрисы;

- Записать на доске:

AР- биссектриса, ‹ CАР = ‹ РАB

BK - биссектриса, ‹ CBK = ‹ АBK

CМ - биссектриса, ‹ АCМ = ‹ BCМ

О - точка пересечения биссектрис.

- Сформулируйте свойство биссектрис треугольника.

IV. Физкультминутка.

V. Закрепление полученных знаний.

- Учащимся предлагается решить следующую задачу:

Треугольник DЕК равнобедренный, EF – биссектриса угла DЕК, угол DEF равен 430, DK = 18 см . Найдите KF, угол DEK и угол EFD.

- Учащиеся выполняют тестовые задания

Верны ли следующие утверждения?

1. В любом треугольнике можно провести три медианы;
2. Точка пересечения высот равнобедренного треугольника лежит внутри треугольника;
3. Все биссектрисы треугольника пересекаются в одной точке.

VI. Итог урока.

VII. Домашнее задание.

Выучить определения и решить задачу: докажите, что высота BH равнобедренного треугольника ABC, проведенная к основанию, является медианой и биссектрисой.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 28.12.2015
Раздел Математика
Подраздел Конспекты
Просмотров922
Номер материала ДВ-293479
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх