Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Подготовка к ЕГЭ. решение задач по теории вероятностей
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Подготовка к ЕГЭ. решение задач по теории вероятностей

библиотека
материалов



Подготовка к ЕГЭ.

Задачи по теории вероятностей.



Учитель математики

МОУ Левобережная СОШ

г. Тутаева Ярославский области

Борисова Елена Леонидовна







  1. Выбор одного объекта с дополнительным условием.

Задача. В группе 30 студентов. Необходимо выбрать старосту, заместителя старосты и профорга. Сколько существует способов это сделать?

Решение. Старостой может быть выбран любой из 30 студентов, заместителем - любой из оставшихся 29, а профоргом – любой из оставшихся 28 студентов, т. е. n1=30, n2=29, n3=28. По правилу умножения общее число N способов выбора старосты, его заместителя и профорга равно N=n1´n2´n3=30´29´28=24360.

hello_html_m1769dafc.png

  1. Задачи с подбрасыванием монет.

Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу.

Решение. Выписываем все возможные комбинации орлов и решек:

OOOO OOOP OOPO OOPP OPOO OPOP OPPO OPPP
POOO POOP POPO POPP PPOO PPOP PPPO PPPP

Всего получилось n = 16 вариантов. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Следовательно, k = 1. Осталось найти вероятность:

Вероятность для n = 16 и k = 1


hello_html_m665e231f.png

hello_html_m8827176.png

  1. Задачи о бросании кубика.

Задача. Игральную кость (кубик) бросили один раз. Какова вероятность того,

что выпало нечетное число очков?


Решение. Здесь случайный эксперимент – бросание кубика.

Элементарное событие – число на выпавшей грани. Значит п = 6.

Событию А={выпало нечетное число очков} благоприятствует 3

элементарных события: 1,3,5. Поэтому т = 3.

Поэтому Р(А) = т/п = 3/6 = 0,5.

hello_html_m7ba549d9.png



  1. Задачи на несовместные события.

Задача №1. В урне 5 белых, 20 красных и 10 черных шаров, не отличающихся по размеру. Шары тщательно перемешивают и затем наугад вынимают 1 шар. Какова вероятность того, что вынутый шар окажется белым или черным?

Решение. Пусть событие А – появление белого или черного шара. Разобьем это событие на более простые. Пусть В1 – появление белого шара, а В2 – черного. Тогда, А=В12 по определению суммы событий. Следовательно Р(А)=Р(В12). Так как В1 и В2 – несовместные события, то по теореме о вероятности суммы несовместных событий Р(В12) = Р(В1)+Р(В2).

Вычислим вероятности событий В1 и В2. В этом примере имеется 35 равновозможных (шары не отличаются по размеру) исходов опыта, событию В1 (появлению белого шара) благоприятствуют 5 из них, поэтому http://bars-minsk.narod.ru/stud/VM/lecture2.files/image081.gif. Аналогично, http://bars-minsk.narod.ru/stud/VM/lecture2.files/image083.gif. Следовательно, http://bars-minsk.narod.ru/stud/VM/lecture2.files/image085.gif.

Задача №2. Ведутся поиски двух преступников. Каждый из них независимо от другого может быть обнаружен в течение суток с вероятностью 0,5. После поимки одно из них, в связи с увеличением количества сотрудников, занятых в поисках,  вероятность найти второго возрастает до 0,7. Какова вероятность того, что в течение суток будет обнаружены оба преступника.

Решение. Пусть событие А – “обнаружены два преступника”. Разобьем это событие на более простые. Пусть В1 – обнаружен первый преступник, а В2 – обнаружен второй преступник, после того, как пойман первый. Тогда, А=В1В2 по определению произведения событий. Следовательно Р(А)=Р(В1В2). Так как В1 и В2 – зависимые события, то по теореме о вероятности произведения зависимых событий (формула 4.8) Р(В1В2) = Р(В1)Р(В2/В1) = 0,5 0,7=0,35.

hello_html_m2a6bdf22.png

  1. Задачи о стрельбе.

Задача. Два стрелка стреляют по одной мишени. У одного вероятность попадания 0,8, у другого – 0,2. Какова вероятность поражения цели?


Решение. Пусть A – цель поражена, В – противоположное событие (цель не поражена). Неявно предполагается, что стрелки стреляют независимо друг от друга, тогда вероятность не поразить мишень равна Р(В)=0,2*0,8=0,16 Отсюда, вероятность поразить мишень Р(А)=1-Р(В)=1-0,16=0,84

hello_html_30acbfc.png


  1. Задачи об объединении пересечении событий.

Задача. Вам надо купить определенную книгу. Всего 3 магазина. Вероят-ность того, что книга будет куплена в первом магазине – 50%, во втором – 30%, в третьем – 20%. В первом магазине 40% книг пиратского издания, во втором 50% пиратских книг и в третьем – 20%. Какова вероятность, что купленная вами книга окажется пиратского издания?

Решение. Обозначим через В1,B2, B3 – события, заключающиеся в том, что мы попали в первый, второй и третий магазины соответственно, а событие A то , что купленная книга пиратская. По условию Р1) =0,5, P(B2)=0,3, и Р(В3)=0,2. События В1, В2,В 3 несовместны и образуют полную группу. Из условия известно также, что РВ1 (А)=0,4, PВ2(A)=0,5, PВ3(A)=0,2. Используя формулу полной вероятности, найдем, что вероятность купить пиратскую книгу (не важно в каком магазине) равна

Р(А)=РВ1(А)Р(В1)+РВ2(А)Р(В2)+РВ3(А)Р(В3)= 0,5*0,4+0,3*0,5+0,2*0,2=0,39

  1. Задачи на частоту событий.


hello_html_m42dccac7.png


  1. Независимые события. Задачи на вероятность пересечений событий.

hello_html_m5ec55f38.png











Источники:

  • Алгебра. 9 класс: учеб. для общеобразоват. учреждений/ [Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова]; под ред. С.А.Теляковского. – 16-е изд. – М.; Просвещение, 2009






  • Алгебра: элементы статистики и теории вероятностей; учеб. Пособие для учащихся 7-9 кл. общеобразоват. учреждений / Ю.Н.Макарычев, Н.Г.Миндюк; под редакцией С.А.Теляковского. – 5-е изд. – М. : Просвещение, 2007. -78 с.



Автор
Дата добавления 25.12.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров600
Номер материала ДВ-286080
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх