Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Пояснительная записка к программе по алгебре 8 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Пояснительная записка к программе по алгебре 8 класс

библиотека
материалов

Пояснительная записка

Статус документа

Данная рабочая программа ориентирована на учащихся 8 класса и реализуется на основе следующих документов:

  • Приказ МО РФ «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования» от 05 марта 2004 г. № 1089;

  • Федеральный закон об образовании РФ №273 от 29.12.2012г.

  • Приказ МОиН РФ "Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2015/16 учебный год" от 31 марта 2014 г. №253;

  • Авторская программа «Алгебра 8 класс» Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова – Просвещение,2010

  • Годовой календарный график на МБОУ Николо-Березовской СОШ 2015-2016 учебный год.

  • Учебный план МБОУ Николо-Березовской СОШ на 2015-2016 учебный год.

  • ООП МБОУ Николо-Березовской СОШ.

Общая характеристика учебного предмета

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В ходе освоения содержания курса учащиеся получают возможность:

  • развить представления о числе и роли вычислений в человеческой практике;

  • сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Основные развивающие и воспитательные цели

 Развитие:

  •       Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  •       Математической речи;

  •       Сенсорной сферы; двигательной моторики;

  •       Внимания; памяти;

  •       Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.


 Воспитание:

  •       Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  •       Волевых качеств;

  •       Коммуникабельности;

  •       Ответственности.


Место предмета в учебном плане МБОУ Николо-Березовской СОШ

Согласно федеральному компоненту и учебному плану на изучение алгебры в 8 классе 3 ч в неделю, следовательно рабочая программа рассчитана на 105 часов



Содержание учебного предмета

1.Повторение (4 ч)

Многочлены. Формулы сокращенного умножения. Системы линейных уравнений.


2. Рациональные дроби (22 ч)

Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция и ее график

Основная цель – выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений. Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими. При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции .


3.Квадратные корни (20 ч)

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция ее свойства и график.

Основная цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество , которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция , ее свойства и график. При изучении функции показывается ее взаимосвязь с функцией , где x ≥ 0.


4. Квадратные уравнения (24 ч)

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Основная цель – выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида. Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а ≠ 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители. Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней. Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.


5. Неравенства (20 ч)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Основная цель – ознакомить учащихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности. Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.


6. Степень с целым показателем. Элементы статистики. (12 ч)

Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Основная цель – выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации. В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями.


7. Повторение (3ч)








Тематическое планирование


п\п

Тема

Количество часов

Контрольные работы

1

Повторение

4

1

2

Рациональные дроби

22

2

3

Квадратные корни

20

2

4

Квадратные уравнения

24

2

5

Неравенства

20

1

6

Степень с целым показателем. Элементы статистики.

12

1

7

Повторение

3

1


Итого

105

10
































Общеучебные знания

В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Учебно-методическое и материально-техническое обеспечение:

Компьютерное обеспечение уроков

В разделе рабочей программы «Оборудование» спланировано применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса учащихся, тренировочные упражнения.

Демонстрационный материал (презентации).

  • Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает повышенное внимание и интерес у учащихся.                 

  • При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет учащимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.


 Задания для устного счета.

  • Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель – ученик, взаимопроверки, а также в виде тренировочных занятий.


Тренировочные упражнения.

  • Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики

  • Использование компьютерных технологий  в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес  к изучению данного предмета.


Пособия для ученика


  1. Учебник Алгебра, 8 класс Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова под редакцией С.А.Теляковского, М.: Просвещение, 2010

  2. Ю.Н.Миндюк, Н.Г.Миндюк. Элементы статистики и теории вероятностей, алгебра 7-9. -М.: Просвещение, 2007.

  3. Ф.Ф.Лысенко.Алгебра. Тематический тренажер. Издательство «Легион», Ростов-на - Дону,2014.

  4. Н.Г.Миндюк, И.С. Шлыкова Рабочая тетрадь алгебра 8 класс М.: Просвещение, 2014.


Пособия для учителя


  1. Уроки математики в 8-м классе. Поурочные планирование. Ковалева Г.И., Издательство «Братья Гринины», 2012

  2. Ф.Ф.Лысенко «Тесты для промежуточной аттестации», 2013.

  3. Л.И.Звавич. Дидактические материалы по алгебре, 2014.

  4. Журнал «Математика в школе».


Дополнительная литература


  1. Л.Ф.Пичурин «За страницами учебника алгебры» (7-9 кл.). М.: Просвещение, 1990.

