928964
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаДругие методич. материалыПодготовка к ОГЭ. Теория по теме "Треугольники"

Подготовка к ОГЭ. Теория по теме "Треугольники"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Треугольники


Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки.

Обозначение:ABC, BCA, CAB

Периметр – сумма длин всех сторон


PABC = AB + BC + AC

Элементы:

Вершины – A, B, C (точки)

Стороны – AB, BC, AC (отрезки)

Углы – BAC , ABC,  ACB (A, B, C)

Сумма углов треугольника равна 180º, т.е. A+ B+ C = 180

Внешний угол треугольника – угол, смежный с одним из углов треугольника


Внешний угол треугольника

1) равен сумме двух углов треугольника, не смежных с ним, 4 = 1 + 2

2) больше любого внутреннего угла, не смежного сним,

4 > 1, 4 >2




Виды треугольников


Остроугольный

Прямоугольный

Тупоугольный

Разносторонние (все стороны разные)




все углы острые (меньше 90)

один угол прямой (равен 90)

один угол тупой (больше 90)

Равнобедренные (две стороны равны – боковые)




Равносторонние (все стороны равны)




Основные линии в треугольнике

Медиана

(отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника)

Биссектриса

(отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника)

Высота

(перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника)




AM = MC

ABD = CBD

BH  AC

Средняя линия реугольника

(отрезок, соединяющий середины двух его сторон)



MN - средняя линия

М – середина АВ (AM = MB)

Nсередина ВС (BN = NC)


Свойство:

MN  AC

MN = AC



Против большей стороны лежит больший угол, и наоборот, против большего угла лежит большая сторона.

Сравните углы треугольника АВС, если АВ>BC>AC.

Ответ. C>A>B

В равных треугольниках против равных сторон лежат равные углы, и наоборот, против равных углов лежат равные стороны.


Любая сторона треугольника меньше суммы двух других сторон и больше их разности a < b + c, a > b – c;

b < a + c, b > a – c;

c < a + b, c > a – b .

Существует ли треугольник со сторонами 5см, 8см и 12см?

5<8+12 

8<5+12 

12<5+8  Ответ. не существует



По двум сторонам и углу между ними

По стороне и двум прилежщим к ней углам

По трем сторонам

  • По двум пропорциональным сторонам и углу между ним

  • По двум равным углам

  • По трем пропорциональным сторонам



Равнобедренный треугольник



Всякий равносторонний треугольник является равнобедренным, но не всякий равнобедренный — равносторонним.

Свойства равнобедренного треугольника

  1. В равнобедренном треугольнике углы при основании равны.

  2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

  3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

  4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

  5. Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане (они совпадают) проведенных к основанию.

Признаки равнобедренного треугольника

  1. Если в треугольнике два угла равны, то он равнобедренный.

  2. Если в треугольнике медиана является высотой, то он равнобедренный.

  3. Если в треугольнике медиана является биссектрисой, то он равнобедренный.

  4. Если в треугольнике высота является биссектрисой, то он равнобедренный.






hello_html_445cf027.gif


hello_html_445cf027.gif















Общая информация

Номер материала: ДБ-156257

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.