430319
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 1.410 руб.;
- курсы повышения квалификации от 430 руб.
Московские документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 90%

ВНИМАНИЕ: Скидка действует ТОЛЬКО до конца апреля!

(Лицензия на осуществление образовательной деятельности №038767 выдана ООО "Столичный учебный центр", г.Москва)

ИнфоурокМатематикаКонспектыПонятие линейной функции и ее график

Понятие линейной функции и ее график

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.


Тема урока «Понятие линейной функции и её график»


Цели: ввести понятие линейной функции; формировать умение выделять линейную функцию из множества функций; определить график линейной функции и выявить роль параметров k и b в расположении графика линейной функции, развивать логическое мышление.

Ход урока

I. Устная работа.

1. Какие из функций являются прямой пропорциональностью:

а) у = 13х; б) у = hello_html_m4532aa8f.gif; в) у = hello_html_mc3d984c.gif;

г) у = 13(х – 2); д) у = 13х2; е) у = hello_html_22cd7abd.gif?

2. Какая из точек принадлежит графику функции, заданной формулой у = hello_html_m3138c3b6.gif:

а) (0; –2); б) hello_html_6b2835b3.gif; в) (4; –2);

г) (0; 0); д) hello_html_3acd1e55.gif; е) hello_html_m421cccbf.gif?

3. График линейной пропорциональности проходит через точку А. Найдите коэффициент пропорциональности, если:

а) А hello_html_m3ed019a8.gif; б) А (2; –6); в) А hello_html_38bdaa8.gif;

г) А hello_html_74a9c0ed.gif; д) А (0; 0); е) А (3; –0,3).

II. Объяснение нового материала.

Весь материал целесообразно разбить на несколько логических частей и на каждом уроке изучать одну из них.

На этом уроке целесообразно рассмотреть два вопроса: понятие линейной функции и влияние параметров k и b на расположение графика линейной функции.

В соответствии с этим объяснение проводится в два этапа.

1. Введение понятия линейной функции.

Понятие линейной функции начинаем изучать с рассмотрения реальных процессов и реальных ситуаций.

Необходимо привести примеры из учебника и вынести полученные формулы на доску:

s = 50t + 20, где t ≥ 0;

y = 3x + 5, где x N.

Далее можно спросить учащихся: что общего во всех этих формулах? Затем сообщить им, что зависимости такого вида называются линейными функциями, и дать четкое определение.

На доску может быть вынесена запись:

Линейной функцией называется функция, которую можно задать формулой вида у = kx + b, где x – независимая переменная, k и b – некоторые числа.

2. Определение прямой пропорциональности как частного случая линейной функции.

Обращаем внимание учащихся, что в отличие от определения прямой пропорциональности, где k 0, в формуле линейной функции коэффициенты k и b – любые числа, то есть могут равняться нулю. Причем как по отдельности, так и одновременно.

В случае если k 0 и b = 0, функция у = kx + b принимает вид у = kx, то есть является прямой пропорциональностью. Сразу делаем вывод: графиком линейной функции в этом случае является прямая, проходящая через начало координат, и для её построения необходимо вычислить по формуле координаты ещё одной точки.

3. График линейной функции и роль параметров k и b в её расположении.

а) Следующим шагом целесообразно рассмотреть случай k 0 и b 0. Заполняем таблицу со с. 71 учебника для функций у = 0,5х и у = 0,5х + 2. Анализируя полученные данные, учащиеся делают вывод: графиком функции у = 0,5х + 2 является прямая, параллельная прямой, являющейся графиком функции у = 0,5х, и любая точка графика получается сдвигом по оси у на 2 единицы вверх.

Устное упражнение.

Что является графиком функции у = 3х + 1; у = –1,5х + 2; у = 2х – 14; у = –3х – 1,5?

б) Рассматриваем случай k = 0, b 0. Функция у = kx + b принимает вид у = b. Получаем, что, независимо от значения х, у всегда равно b. Значит, графиком функции является прямая, параллельная оси х и проходящая через точку (0; b).

в) Рассматриваем случай k = 0, b = 0. Функция у = kx + b принимает вид у = 0, то есть графиком является сама ось х.

После этого на доску можно вынести запись:

Графиком линейной функции является прямая:

а) при k 0 и b = 0, проходящая через начало координат
и совпадающая с графиком функции
у = kx;

б) при k 0 и b 0, параллельная графику функции у = kx;

в) при k = 0, b 0, параллельная оси х;

г) при k = 0, b = 0, совпадающая с осью х.

4. Последним шагом формулируем простейший алгоритм построения графика линейной функции:

1-й шаг. По формуле найти координаты двух точек графика.

2-й шаг. Отметить полученные точки на координатной плоскости.

3-й шаг. Провести через построенные точки прямую.

III. Формирование умений и навыков.

1. Рассматриваем примеры 3–5 со с. 72–73 учебника. Во время работы учащиеся должны называть значения коэффициентов k и b.

2. Определите, какие из следующих функций являются линейными. Назовите для них значения коэффициентов k и b.

а) у = 2,5x – 7; б) у = 4 – hello_html_2bdf49ff.gifx; в) у = 4x – 5x2;

г) у = hello_html_196e6eb5.gif; д) у = –3х; е) у = hello_html_4ce2ba4d.gif;

ж) у = 3x2 + 2; з) у = –5; и) у = 0.

3. Что является графиком линейной функции и как он расположен?

а) у = –3x + 5; б) у = hello_html_2bdf49ff.gifx; в) у = –3;

г) у = hello_html_7bfd5c20.gif; д) у = hello_html_2bdf49ff.gif; е) у = 0.

4. На рисунках изображены графики функций. Какие из этих функций являются линейными?

а) hello_html_7f496948.png в) hello_html_m7a279843.png

б) hello_html_m5da9cbec.png г) hello_html_m14e6c993.png

5. № 313, 315.

6. № 319, 321.

IV. Итоги урока.

Дайте определение линейной функции.

Что является графиком линейной функции?

Как влияют параметры k и b на расположение графика линейной функции?

Каков алгоритм построения графика линейной функции?

Домашнее задание: для 1 группы № 314;№ 316 , для 2 группы № 318;

320.



Краткое описание документа:

Тема урока  «Понятие линейной функции  и её график»

   

 

Цели: ввести понятие линейной функции; формировать умение выделять линейную функцию из множества функций; определить график линейной функции и выявить роль параметров k и b в расположении графика линейной функции, развивать логическое мышление.

На этом уроке целесообразно рассмотреть два вопроса: понятие линейной функции и влияние параметров k и b на расположение графика линейной функции.

В соответствии с этим объяснение проводится в два этапа.

1. Введение понятия линейной функции.

Понятие линейной функции начинаем изучать с рассмотрения реальных процессов и реальных ситуаций.

Необходимо привести примеры из учебника и вынести полученные формулы на доску:

s = 50t + 20,    где    t ≥ 0;

y = 3x + 5,       где    x ÎN.

Далее можно спросить учащихся: что общего во всех этих формулах? Затем сообщить им, что зависимости такого вида называются линейными функциями, и дать четкое определение.

На доску может быть вынесена запись:

Линейной функцией называется функция, которую можно задать формулой вида у = kx + b, где x – независимая переменная, k и b – некоторые числа.

2. Определение прямой пропорциональности как частного случая линейной функции.

Обращаем внимание учащихся, что в отличие от определения прямой пропорциональности, где k ¹ 0, в формуле линейной функции коэффициенты k и b – любые числа, то есть могут равняться нулю. Причем как по отдельности, так и одновременно.

В случае если k ¹ 0 и b = 0, функция у = kx + b принимает вид у = kx, то есть является прямой пропорциональностью. Сразу делаем вывод: графиком линейной функции в этом случае является прямая, проходящая через начало координат, и для её построения необходимо вычислить по формуле координаты ещё одной точки.

3. График линейной функции и роль параметров k и b в её расположении.

 

а) Следующим шагом целесообразно рассмотреть случай k ¹ 0 и b ¹ 0. Заполняем таблицу со с. 71 учебника для функций у = 0,5х и у = 0,5х + 2. Анализируя полученные данные, учащиеся делают вывод: графиком функции у = 0,5х + 2 является прямая, параллельная прямой, являющейся графиком функции у = 0,5х, и любая точка графика получается сдвигом по оси у на 2 единицы вверх.

 

Общая информация

Номер материала: 136985

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.