  2. Г.И.Глейзер «История математики в школе» (7-8 кл.) М.: Просвещение, 1982.


Материалы на электронных носителях и интернет – ресурсы


  1. Единая коллекция ЦОР http://www.alleng.ru/d/math/math888.htm

  2. Российский общеобразовательный портал http://www.school.edu.ru/default.asp

  3. Здесь можно найти авторское тематическое планирование по геометрии. Алгебре

http://www.koipkro.kostroma.ru/Kostroma_EDU/gcoko/mo_matem/DocLib15/Forms/AllItems.aspx

  1. Математика в школе: консультационный центр http://school.msu.ru

  2. Портал Allmath.ru — Вся математика в одном месте http://www.allmath.ru

  3. Газета «Математика» Издательского дома «Первое сентября» http://mat.1september.ru

  4. Компьютерная математика в школе http://edu.of.ru/computermath



Результаты и система их оценки

  • знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

  • уметь

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;

  • решать линейные неравенства с одной переменной и их системы;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.

Технологии, методики и формы организации учебных занятий:


Технологии:

  • Проблемное обучение;

  • Коллективный способ деятельности;

  • Информационно- коммуникационные технологии;

Методики:

  • Лекция, беседа, самостоятельное изучение;

  • Самостоятельные работы; лабораторные работы.

  • Фронтальный опрос, устная или письменная контрольная работа.

Формы:

  • Урок - лекция, урок - деловая игра;

  • Урок - практикум, урок- соревнование;

  • Урок-с дидактической игрой, комбинированный урок;

  • Урок-консультация, урок-зачет, урок семинар.

  • Система уроков условна, но все же выделяются следующие виды:

Урок-лекция. Предполагаются  совместные усилия учителя и учеников для решения общей проблемной познавательной задачи.

Урок-практикум. На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования,  решение различных задач, практическое применение различных методов решения задач.

Урок-исследование. На уроке учащиеся решают проблемную задачу исследовательского характера аналитическим методом.

Комбинированный урок предполагает выполнение работ и заданий разного вида.

Урок–игра. На основе игровой деятельности учащиеся познают новое, закрепляют изученное, отрабатывают различные учебные навыки.

Урок решения задач. Вырабатываются у учащихся умения и навыки решения задач на уровне обязательной и возможной подготовки.

Урок-тест. Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности учащихся, тренировки технике тестирования.

Урок-зачет. Устный опрос учащихся  по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.

Урок-самостоятельная работа.  Предлагаются разные виды самостоятельных работ.

Урок-контрольная работа. Проводится на двух уровнях:

уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5».

        

Использование различных технологий  в преподавании математики позволяет непрерывно менять формы работы на уроке, чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, что создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес  к изучению данного предмета.

Внесение данных изменений позволит охватить весь изучаемый материал по программе, повысить уровень обученности учащихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся.


Система оценки достижения планируемых результатов освоения предмета :


Пятибалльная система оценивания с использованием дифференцированного подхода. Оценка знаний, умений и навыков осуществляется с помощью системы измерителей в виде предварительного, текущего, тематического и итогового контроля, используя при этом устную проверку (устный опрос индивидуальный или фронтальный), письменную проверку (математический диктант, самостоятельная работа, контрольная работа, тематический срез, тестирование)

Оценка "5" ставится:

а) работа выполнена полностью и без ошибок;

б) количество недочетов в такой работе не должно превышать двух.



Оценка "4" ставится:

а) работа выполнена полностью, но содержит не более 3-4 недочетов;

б) из всех предложенных заданий не выполнено одно задание;

в) содержит одну грубую ошибку.

Оценка "3" ставится:

а) выполнено верно половина из всех предложенных заданий

б) работа содержит не более 5-7 недочетов.

Оценка "2"

Оценка "2" ставится во всех остальных случая

Грубые ошибки

К грубым ошибкам относятся ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять, незнание приемов решения задач, рассматриваемых в учебных пособиях, а также вычислительные ошибки, если он не являются опиской.

Негрубые ошибки

К негрубым ошибкам относятся:

- потеря корня или сохранение в ответе постороннего корня;

- отбрасывание без объяснения одного из корня и равнозначные им.

К недочетам относятся:

- нерациональное решение, описки, недостаточность;

- отсутствие пояснений, обоснований в решениях.



Если одна и та же ошибка (один и тот же недочет) встречаются несколько раз, то это рассматривается как одна ошибка (один недочет).

Зачеркивание в работе (желательно, чтобы они были аккуратными) свидетельствует о поисках решения, что считать ошибкой не следует.

Нормы оценок по математике

Знания, умения и навыки учащихся по математике оцениваются по результатам устного опроса, текущих и итоговых письменных работ, тестов.

Письменная проверка знаний, умений и навыков.

В основе данного оценивания лежат следующие показатели: правильность выполнения и объем выполненного задания.

Классификация ошибок и недочетов, влияющих на снижение оценки.

Ошибки:

- незнание или неправильное применение свойств, правил, алгоритмов, существующих зависимостей, лежащих в основе выполнения задания или используемых в ходе его выполнения;

- неправильный выбор действий, операций;

- неверные вычисления в случае, когда цель задания - проверка вычислительных умений и навыков;

- пропуск части математических выкладок, действий, операций, существенно влияющих на получение правильного ответа;

- несоответствие пояснительного текста, ответа задания, наименования величин выполненным действиям и полученным результатам;

- несоответствие выполненных измерений и геометрических построений заданным параметрам.

Недочеты:

- неправильное списывание данных (чисел, знаков, обозначений, величин);

- ошибки в записях математических терминов, символов при оформлении математических выкладок;

- отсутствие ответа к заданию или ошибки в записи ответа.

Снижение отметки за общее впечатление от работы допускается в случаях, указанных выше.

При оценке работ, включающих в себя проверку вычислительных навыков, ставятся следующие оценки:

Оценка "5" ставится, если работа выполнена безошибочно;

Оценка "4" ставится, если в работе допущены 1-2 ошибки и 1-2 недочета;

Оценка "3" ставится, если в работе допущены 3-4 ошибки и 1-2 недочета;

Оценка "2" ставится, если в работе допущено 5 и более ошибок;

При оценке работ, состоящих только из задач:

Оценка "5" ставится, если задачи решены без ошибок;

Оценка "4" ставится, если допущены 1-2 ошибки;

Оценка "3" ставится, если допущены 1-2 ошибки и 3-4 недочета;

Оценка "2" ставится, если допущены 3 и более ошибок;

При оценке комбинированных работ:

Оценка "5" ставится, если работа выполнена безошибочно;

Оценка "4" ставится, если в работе допущены 1-2 ошибки и 1-2 недочета, при этом ошибки не должно быть в задаче;

Оценка "3" ставится, если в работе допущены 3-4 ошибки и 3-4 недочета;

Оценка "2" ставится, если в работе допущены 5 ошибок;

При оценке работ, включающих в себя решение выражений на порядок действий:

считается ошибкой неправильно выбранный порядок действий, неправильно выполненное арифметическое действие;

Оценка "5" ставится, если работа выполнена безошибочно;

Оценка "4" ставится, если в работе допущены 1-2 ошибка;

Оценка "3" ставится, если в работе допущены 3 ошибки;

Оценка "2" ставится, если в работе допущено 4 и более ошибок;

При оценке работ, включающих в себя решение уравнений:

считается ошибкой неверный ход решения, неправильно выполненное действие, а также, если не выполнена проверка;

Оценка "5" ставится, если работа выполнена безошибочно;

Оценка "4" ставится, если в работе допущены 1-2 ошибка;

Оценка "3" ставится, если в работе допущены 3 ошибки;

Оценка "2" ставится, если в работе допущено 4 и более ошибок;

При оценке заданий, связанных с геометрическим материалом:

считается ошибкой, если ученик неверно построил геометрическую фигуру, если не соблюдал размеры, неверно перевел одни единицы измерения в другие, если не умеет использовать чертежный инструмент для измерения или построения геометрических фигур;

Оценка "5" ставится, если работа выполнена безошибочно;

Оценка "4" ставится, если в работе допущены 1-2 ошибка;

Оценка "3" ставится, если в работе допущены 3 ошибки;

Оценка "2" ставится, если в работе допущено 4 и более ошибок;



!!!Примечание: за грамматические ошибки, допущенные в работе, оценка по математике не снижается!!!!!

Оценка письменных (тестовых) работ

В письменных контрольных работах учитывается также, какую часть работы выполнил ученик.

«2» - 0-49 % заданий; «3» - 50-69% заданий;

«4» - 70-89% заданий; «5» - 90-100% заданий


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 24.10.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров222
Номер материала ДВ-092409
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх