Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / План-конспекта урока по математики на тему: "Осевая и центральная симметрия".
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

План-конспекта урока по математики на тему: "Осевая и центральная симметрия".

библиотека
материалов

Конспект урока математики "Осевая и центральная симметрия". 8-й класс

Цели:

- познакомить обучающихся с понятиями осевой и центральной симметрий;

- рассмотреть осевую и центральную симметрии как свойства некоторых геометрических фигур;

- учить строить симметричные точки и распознавать фигуры, обладающие осевой и центральной симметриями;

- развивать внимание, логическое мышление;

- воспитывать интерес к математике.

Оборудование: учебник «Геометрия 7-9» авт. Л.С. Атанасян, мультимедийный проектор, экран, набор карточек с тестом, таблички для рефлексии.

План урока:

Организационный момент.

Рефлексия.

Теоретическая самостоятельная работа.

Проверочный тест.

Изучение нового материала.

Физкультминутка.

Закрепление изученного материала.

Просмотр презентации, подготовленной обучающейся 8 класса.

Рефлексия.

Подведение итогов.

Домашнее задание.

Ход урока

I. Организационный момент.

(Слайд 1 Приложение 1)

Древняя китайская мудрость гласит:

Я слышу – я забываю,
я вижу – я запоминаю,
я делаю – я понимаю”.

Чтобы наш урок был плодотворным, давайте последуем совету китайских мудрецов и будем работать по принципу: “Я слышу – я вижу – я делаю”.

II. Рефлексия.

Ребята, прежде чем начать урок, проверим, с каким настроением вы сегодня пришли? Покажите одну из трех карточек, лежащих у вас на партах. (Слайд 2).

III. Теоретическая самостоятельная работа.

Заполните таблицу, отметив знаки «+» (да) и «-» (нет). (Слайды 3-4) Один из обучающихся работает на обратной стороне доски, остальные – в своих тетрадях. После завершения работы класс проверяет работу, выполненную обучающимся на доске.

Приложение 2

IV. Проверочный тест.

Тесты в двух вариантах раздаются в распечатанном виде обучающимся. Ответы нужно написать на листочках и в тетрадях: листочки сдаются на проверку учителю, ответы в тетради проверяют сами обучающиеся по ответам на слайде. (Слайды 6-7)




I вариант

II вариант

1. Любой прямоугольник является…
а) ромбом;
б) квадратом;
в) параллелограммом;
г) нет правильного ответа.

1. Любой ромб является…
а) квадратом;
б) прямоугольником;
в) параллелограммом;
г) нет правильного ответа.

2. Если в четырехугольнике диагонали перпендикулярны, то этот четырехугольник…
а) ромб;
б) квадрат;
в) прямоугольник;
г) нет правильного ответа.

2. Если в параллелограмме диагонали перпендикулярны, то этот параллелограмм…
а) ромб;
б) квадрат;
в) прямоугольник;
г) нет правильного ответа.

3. Ромб – это четырехугольник, в котором…
а) диагонали точкой пересечения делятся пополам и равны;
б) диагонали взаимно перпендикулярны и точкой пересечения делятся пополам;
в) противолежащие углы равны, а противолежащие стороны параллельны;
г) нет правильного ответа.

3. Прямоугольник – это четырехугольник, в котором…
а) противолежащие стороны параллельны, а диагонали равны;
б) диагонали точкой пересечения делятся пополам и являются биссектрисами его углов;
в) два угла прямые и две стороны равны;
г) нет правильного ответа.

V. Изучение нового материала.

Слово учителя: Тема сегодняшнего урока «Осевая и центральная симметрии». (Слайды 8-9)

«Симметрия является той идеей, с помощью которой человек веками пытается объяснить и создать порядок, красоту и совершенство»
Герман Вейль

В древности слово «СИММЕТРИЯ» употреблялось в значении «гармония», «красота».

В переводе с греческого это слово означает «соразмерность, пропорциональность, одинаковость в расположении частей» (Слайд 10)

Сейчас выполним практическую работу:

(Слайд 11). Отметьте точку Аа. Из точки А опустите перпендикуляр АО на прямую а. Теперь от точки О отложите перпендикуляр ОА1= АО. Две точки А и А1 называются симметричными относительно прямой а. Такая прямая называется осью симметрии. (Учитель строит на доске, ученики в тетрадях). Какие две точки называются симметричными относительно прямой? (стр. 110 учебника)

(Слайд 12). Симметричность предметов относительно прямой в жизни.

У геометрических фигур может быть одна или несколько осей симметрии, а может и не быть совсем. А как вы думаете, сколько осей симметрии у прямоугольника?

(Прямоугольник имеет 2 оси симметрии) (Слайд 13).

А у круга? (Круг имеет бесконечно много осей симметрии) (Слайд 14).

Мысленно определите, сколько осей симметрии имеет каждая из фигур? (Слайд 15). Проверим. (Слайд 16)

Симметричными могут быть не только точки, но и различные геометрические фигуры. Давайте построим треугольник, симметричный треугольнику, который изображён на доске.

Попробуйте сформулировать определение фигуры, симметричной относительно прямой. (Стр. 111 учебника)

Говорят, что такие фигуры обладают осевой симметрией. Назовите фигуры, обладающие осевой симметрией. Назовите фигуры, которые не имеют оси симметрии. (Параллелограмм, разносторонний треугольник).

(Слайд 17). Оказывается, можно построить симметричные точки не только относительно прямой, но и относительно какой-либо точки. Возьмём произвольную точку А и точку О, относительно которой будем строить симметричную точку. Соединяем точки А и О отрезком, затем от точки О откладываем отрезок ОА1=ОА. Таким образом, О – середина отрезка АА1. Точки А и А1 называются симметричными относительно точки О. Попробуйте сформулировать определение симметричных точек относительно точки. (Стр. 111)

(Слайд 18) А теперь построим треугольник А1В1С1 симметричный треугольнику АВС относительно точки О. Попробуйте сформулировать определение фигуры, симметричной относительно точки. (Стр. 111 учебника). В этом случае говорят, что фигуры обладают центральной симметрией.

Приведите примеры фигур, обладающие центральной симметрией. (Слайд 19). Существуют фигуры, обладающие осевой и центральной симметриями. Назовите такие фигуры. (Слайд 20).

VI. Физкультминутка.

Встаньте, улыбнитесь. Возьмитесь за руки. Передайте своему товарищу положительные эмоции, поделитесь капелькой теплоты, добра.

Хочу я, чтоб тепло к тебе пришло
Как свет весенний, как тепло костра:
Пусть для тебя источником добра
Не станет то, что для другого – зло. (Слайд 21)

VII. Закрепление изученного материала.

Выполнение №418, 423 по учебнику.

Задание для самостоятельной работы:

(Слайд 22) Расположите данные фигуры по трем столбикам таблицы «Фигуры, обладающие центральной симметрией», «Фигуры, обладающие осевой симметрией», «Фигуры, имеющие обе симметрии». (Обучающиеся выполняют это задание в рабочих тетрадях.) А теперь проверим полученные результаты. (Слайд 23)

VIII. Просмотр презентации, подготовленной обучающимися.

(Слайды 24-29)

IX. Рефлексия.

С каким настроением вы уйдете с урока? Покажите одну из трех карточек.

X. Подведение итогов.

Что нового, интересного вы узнали сегодня на уроке? Что понравилось в уроке? Что не понравилось? Оценки за урок.

XI. Домашнее задание.

п.47, в.16-20; №421, №422.

На этом урок окончен. Спасибо за работу на уроке. До свидания!










Параллелогр

Прямоугол.

Ромб

Квадрат

1. Противолежащие стороны параллельны и равны





2. Все стороны равны





3. Противолежащие углы равны, сумма соседних углов равна 180о





4. Все углы прямые





5. Диагонали пересекаются и точкой пересечения делятся пополам





6. Диагонали равны





7. Диагонали взаимно перпендикулярны и являются биссектрисами углов






(Слайд 5) Правильные ответы


Параллел.

Прямоуг.

Ромб

Квадрат

1. Противолежащие стороны параллельны и равны

+

+

+

+

2. Все стороны равны

-

-

+

+

3. Противолежащие углы равны, сумма соседних углов равна 180о

+

+

+

+

4. Все углы прямые

-

+

-

+

5. Диагонали пересекаются и точкой пересечения делятся пополам

+

+

+

+

6. Диагонали равны

-

+

-

+

7. Диагонали взаимно перпендикулярны и являются биссектрисами его углов

-

-

+

+








Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 01.04.2016
Раздел Математика
Подраздел Конспекты
Просмотров285
Номер материала ДБ-000991
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх